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Solving Puzzles Using Maps 

by George Bell 
 

When driving in an unfamiliar city, one consults a highway map.  When faced with an 
unfamiliar puzzle, wouldn’t it be nice to have a map of it?  I claim that when we solve a 
disassembly puzzle, we instinctively create a mental map of the puzzle.  I think of this 
mental map as a graph, with the nodes being the possible states of the puzzle, and 
edges representing physical motions of the puzzle pieces which change the puzzle from 
one state to another.  After we solve a puzzle and have this mental map to follow, 
solving it a second time tends to be significantly easier. 
 
Why not write down this mental map to help other people navigate the puzzle?  The 
problem is that many puzzles have too many possible states, or there may be no simple 
way to describe a particular state of the puzzle.  For example, the physical states of a 
burr puzzle tend to be difficult to describe.  The solution is usually given as a sequence 
of motions of the puzzle pieces, often communicated by drawings.  Such a solution 
gives the sequence of edges followed in a path to the desired goal state (namely, 
disassembly).  This is not a map of the puzzle, but analogous to turn-by-turn directions 
to take you from point A to point B, and turn-by-turn directions work perfectly 
well provided you don’t make any wrong turns. 
 
Is it ever possible to write down a map of a puzzle?  One class of puzzle where mapping 
does work is sliding block puzzles.  Here a subset of possible puzzle states is generally 
selected, and the edges connecting them represent multiple sliding moves of the pieces.  
A map of the Century Puzzle covers three pages [1].  This map is superior to a list of 
100 moves needed to solve the puzzle.  For one thing it describes all possible states 
that can be reached by the puzzle.  So even if you are not in the starting state, you 
should be able to navigate to the solution. 
 
Another class of puzzle where maps work well are disentanglement puzzles involving 
rings or disks.  The number of possible states for such a puzzle is often quite small and 
the states easy to identify.  The difficulty lies mainly in figuring out what moves are 
possible, and whether they take you closer or farther from the goal.  I will now describe 
two such puzzles that can be solved by creating a solution map. 
 

Hanayama’s Cast Duet 
 
This fascinating puzzle was designed by Oskar van 
Deventer. The puzzle consists of a metal grid with 9 
holes (see Figure 1), and what at first appears to be 
a single ring.  The ring is actually split like a bagel 
into identical halves which are magnetically 
connected.  The rings also contain a radial gap so 
that they can be inserted onto the grid.  The rings 
have a point which sticks into this gap (see Figure 
2), allowing them to move along various slots 
between holes in the grid in one orientation only. 
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Figure 1.  Cast Duet grid 
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We number the holes in the metal grid as shown in 
Figure 1, where the outside of the grid is “hole 0”.  The 
grid itself is always kept in the orientation in Figure 1 (it 
may be tempting to turn it over to look at the slots on 
the bottom, but this is not necessary once you can 
read the map).  The position of a ring in the puzzle is 
denoted by a two digit number describing which two 

holes the ring spans.  The order of the two numbers is chosen so that, when the ring is 
spun around so that the point is up (toward you in Figure 1), the second number marks 
the location of the point.  For example, when the ring is off the grid, we can think of it as 
in state “00”.  We can place the ring on the grid by sliding it with point up onto hole 1, to 
state “01”, or with point down onto hole 8, to state “80”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 is a map of all the positions that can be reached by a single ring.  Horizontal 
moves in the map are done with the point down, and vertical moves with the point up.  
Thus, any transition from a horizontal to vertical move (or vice-versa) requires a 180° 
rotation of the ring. 
 
This is a very simple graph with few 3-way intersections.  Solving the puzzle requires 
placement (or removal) of both rings, which is slightly more complicated.  If you wish to 
place the connected ring between holes x and y, you need to navigate one ring to xy 
and the other to yx.  There are two problems which may occur, first the presence of the 
first ring may impede the other.  Second, the two rings may end up “back-to-back”, 
unable to interlock.  The first problem is usually easy to avoid, for the second problem, 
try placing the rings in the opposite order. 
 
As sold, the puzzle has 5 problems in increasing level of difficulty for paired-ring 
placement (the most difficult being the starting position of the puzzle, 90/09).  These 5 
problems are denoted in Figure 3 by paired node symbols.  In fact, there are 28 possible 
ring placements, 8 off the edge of the grid, plus 20 internal locations: 6 horizontal, 6 
vertical, and 8 diagonal.  The graph in Figure 3 has 56 nodes (and 00), indicating that 
we can place a single ring in either of two orientations in all 28 locations.  The grid 

the point 

Figure 2. Cast Duet rings 

Figure 3. A map of the Cast Duet showing all positions of a single ring 
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seems to be designed with this in mind, because not all slots in the grid are needed to 
solve the 5 problems that come with the puzzle. 
 
In fact, all 28 paired-ring positions can be reached, as I have verified by solving each in 
turn.  Most cases are not difficult with the map, the most difficult being 14/41, and 98/89.  
It is quite difficult to reach these positions because the two rings block one another.  I 
recommend these two difficult problems as they require solution techniques beyond the 
original 5 problems

1
. 

 

Hanayama’s Cast Disk 

 

Another invention of Oskar van 
Deventer, the Cast Disk puzzle 
consists of two metal disks, 
each with seven notches in the 
edge.  Only in two special 
notches (labelled “1”) can the 
disks be separated, normally it 
is possible to rotate the disks 
between notches but not separate 
them.  Two other special notches (labelled “7”) are extra-long and allow the two disks to 
slide together into the spherical, interlocked, starting position. 
 
The two disks are very similar but are not identical, they can be differentiated by careful 
comparison of the notch labelled “4”.  The left disk is usually labelled “®HANAYAMA”, 
but unfortunately not all copies of the puzzle have this label.  For what follows this disk 
is always to be held in the left hand.  The notch-labelling scheme in Figure 4 is used in 
the Hanayama solution sheet (from Puzzlemaster [2]), which calls the Hanayama disk 
“B” and the other disk “A”.  To connect the disks, tilt the top of the right disk in Figure 4 
toward you, and the bottom away from you. 
 
Figure 5 shows a map of all 49 positions that can be reached by this puzzle (every pair 
of notches can be connected).  The 2 digit notation xy means that notch x in the 
“Hanayama” disk is connected to notch y in the other disk.  The bLack links denote 
rotations of the Left disk, gRey links rotations of the Right disk (if grey cannot be 
distinguished from black in this print of the article, the disk to rotate can also be 
identified by which digit changes).  I find it interesting that a puzzle which is physically 
two interlocked rings has a map that is four interlocked rings!  This is a really a fairly 
simple maze, with few 3-way intersections,  and most people wander somewhat blindly 
about it, finding a solution without too much trouble (my son solved it this way at age 6). 
 
One problem using this map is that, looking at the puzzle, it is not easy to tell which two 
notches are interconnected, and consequently where you are in the map.  This can be 
solved by sticking tiny labels at each notch (which I did to create the map), but I will now 
show you how to solve the puzzle without resorting to such aids. 
 

                                                
1
 Solution for 98/89: move a ring to 98, then the second to 65 (easy), then to 68 and 69.  Moving from 68 

to 69 is difficult because it seems blocked by the other ring, but it is possible.  Then move the second ring 
easily to 59 and 89.  14/41 can be solved using a similar technique. 

Figure 4.  Notch labels for the two disks 
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Holding the puzzle as you always should, with the Hanayama disk in your left hand, 
suppose I give you the instructions “L

2
RL

2
R”, abbreviated “(L

2
R)

2
”.  This means, “turn 

the left disk two notches” followed by “turn the right disk one notch”, then repeat. “But 
wait!”, you say, “which direction do I turn each disk?”  While this can be a problem in 
general, I can choose a special set of moves, where at any point, there is only one way 
to turn the next disk.  I call this an unambiguous move sequence, because you can 
never be confused as to how to interpret the next move. 
 
The parts of the graph where confusion occurs are marked by arrows.  If I enter a node 
along such an arrow by turning one disk, I can then turn the opposite disk in either 
direction.  Thus, in order to know which way to proceed, I will need to figure out which 
way to turn the next disk.  Unambiguous move sequences are exactly those that avoid 
these arrows (moving against an arrow is perfectly valid and is not ambiguous).  One 
unambiguous disassembly sequence is (LR)

2
(L

2
R)

2
LR

2
LRL.  You should be able to 

follow this sequence through the map to verify that it never follows an arrow into a node. 
 
Note that any unambiguous sequence simply alternates left and right turns, moving 
usually one but occasionally two notches.  The above sequence can be more easily 
remembered by counting moves: “start with the left, then alternate single moves, 
except for moves 5, 7, and 10, which are double moves”. 
 
If we try to reverse this sequence to reassemble the puzzle, we discover that the 
assembly is ambiguous.  In fact, by looking at the map we see that there is no move 
sequence that disassembles the puzzle which is unambiguous both forward and 

Figure 5. A map of the Cast Disk showing which notches are interlocked. 
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backward.  This may seem a sad state of affairs, until we realize that there is no reason 
why we have to assemble the puzzle using the reverse of the disassembly.  You can 
assemble the puzzle using the unambiguous, simpler sequence: (LR)

4
LR

2
(LR)

2
. 

 
If you have a friend who thinks this puzzle is easy, one devious trick is to flip one of the 
disks 180° in the unassembled state (warning: this is also easy to do inadvertently).  
The puzzle can then be assembled to the interlock position 77, and while the map is 
topologically similar to that in Figure 5, the details are completely different, and 
someone who has memorized the above sequences will become lost.  However, there is 
a good chance your friend may not even notice the difference if he solves the puzzle 
with the usual “maze-wandering” technique!  In any event, unambiguous assembly and 
disassembly sequences can be found in Table 1. 
 

Puzzle 
Orientation 

Solution 
Type 

Unambiguous 
Sequence 

Start 
with 

Double 
move #’s 

Number 
of moves* 

normal assembly (LR)
4
LR

2
(LR)

2
 L 10 14 

normal disassembly (LR)
2
(L

2
R)

2
LR

2
LRL L 5, 7, 10 13 

flipped assembly (RL)
4
RL

2
R

2
(LR)

2
 R 10, 11 15 

flipped disassembly (RL)
4
R

2
LR R 9 11 

(*) Two consecutive moves by the same disk are counted as a single move. 

Table 1. Summary of unambiguous move sequences for the Cast Disk. 
 

It is critical to be able to recognise the “flipped state” from the starting (77) or finishing 
positions (11).  If you  are in the flipped state, and make one move from 77, you will find 
yourself at 17 or 71 (instead of 67 or 76 as in Figure 5).  Similarly for the disassembled, 
flipped state, 11 leads to 12 or 21. 
 
If you have multiple copies of this puzzle, you can interlock more than two disks!  Each 
pair of disks will interlock using the map of Figure 5 (or the flipped map), but certain 
moves may be blocked by the other disk(s).  If your friend was not impressed by your 
first attempt, borrow his puzzle and return it fully assembled, but with a second (or third!) 
fully assembled puzzle linked to it.  This can be accomplished trivially by taking two 
assembled puzzles, and interlocking their 1 notches in the flipped state and moving to 
12 or 21.  It can also be done in more subtle ways that are much harder to disassemble. 
If you understand how to read the solution map in Figure 5, you should be able to figure 
out how to do this. 

More Mapping 

Solution maps are a useful tool for solving as well as designing certain types of puzzles.  
Many puzzles involving rings and plates, or route-finding can potentially be mapped.  
Often, it can be difficult to come up with a notation for the positions that is easy to 
interpret.  I was inspired to map the above puzzles by Rob Stegmann’s map of the 
Hanayama Cast Plate.  You can view it and several other puzzle maps on his web site 
[3].  
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