
Free/Open-source software 1

The Benefits of Free/Open-Source Software

Daniel Brodzik

Written Communications

Name of instructor withheld

This paper is copyright ©2004 by Daniel Brodzik. Verbatim copying and distribution is

permitted provided this copyright notice is preserved.

Free/Open-source software 2

The Benefits of Free/Open-Source Software

How would you like to be free to do whatever you want with your computer software?

How would you like a stable and secure operating system? Would you like to be able to copy and

distribute your software without restriction? If you are a programmer, would you like to be able

to study, modify, and adapt your software?

Free software, also known as open-source software, is a great idea if you said "yes" to any

of the above questions. Too few people know that there are many viable alternatives to the

software "standards" of Microsoft Windows and Microsoft Office. In this paper, I will go over

definitions of terms you should be aware of, the free software and open-source definitions, the

problems with proprietary software, like Microsoft software, and the benefits of free/open-source

software. There is a real problem with companies like Microsoft who try to hijack the future of

technology and turn it into a mechanism for control of information.

Glossary

• License agreement: This is a legal document that you must agree to before you can use a

particular piece of software. This sets forth the terms and conditions for use, distribution, and

modification for a piece of software. Most people ignore this when installing or compiling a

program. Every piece of software except public-domain software has one.

• Source code and Binary: These are the two forms programs may be distributed in. Source

code is human-readable text that defines the program. This is the preferred form for studying

and modification. Binary executables are usually the form needed to run the program, but

there are exceptions to this. Binaries cannot be readily understood by humans, and thus they

are the form of the program that most software companies distribute the program in. In

addition, programs that are distributed in binary form only almost always come with a license

Free/Open-source software 3

that makes trying to discover the inner workings of the program using the binary illegal. To

better understand this, we can relate a program to a car. The source code can be a book and a

set of parts needed to build a car. The book would be very detailed and describe exactly how

to build the car and how it works. The binary could be the car itself. If car manufacturers were

like Microsoft, they would require you to sign an agreement stating that you won't open the

hood for any reason whatsoever and then weld or lock the hood shut. This is one of the

biggest problems with binary-only software.

• Proprietary software: This is software that cannot be studied, copied onto a number of

computers greater than what the license dictates, or modified for any reason whatsoever. In

addition, users are not allowed to use the software without paying a licensing fee. Proprietary

software is distributed in binary form only.

• Non-disclosure agreement (NDA): This is a legal agreement stating that you will not share a

certain piece of information with anyone else.

• Free software: Free software is free in terms of freedom, not necessarily price, which makes

commercial free software possible. Don't confuse it with freeware or shareware, which are

both like proprietary software except that they don't have copying restrictions. Richard

Stallman (2004) says "Free software is a matter of the users' freedom to run, copy, distribute,

study, change and improve the software." (para. 3) The software may be distributed with or

without charge, whether the distributor paid for the software or not. Advocates of this term

emphasize the ethical benefits of this type of licensing.

• Open-source software: This is essentially the same thing as free software in definition, but

advocates of this term tend to emphasize the technical benefits of software that is licensed this

way. This term is advocated by Eric Raymond and was coined to prevent companies that may

Free/Open-source software 4

be scared away by the term "free software" due to its ambiguous nature. However, the term

"open-source" is also ambiguous; it can either refer to the complete freedoms associated with

free software, or it can refer exclusively to the right to see the source code, whether or not you

can do anything else with it. I tend to advocate both causes because I believe that it is

important to emphasize the ethical benefits (free software) as well as the technical benefits

(open-source software). Thus, I will be calling it "free/open-source software" for the

remainder of this paper.

Problems with Proprietary Software

There are many problems with proprietary software: the corporate virtual monopoly

effect, not being sure of the safety of proprietary software, overcharging, unfair license

agreements that are getting worse, the lock-in effect, and nobody outside the company being able

to see the source code to the software. This section will describe these problems in detail.

First, there is the corporate virtual monopoly effect as demonstrated by Microsoft.

Microsoft gets away with so many things because so many people are too willing to accept the

myth that Microsoft is a monopoly. The lock-in effect is often the biggest reason people are

forced into staying with a particular program. This occurs most often with Microsoft Word. For

example, the Word document format is kept a secret by Microsoft. Many people transfer

documents in this file format, and Microsoft is using this to their advantage. As soon as other

programs, like OpenOffice.org, support the latest version of the Word format, Microsoft changes

it again. Microsoft introduces many new, usually buggy, features into the latest version of

Microsoft Office, tempting people to upgrade. Those who have an older version of Word must

upgrade to read documents from people who are using the newest version. Those using very old

versions of Word must also upgrade in order to send documents to people with newer versions of

Free/Open-source software 5

Word. It's a vicious cycle. Stallman (2001) mentions a similar tactic that's also employed by

Microsoft:

When Microsoft does something new, its purpose is strategic--not to improve computing

for its users, but to close off alternatives for them. Microsoft uses an anticompetitive

strategy called "embrace and extend". This means they start with the technology others

are using, add a minor wrinkle which is secret so that nobody else can imitate it, then use

that secret wrinkle so that only Microsoft software can communicate with other Microsoft

software. In some cases, this makes it hard for you to use a non-Microsoft program when

others you work with use a Microsoft program. In other cases, this makes it hard for you

to use a non-Microsoft program for job A if you use a Microsoft program for job B.

Either way, "embrace and extend" magnifies the effect of Microsoft's market power.

(para. 10-11)

Second, there is the problem with overcharging. Software companies like Microsoft use

tactics to justify charging $150-300 for a single-user license copy of Windows or Microsoft

Office and offering little or no support without the user paying even more. According to the

Debian GNU/Linux distribution's "About Debian" page (2004), "software is not like making

cars." If you make one car, it is costly. It will also cost a lot to make another one just like it. With

software, it may cost some money to develop the software. With software, once the first copy is

made, it doesn't cost a lot to make another copy. ("How can you give it away?" section, para. 1) I

think that some reasons that Microsoft software is so costly off-the-shelf are greedy executives,

the lawyers that are hired to defend Microsoft in their trials, the costs involved in implementing

anti-piracy measures in their software, and all the other predatory business practices they engage

in.

Free/Open-source software 6

Third, there is a problem with license agreements that are unfair. They try to discourage

the human instinct to share information. Some license agreements require activation within a

certain amount time. This can introduce privacy problems. For example, when I was activating

MS Office XP, I had to enter personal information. Some companies also introduce clauses that

state that they can inspect your computer over the Internet without your consent. Also, if you are

a home user with multiple computers, you usually have to buy as many copies of the software as

computers you want to run the program on. How do companies get away with this? From what

I've seen, the answer is that people don't read the license agreement and just click "I agree", thus

making a legal agreement without fully understanding what they're doing. It wouldn't be a wise

idea to sign a contract without reading it first, and, likewise, it wouldn't be a wise idea to agree to

a license you haven't read. Stallman (2002a) has this to say:

Proprietary software means, fundamentally, that you don't control what it does; you can't

study the source code, or change it. It's not surprising that clever businessmen find ways

to use their control to put you at a disadvantage. Microsoft has done this several times:

one version of Windows was designed to report to Microsoft all the software on your hard

disk; a recent 'security' upgrade in Windows Media Player required users to agree to new

restrictions. But Microsoft is not alone: the KaZaa music-sharing software is designed so

that KaZaa's business partner can rent out the use of your computer to their clients. These

malicious features are often secret, but even once you know about them it is hard to

remove them, since you don't have the source code. (para. 2)

The biggest problem with proprietary software is that people outside the company cannot

see the software's source code or try to discover it from the binary. First, you can never be sure a

piece of proprietary software is safe, as evidenced by the above paragraphs. Second, bugs are

Free/Open-source software 7

very hard to find and to fix, as demonstrated by Windows and MS Office. Third, new features are

often hard to get. Fourth, the lack of the availability of source code limits the program's

usefulness, meaning that others cannot modify and adapt the program.

Benefits of Free/Open-Source Software

Free/open-source software has many benefits, including the encouragement of sharing

and modification, a very efficient development model, more reliable software, the advocacy of

open standards, often low or nonexistent licensing costs, the fact that free/open-source programs

are often not tied to one operating system or hardware platform, and better security. These

benefits are very helpful in the development of quality software, and they are not possible with

proprietary software licensing.

First, the permissive license agreements encourage the human instinct to share

information by specifically allowing copying, distribution with or without charge, modification,

and studying of the software. Many people already illegally copy and distribute proprietary

software. Microsoft and a few other rich companies are already trying to find ways to prevent

people from using software they acquired illegally. In other words, the companies that are

complaining the most are the ones with the most money. According to Stallman (1994), these

companies compute their losses by figuring that people who illegally copy the software would

have paid for it. He believes that most people who illegally copy software most likely would not

have paid for it anyway, so the companies aren't actually losing much except potential users.

(para. 9) However, free/open-source software is licensed to specifically allow copying. In

addition, the GNU General Public License and GNU Lesser General Public License, GNU GPL

and GNU LGPL for short, two of the most popular licenses in use for free/open-source software,

Free/Open-source software 8

are designed to prevent a distributor from adding restrictions on use, copying, modification, etc.

Because of this, free/open-source software is a public good.

Second, the concept of free/open-source software has introduced a surprisingly efficient

and effective development model. According to Eric Raymond (2002), the most effective

development model is bazaar-style rather than cathedral-style. He "believed that the most

important software (operating systems and really large tools like the Emacs programming editor)

needed to be built like cathedrals, carefully crafted by individual wizards or small bands of

mages working in splendid isolation, with no beta to be released before its time. Linus Torvalds's

style of development--release early and often, delegate everything you can, be open to the point

of promiscuity--came as a surprise. No quiet, reverent cathedral-building here--rather, the Linux

community seemed to resemble a great babbling bazaar of differing agendas and approaches

(aptly symbolized by the Linux archive sites, who'd take submissions from anyone) out of which

a coherent and stable system could seemingly emerge only by a succession of miracles." (pp. 2-

3) The rapid development of such important free/open-source projects as Linux, a fast and stable

Unix-like operating system that I use every day, and OpenOffice.org, the very program I used to

type this paper, is only getting better. According to Raymond (2002), Linus' Law is "Given

enough eyeballs, all bugs are shallow." Linus Torvalds, the creator of Linux, invented the open

development model. Torvalds has a lazy personality; this very quality of his contributed to this

development model. According to Raymond (2002), "Linus seems to me to be a genius of

engineering and implementation, with a sixth sense for avoiding bugs and development dead-

ends and a true knack for finding the minimum-effort path from point A to point B. Indeed, the

whole design of Linux breathes this quality and mirrors Linus's essentially conservative and

simplifying design approach." For example, there are many bugs in Microsoft software. The only

Free/Open-source software 9

people allowed to work on and fix these bugs, or even to see the code, work at Microsoft. These

people cannot possibly be as diversified as the high number of users of Windows and MS Office

because the code is confined to the relatively small number of people at Microsoft. Linux and

OpenOffice.org, on the other hand, are worked on by a lot of people around the world with more

diversified computer experience, and there are ways to help even if you're a non-programmer,

like filing bug reports, requesting features, donating, and promoting the software. The fact that

anyone can see and work on the code means that anyone can proofread the code. The way I see

it, it's exactly like getting someone else to proofread something you write; if the only people who

can see the code are the original authors, flaws are a lot harder to find. Developers of free/open-

source software are generally good at listening to their users, and their users can often file more

useful bug reports due to the open nature of the code.

Free/open-source software can be developed commercially, but Microsoft doesn't seem to

believe this is possible and even posted their criticism of the GNU GPL on their website. They

state that the GPL is against the American Dream, even though Bradley Kuhn started his own

consulting company based entirely on software under the GPL. (Kuhn, 2001, para. 8-9) They

don't seem to realize that while the GPL was designed to keep other people from taking a

program that is under the GPL and using the specific development model that Microsoft uses,

there are many other ways of making money from software. For example, while almost all free

software is available without charge on the Internet, there are many companies that sell the

programs on CD. The distributor may even publish manuals and sell those. In the case of a full

operating system like Debian GNU/Linux, it may even be more convenient to buy the program

on CD than to download it because many people, including me, still have a slow Internet

connection. For example, depending on where you buy a Linux distribution, you can get a

Free/Open-source software 10

nicely-packaged set of CD's with manuals and a support contract, or you can spend as little as

$5-15 but get only the CD's and no support from the organization that made the distribution.

One major benefit of open-source software is that the open development model often

ensures that the software can be useful on more than one operating system and hardware

platform. Major free/open-source applications like OpenOffice.org and AbiWord are available

for Linux, Macintosh, Windows, and BSD software platforms.

A big benefit of free/open-source software is security. We have all heard the news reports

of security break-ins. There are many reasons that free/open-source software is secure. One of the

most obvious to a programmer, even a very casual one such as myself, but actually commonly

held as a potential problem by the average user is the very fact that the source code is available to

anyone who wants it. One may think that the code being open to everyone would lead to more

security problems, but the reverse is actually true. Consider this: Microsoft doesn't release the

code for Windows. The only people who can get the information needed to do a security break

are people who do it illegally, and Microsoft has sole control over fixing security problems.

Nobody else has any control over it. In the case of Linux, for example, people have access to the

source code. This usually means that security updates are released almost upon discovery.

Stallman (2002a) writes, "If a free program has a malicious feature, other developers in the

community will take it out, and you can use the corrected version." (para. 12)

The final, and most important, benefit of free/open-source software is that it is real, and it

exists today. While all this probably seems too good to be true, it really isn't. This used to be the

way all software was licensed until companies like Microsoft emerged. Stallman (2002b) writes,

"In the 70s, computer users lost the freedoms to redistribute and change software because they

didn't value their freedom. Computer users regained these freedoms in the 80s and 90s because a

Free/Open-source software 11

group of idealists, the GNU Project, believed that freedom is what makes a program better, and

were willing to work for what we believed in." (para. 10) Now that this is becoming mainstream,

the time is now right to spread the word.

Conclusion

The concept of sharing information is not new. However, even though software is

technically information, major companies like Microsoft are treating it like a tangible object by

requiring every user to buy a copy for each computer he or she owns. There are many reasons we

should avoid the use of proprietary software, like the virtual monopoly effect, the overcharging,

unfair license agreements, the lock-in effect, and the obscurity of the code. There are many

reasons to use free/open-source software, including encouragement to share information, the

effective development model, cross-platform compatibility, security, and the fact that it exists

today. For further reading, visit http://www.fsf.org, http://www.opensource.org,

http://www.linux.org, and http://www.debian.org.

Free/Open-source software 12

References

About Debian. (2004). Retrieved November 30, 2004, from http://www.debian.org/intro/about.

Kuhn, Bradley. (2001). The GNU GPL and the American Dream. Retrieved November 30, 2004,

from http://www.fsf.org/philosophy/gpl-american-dream.html.

Raymond, Eric. (2002). The Cathedral and the Bazaar. Retrieved November 30, 2004, from

http://www.catb.org/~esr/writings/cathedral-bazaar.

Stallman, Richard. (1994). Why Software Should Not Have Owners. Retrieved November 15,

2004, from http://www.fsf.org/philosophy/why-free.html.

Stallman, Richard. (2001). The GNU GPL and the American Way. Retrieved November 30,

2004, from http://www.fsf.org/philosophy/gpl-american-way.html.

Stallman, Richard. (2002a). Can you trust your computer? Retrieved November 30, 2004, from

http://www.fsf.org/philosophy/can-you-trust.html.

Stallman, Richard. (2002b). Linux, GNU, and freedom. Retrieved November 30, 2004, from

http://www.fsf.org/philosophy/linux-gnu-freedom.html.

Stallman, Richard. (2004). The Free Software Definition. Retrieved November 30, 2004, from

http://www.fsf.org/philosophy/free-sw.html.

