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ABSTRACT

Motivation: Starting from linear chains of amino acids, the
spontaneous folding of proteins into their elaborate 3D structures
is one of the remarkable examples of biological self-organization. We
investigated native state structures of 30 single-domain, two-state
proteins, from complex networks perspective, to understand the role
of topological parameters in proteins’ folding kinetics, at two
length scales—as ‘Protein Contact Networks (PCNs)’ and their
corresponding ‘Long-range Interaction Networks (LINs)’ constructed
by ignoring the short-range interactions.

Results: Our results show that, both PCNs and LINs exhibit the
exceptional topological property of ‘assortative mixing’ that is
absent in all other biological and technological networks studied
so far. We show that the degree distribution of these contact
networks is partly responsible for the observed assortativity. The
coefficient of assortativity also shows a positive correlation with the
rate of protein folding at both short- and long-contact scale,
whereas, the clustering coefficients of only the LINs exhibit a
negative correlation. The results indicate that the general topological
parameters of these naturally evolved protein networks can
effectively represent the structural and functional properties required
for fast information transfer among the residues facilitating
biochemical/kinetic functions, such as, allostery, stability and the
rate of folding.

Contact: sinha@ccmb.res.in

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Inside the cell, proteins are synthesized as linear chains of
amino acids, which fold into unique 3D structures (‘native
states’). The wide range of biochemical functions performed by
the proteins are specified by their detailed structures. Despite
the large degrees of freedom, surprisingly, proteins fold into
their native states in a very short time, which is known as
Levinthal’s Paradox (Levinthal, 1969). Although, given suitable
conditions, some small proteins can reach their native state in
a single concerted step, many others fold in stages with

*To whom correspondence should be addressed.

initial conformational events long before the final (‘native’)
structure appears (Anfinsen, 1973). Structural changes and
chemical interactions occur throughout the entire folding
process, and strongly cooperative mechanisms are necessary
to bring the protein in its native conformation within
a very short time period (Maity et al., 2005). The fast fold-
ing is a result of the catalytic effect of the formation of
clusters of residues in contact with each other, which have
high preferences for the early formation of secondary struc-
tures (helices, sheets and loops) in the presence of significant
amounts of long-range tertiary structure interactions
(Nolting and Andert, 2000).

The folding mechanism, kinetics, structure and function of
proteins are intimately related to each other. Misfolding of
proteins into non-native structures can lead to several disorders
(Taubes, 1996). Correlating sequence with structure as well as
understanding of folding kinetics has been an area of intense
activity for experimentalists and theoreticians (Branden and
Tooze, 1999; Fersht, 2002). Among the different theoretical
approaches used for studying protein structure, function and
folding kinetics, the graph theoretical approach, based on
perspectives from complex networks, has been used recently to
study protein structures (Amitai et al., 2004; Aszodi and
Taylor, 1993; Atilgan et al., 2004; Bagler and Sinha, 2005;
Brinda and Vishveshwara, 2005; Dokholyan et al., 2002;
Greene and Higman, 2003; Jung et al., 2005; Rao and
Caflisch, 2004; Vendruscolo et al., 2002).

It is known that folding mechanisms are largely determined
by a protein’s topology rather than its inter-atomic interactions
(Alm and Baker, 1999). With that understanding, we build
graph-theoretical models of protein structures to investigate
various topological properties at two different length scales, and
study their possible role in the kinetics of the protein folding.
We use a coarse-grained complex network model of a protein
structure, namely the Protein Contact Network (PCN), by
ignoring the fine-grained atomic level details, and model the
3D structure as a system constituted of amino acid units, put in
place by non-covalent interactions. Long-range interactions
are known to play a distinct role in determining the tertiary
structure of the proteins (Epand and Scheraga, 1968), as
opposed to the short-range interactions, which could largely
contribute to the secondary structure formations. We consider
the long-range interaction network (LIN) of each protein, which
are subsets of the corresponding PCNs, constructed by ignoring
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the short-range interactions. The idea behind studying
LINs is to understand the contribution of the long-range
interactions to the topological properties, and their correlation
to a biophysically relevant property, namely rate of protein
folding.

This study aims to address the question—can general network
parameters, derived from native-state structures of proteins,
uncover features about the relationship of the structural
properties to the folding kinetics of the proteins? To study
this, we choose single domain, two-state folding proteins that
belong to different structural classes (Murzin et al., 1995) for
which the kinetic parameter of rate of folding, (kf) is available.
Our analysis of the coarse-grained network representations of
protein structures uncover the exceptional topological property
of a high degree of assortative mixing at both length scales
(PCN and LIN) in these naturally occurring, evolutionarily
selected, biological networks. Assortative mixing in LINs
indicates that this feature in PCNs is independent of short-
range interactions. The coefficient of assortativity (Newman,
2002), a measure of assortative mixing, are also found to be
considerably high for both PCNs and LINs. By constructing
appropriate control networks, we further demonstrate that the
degree (connectivity) distribution of the PCNs alone can
partially account for the presence of assortativity in these
networks.

To enumerate the contribution of these global parameters
obtained from the coarse-grained network model of protein
structures to their biophysical properties, we show that the
coefficient of assortativity of PCNs and LINs tend to have
positive correlation with the experimentally determined rate of
folding of these proteins. This implies that assortative mixing,
that tends to connect highly connected residues to other
residues with many contacts, may assist in speeding up of the
folding process. In contrast, the average clustering coefficients
of LINs show a good negative correlation with the rate of
folding, indicating that clustering of amino acids, that
participate in long-range interactions, into cliques, slows
down the folding process. Interestingly, the average clustering
coefficients of PCNs show negligible correlation, thereby
implying that the short range interactions can reduce the
negative effect on their folding kinetics.

Three parameters—CO (contact order) (Plaxco et al., 1998),
LRO (long range order) (Gromiha and Selvaraj, 2001) and
TCD (total contact distance) (Zhou and Zhou, 2002)—based
on sequence distance per contact and/or total number of
contacts per residue of the proteins, have also been shown to
have negative correlation to their rate of folding (Gromiha and
Selvaraj, 2001; Plaxco et al., 1998; Zhou and Zhou, 2002). The
accuracy of prediction of the rate of folding, with parameters
LRO and TCD, remain unchanged if short-range interactions
are not included in the calculation. Here, along with delineating
the role of long-range interactions, we have attempted to show
that general network parameters, such as, clustering coefficient
and assortativity, that are widely used in networks of diverse
origins (technological, biological and social), can not only give
an insight into their structural properties, but can also be used
as indicators of specific biophysical processes, such as, of
protein folding.

2 METHODS
2.1 Construction of PCN, LIN, and their random controls

The PCN was modeled from the native-state protein structures as
available in PDB (Berman et al., 2000). The C,, atom of each amino acid
was considered a ‘node’, and any two amino acids were said to be in
spatial contact (‘link’) if there existed a threshold distance (R. < 81&)
between their C, atoms.

The LIN of a PCN was obtained by considering, other than the
backbone links, only those ‘contacts” which occur between amino acids
that are “distant’ (i.e. separated by 12 or more amino acids) from each
other along the backbone. Thus formed, a LIN is a subset of its PCN
with same number of nodes (n,) but fewer number of links due to
removal of the short-range contacts.

Two types of random controls were created for the PCNs of the
proteins. The polypeptide backbone connectivity was kept intact in
both the random controls, while randomizing the non-covalent
contacts. For every protein, 100 instances of each type of random
control were generated from its PCN. Average of all the instances were
used as a representative of the parameters and properties, and
compared with that of the PCNs and their LINs.

Type I this random control network has the same number of residues
(n,) and number of links/contacts (n.) as those of the PCN, except that
the contacts were created randomly by avoiding duplicate and self
contacts.

Type II: apart from maintaining the number of nodes (n,) and
contacts (n,.), the connectivity distribution of PCNs was also conserved
in this control network. To ensure adequate randomization, the pattern
of pair-connectivity was randomized 2000 times.

The details of methods of construction with illustration is given in
Supplementary Material.

2.2 Data

Except for Figure 1, all studies have been done on 30 single-domain,
two-state folding, globular proteins, whose experimental rate of folding
(In(kp)) are available. The data include 5 all-o, 13 all-f and 12 «f class

30 T T T T - -
O PCNs
o $ LINs
25} O |® (Typel) Random Controls of PCNs|
A LINs of (Type I) Random Controls

N
o

Characteristic Path Length (L)
IS o
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Clustering Coefficient (C)

Fig. 1. L-C plot for 110 proteins from different structural classes: PCNs
(open square), LINs (open diamond), Type I Random Controls of
PCNs (filled circle) and LINs (filled triangle). Error—bars in the
random controls data indicate SDs in L and C for each protein
computed over 100 instances.
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of proteins. The natural logarithms of rate of folding (/n(kf)) of these
proteins vary between —1.48 and 9.8 and have a range for the time of
folding (1/ky) of the order of 10° s. Sizes (n,) of these proteins range
from 43 to 126 amino acids. The structural data for these studies
were obtained from the Protein Data Bank (Berman et al., 2000).
The preliminary network analysis (shown in Fig. 1) was done on 110
proteins (43 < n, < 2359) from the major structural classes, which
include the 30 single domain proteins mentioned above.

2.3 Network parameters

The following parameters were studied for the PCN, LIN and their
random controls.

Shortest path length and characteristic path length ~ Shortest path
length (L;) between any pair of nodes i and j is the number of links that
must be traversed between them by the shortest route. The average of
all shortest path lengths, known as ‘characteristic path length’ (L), is an
indicator of compactness of the network, and is defined as (Watts and
Strogatz, 1999),

—1 .
2 Yt Ly

L ,
nr(”r - 1)

where 7, is the number of residues in the network.

Clustering coefficient Clustering coefficient is the measure of
cliquishness of the network. Clustering coefficient of a node i, C;, is
defined (Watts and Strogatz, 1999) as the C; = 2 * n/k(k; — 1), where n
denotes the number of contacts amongst the k; neighbors of node i.
Average clustering coefficient of the network (C) is the average of Cs of
all the nodes in the network and is referred to as ‘clustering coefficient’
unless specified otherwise.

Degree and remaining degree Degree (k) is defined as the total
number of neighbors a node is connected to. Degree is one of the
measures of ‘centrality’ of a node in the network—the larger the degree
more important it is. Remaining degree is one less than the total degree
of a node (Newman, 2002). Other measures, based on degree, are
maximum degree, k.., average degree, (k), and the average degree of
nearest neighbors, (k,,(k)).

Assortative mixing and coefficient of assortativity A network is
said to show assortative mixing, if the high-degree nodes in the network
tend to be connected with other high-degree nodes, and ‘disassortative’
when the high-degree nodes tend to connect to low-degree nodes. The
coefficient of assortativity (r) measures the tendency of degree
correlation. It is the Pearson correlation coefficient of the degrees at
either end of a link and is defined (Newman, 2002) as,

1 .
r= 0—3;]/{(% = 4iqK);
=

where r is the coefficient of assortativity, j and k are the degrees of
nodes, ¢; and gy are the remaining degree distributions, ey is the joint
distribution of the remaining degrees of the two nodes at either end of a
randomly chosen link and o, is the variance of the distribution g;.

3. RESULTS
3.1 Clustering coefficients of PCNs and LINs

PCNs from a large set of proteins have earlier been shown
(Atilgan et al., 2004; Bagler and Sinha, 2005; Greene and
Higman, 2003; Vendruscolo et al., 2002) to have high degree of
clustering, which contributes to their “small-world” (Watts and

Strogatz, 1999) nature. To study if the PCNs and their
corresponding LINs of proteins have similar topological
properties, such as, characteristic path length (L) and clustering
coefficient (C), we plotted the L versus C graph in Figure 1
for 110 proteins from the four major structural classes
(ie. o, i, @« + S and «/f). The figure also shows their
corresponding Type I random controls. The Type II random
controls were found to be indistinguishable from the Type I
controls and not shown in Figure 1.

The results indicate two major differences between the
topological properties of the PCNs and their corresponding
LINs. The PCNs of these proteins have high clustering
coefficients (Cpcny = 0.562 + 0.029) compared to their
random controls, whereas the LINs show distribution in
C over a range (Cpyn = 0.259 £ 0.109), even though their
random controls were almost indistinguishable from
those of PCNs. L and C of random controls of PCNs were
2.621 £ 0.411 and 0.0557 &£ 0.0476 and that of their LINs were
3.256 £ 0.056 and 0.075 &+ 0.012. The LINs also have a little
higher characteristic path lengths (L = 8.72 £ 4.564) than
PCNs (Lpcn = 5.818 £ 2.826) owing to their reduced number
of contacts as compared to those in PCNs. This indicates that
the differences in Cpns may assign specificity to the protein
networks at this length scale, which is otherwise lost with the
short range contacts in PCNs, rendering the generic property of
high clustering and compactness. The role, if any, the
differential extent of clustering in the PCN at the two
length scales may play in their kinetics of folding process is
shown later.

3.2 Degree distributions of PCNs and LINs

The distribution of degrees in a network is an important
feature, which reflects the topology of the network, and is also a
possible indicator of the processes by which the network has
evolved to attain the present topology. The networks in which
the links between any two nodes are assigned randomly have a
Poisson degree distribution (Bollobas, 1981) with most of the
nodes having similar degree.

Figure 2 shows the normalized degree distributions of PCNs
and LINs of the 30 proteins studied. The frequencies of nodes
were scaled with the largest degree (k) in the network (PCN
or LIN) to obtain the P (k) of a given protein, so that proteins
of different sizes can be compared. As seen in Figure 2a, the
PCNs have Gaussian degree distribution that best fits the
equation

() = 4 —2(x — x.)?
7 w2 P w?

with 4 = 5.538, w = 6.265 and x, = 9.373.

On the other hand, Figure 2b shows that the degree
distribution of LINs is significantly different than those of
PCNSs. In LINs, most nodes were populated in the low-degree
region and very few of them have high degrees. The best-fit for
the LINs represent a single-scale exponential function (Greene
and Higman, 2003), P (k) ~ k™7 exp (-k/k.), with y = 0.24 and
k. = 4.4. The nodes of degree 1 in LINs’ degree distributions,
are the N- and C-terminal amino acids that are at the either end
of the protein backbone. As expected (Bollobas, 1981), the
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Fig. 2. Normalized degree distributions P (k) of (a) PCNs and (b) LINs. Shown in the insets are (a) Type I Random Controls of PCNs and (b) their
LINSs. Thick lines are the best-fit curves for the means of the data. Error—bars indicate SD of the data for P (k) of nodes with degree k across the 30

proteins analyzed.
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Fig. 3. Degree correlation pattern for (a) PCNs and (b) LINs. Assortative mixing of PCNs (open square) and LINs (open diamond) as compared to
Type I Random Controls of PCNss (filled circle) and their LINs (filled triangle), and Type II Random Controls of PCN (open circle) and their LINs
(open triangle). Error—bars indicate SD of the data for (k,,(k)) of nodes with degree k across the 30 proteins and their controls.

Type I random controls of the PCNs (Fig. 2a, inset) have a
Poisson degree distribution. LINs of Type I random controls
(Fig. 2b, inset) too have a Poisson degree distribution. The
figure clearly shows that these properties are the same for
proteins irrespective of their functions and structural classifica-
tions (Bagler and Sinha, 2005; Greene and Higman, 2003).

3.3 Assortative nature of PCNs and LINs

The pattern of connectivity among the nodes of varying degrees
can affect the interaction dynamics in the network, and their
degree correlation is used as a measure to compute the strength
and pattern of connectivity in a network. Average degree of the

nearest neighbors, k,,(k), of nodes of degree k, is a parameter
by which one can measure and visualize the degree correlation
pattern on a network. In the presence of correlations, ky,(k)
increases with increasing k for an ‘assortative network’, and
decreases with & for a ‘disassortative network’ (Pastor-Satorras
et al., 2001).

Figure 3 shows (k,,(k)) versus k plots for the PCNs (a) and
LINs (b) and the two types of random controls. The nature of
the curves for the PCNs (open square in Fig. 3(a)) and their
LINSs (open diamond in Fig. 3(b)) shows that both networks are
characterized with ‘assortative mixing’, as the average degree of
the neighboring nodes increased with k. The curve shows a
tendency to saturate at larger k—a feature that may be due to
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the steric hindrance experienced by the connecting amino acids
in the 3D structural organization of the protein. This steric
hindrance restricts the position of an amino acid in the three
dimensional conformational space, and results in a maximum
values of degree (kyax) of a node. In comparison, the (k,,(k))
remained almost constant for the Type I random control for
both PCNs (filled circle)) and LINSs (filled triangle), indicating
lack of correlations among the nodes’ connectivity in these
controls.

The ‘coefficient of assortativity’ (Newman, 2002), r, is a
global quantitative measure of degree correlations in a network,
and takes values as -1 < r < 1. r is zero for no correlations
among nodes’ connectivity, and takes positive or negative
values for assortative or disassortative mixing, respectively. The
r for both PCNs and LINs of the 30 proteins were found to be
positive, indicating that the networks are assortative. Figure 4
shows the histograms of r of (a) PCNs, (b) LINs, both in
(filled square), and their Type I random controls (open square).
The r values of both PCNs as well as LINs of all the proteins
show significantly high positive values (range: 0.09 < r < 0.52
for PCNs and 0.12 < r < 0.58 for LINs) when compared to
other networks of diverse origins (Newman, 2002). Thus, the
networks modeling the native protein structures are clearly
characterized by high degree of assortative mixing at both
short and long contact scales. The Type I random controls in
Figure 4 a and b, for both PCNs and their LINs, are distributed
around zero, confirming the observation of lack of degree
correlations of the controls, made in Figure 3.

These properties of positive r and assortative degree
correlations were also observed (data not shown) for a large
number of protein structures performing various cellular
functions and belonging to diverse structural categories
(used in Bagler and Sinha, 2005). This conclusively proves
that the assortative mixing in PCNs and LINs is a generic
feature of protein structures. The role, if any, the assortative
nature of the PCN at both length scales may play in their
kinetics of folding process is shown later.

3.4 Degree distribution partially accounts for
assortativity

To investigate whether the patterns of connectivity in the PCNs
and LINs of the 3D structures of the proteins contribute
towards the observed assortativity, we studied the assortative
mixing and the ‘coefficient of assortativity’ of Type II random
controls, in which the degree distribution of the PCNs were
preserved while randomizing the pair connectivities. Figure 3c
and d show the degree correlation plots of the Type Il random
controls of PCN (open circle) and their LINs (open triangle). It
is clear that, unlike Type I random controls, the average degree
of the neighboring nodes increased with k in Type II random
controls, as seen for the PCNs and LINs.

The histograms of the ‘coefficient of assortativity’ (r) of
Type Il random controls (open square) are shown in Figsure 4 ¢
and d. Here also, it can be seen that the assortativity is partially
recovered in the Type II random controls for both PCNs and
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their LINs. Thus degree distribution partially explains the
observed assortative mixing. It implies that preserving the
degree distribution of PCN, even while randomizing the pair-
connectivities, is important to partially restore the assortative
mixing in the random controls of PCNs as well as their LINs.
The recovery of assortative mixing in the LINs by Type II
random controls of PCNs is even more surprising, as the degree
distribution of LINs (Fig. 2b) is very different compared to the
PCNs (Fig. 2a). This is especially significant in the light of the
observation (Xulvi-Brunet and Sokolov, 2004) that one can
rewire the links in a (scale-free) network to obtain assortativity
or disassortativity, to any degree, without any change in the
degree distribution.

3.5 Correlation of protein network parameters to
protein folding rates

The general network parameters (e.g. L, C and r) have been
used to shed light on the topology, growth and dynamics of
widely different networks—physical, social and biological.
Here, we show the relationship of these general topological
parameters (specifically, C and r) obtained from our coarse-
grained model of protein structures (the PCNs and LINs), to a
biophysical property underlying the organization of the 3D
structure of the protein chains, i.e. with the kinetics of protein
folding. Below, we have correlated the available experimental
data on the rate of folding of the 30 proteins with the two
network parameters, C and r of the PCNs and their LINs.

3.5.1 Average clustering coefficient and rate of folding Figure 1
shows that the PCNs and their LINs differ in their clustering
coefficients (C), with PCNs having similar but high C, and their
LINs having C distributed over a range from low to medium
values. We did not find any significant relationship between the
clustering coefficient of the PCNs (Cpcyn) and the In(ky) for
all the 30 proteins (correlation coefficient = —0.2437; p < 0.2).
On the other hand, In(k;) showed a high negative correlation

14r O LINs of o proteins
12} ® LINs of proteins
A LINs of B proteins
10t O Type | Random Controls
0 O Type Il Random Controls
8 L 4
£
4 L
2 L
0 -
> A
ol 0 .
0 1 2 3 4 5 6 7
C * kmax

Fig. 5. Rate of folding, In(k, ), has a negative correlation, as indicated
by the trendline, with clustering coefficient (C) LINs.

with the average clustering coefficient of the corresponding
LINs (Cpin). Since the clustering coefficient depends on the
degree of the node, we plot, in Figure 5, the Cpn * kpmax With
In(kr) of all the proteins. The plot shows significantly high
negative correlation (correlation coefficient = -0.7712;
p <0.0001) between the Cpins and the rate of folding for
these single-domain, two-state folding proteins. Figure 5 also
shows that neither Type I nor Type II random controls
show any correlation with the rate of folding of the
corresponding LINS.

Cp v enumerates number of loops of length three in the LIN.
Thus Cy;n essentially correlates to the number of ‘distant’
amino acids (nodes), those separated by a minimum of 12 or
more other amino acids along the backbone, brought in mutual
‘contact” with each other in the native state structure of the
protein. Understandably, more the number of such long-range
mutual contacts are required to be made in order to achieve the
native state, more is the time taken to fold, and hence slower is
the rate of folding. Interestingly, our result shows that this
feature is completely neutralized through the short-range
contacts in the PCNs. It may be mentioned that a comparable
correlation (—0.7574; p < 0.0001) is observed between the (CO)
of these 30 proteins with their In(kg). It is interesting to note
that despite dissimilar quantities that CO and Cpn measure,
the similar correlation coefficients essentially indicate the
important role of long-range contact formation in the rate of
folding.

3.5.2 Coefficient of assortativity and rate of folding  Unlike the
clustering coefficients, the protein networks show high coeffi-
cient of assortativity () at both length scales (i.e. for the PCNs
and their LINS). In Figure 6, the rate of folding of the proteins
are plotted as a function of the coefficient of assortativity of
their LINs. There is an increasing trend of In(kz) with increase
in r. The five « proteins, all having high rate of folding, do not
follow the trend very well. The correlation coefficient between
the rate of folding (In(k;)) and r of their LINs, excluding the

12 T T T T T T
101 fan|
O
N
°T B
s 4 B
£ Ll %
or 8 ¢ e O LINs ofc proteins i
ol b O ¢ ® LINs af} proteins i
A | INs of B proteins
_al O Type-I Random Controls ]
< Type-ll Random Controls
-6 L s

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
r (Coefficient of Assortativity)

Fig. 6. Positive correlation between the rate of folding, In(k ), and the
coefficient of assortativity (r) of LINs. The trendline is also shown.
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five a proteins, is 0.6981 (p < 0.0005). The same for the PCNs is
calculated to be 0.5943 (p < 0.005). The result implies that,
along with showing assortative mixing, the PCNs and their
LINs both show significant positive correlations with the rate
of folding. Thus, the generic property of assortative mixing in
proteins tends to contribute positively towards their kinetics of
folding, and is fairly independent of the short- and long-range
of interactions. Here also the Type I random controls, due to
their coefficient of assortativity being clustered around zero
(Fig. 4b), do not show any correlation with the rate of folding.
As is expected from Figures 3 and 4, the Type II random
controls, on the other hand, are scattered owing to the partial
gain in assortativity, though they do not show any definite
trend with the rate of folding.

4 DISCUSSION

In recent years, much interest is seen in the study of structure
and dynamics of networks, with application to systems of
diverse origins such as, society, technology and biology, etc.
(Albert and Barabasi, 2002; Dorogovtsev and Mendes, 2002).
The aim of these studies has been to identify the common
organizational principles within these wide variety of systems,
and identify general network parameters that can correlate to
the structure, function and evolution of each of the specific
processes. Of these, biological networks are of special interest
as they are products of long evolutionary history. The PCN is
exclusive among other intra-cellular networks for their unique
method of synthesis as a linear chain of amino acids, and then
folding into a stable 3D structure through short- and long-
range contacts among the residues. In this study, our aim is to
understand if the general network parameters can offer any clue
to the biophysical properties of the existing 3D structure of a
protein, thereby reflecting the commonalities in network
organization in general.

Our coarse-grained complex network model of protein
structures uncovers, for the first time in a naturally evolved
biological system, the interesting, and exceptional topological
feature of assortativity at both short- and long- length scale of
contacts. The assortative nature is found to be a generic feature
of protein structures. We show that the assortativity positively
correlates to the folding mechanisms at both length scale. This
feature corroborates the known fact that the folding mechan-
isms are largely independent of the finer details of the protein
structure (Alm and Baker, 1999). Since strongly cooperative
mechanisms are necessary to bring the protein in its native
conformation within a very short time (Maity et al., 2005), we
have shown that assortative mixing contributes positively
towards speeding up the folding process at different contact-
length scales. The generality of assortative mixing in PCNs
assume greater importance in the light of the debate on whether
protein folding kinetics is under evolutionary control (Larson
et al., 2002; Mirny et al., 1998; Scalley-Kim and Baker, 2004).
Given the genetic basis and mode of formation of protein
chains, the signature of assortativity as an indicator to the rate
of folding is clear.

We also delineate the difference in the property of clustering
of the nodes in the native structure at short- and long-length
scales. The PCNs have high degree of clustering, which

contributes to their ‘small-world’ nature helping in efficient
and effective dissipation of energy needed in their function
(Atilgan et al., 2004; Bagler and Sinha, 2005). Our results show
that, in contrast, the corresponding LINs have significantly
lower and distributed clustering coefficients (Fig. 1), and they
show a negative correlation with the rate of folding of the
proteins (Fig. 5). This indicates that clustering of amino acids
that participate in the long-range interactions, into ‘cliques’ can
slow down the folding process—possibly due to the backbone
connectivity and steric factors. However, the clustering
coefficient of PCNs do not have any significant correlation to
the rate of folding, clearly indicating that the short-range
interactions may be playing a constructive and active role in the
determination of the rate of the folding process by reducing the
negative contribution of the LINs. Our results thus show that
the separation of the types of contacts in the PCNs and LINs
clearly delineate the length scale of contacts that play crucial
role in protein folding. It was recently shown that the CO of the
transition state ensemble (TSE) is highly correlated to that of
their native state structure, and they both correlate equally well
with their rate of folding (Paci et al., 2005). This has been
attributed to the fact that the long-range contacts are mainly
located in the structural core that are formed early in the
folding process, and the formation of such contact networks
leads to the inverse correlation with the folding rates. Our
results with general parameters of the LIN (Cpin and rpqy)
corresponding to the native PCNs also reflect the crucial role
that long-range interactions play in their rate of folding.

After the synthesis in the cell, folding of the amino acid chain
is important for attaining the structure required to reach a
functional state as soon as possible. This happens through
inter-residue non-covalent interactions at many length and time
scales. The folded structure have to confer stability, regions for
binding of ligands of specific shapes and sizes, transmit the
information of binding/unbinding to other parts of the protein,
scaffold for retaining the functional regions along with the
shape suitable for the protein function. It is likely that many of
these properties may require opposing features to operate at
different time and space scales. For example, the ‘small-world’
nature (high clustering) in the native protein structure is useful
in inter-residue signaling required for its function on binding
and allostery. On the other hand, the LIN have reduced
clustering, which may facilitate communication among distant
residues in the native structure to some extent, but such a
feature can also increase the folding time as it requires distant
residues in the chain to come closer during the folding process.
Thus, the evolved native structure of the proteins show
differential levels of clustering at two length scales. The
assortative mixing, on the other hand, helps in enhancing the
folding process at both length scales.

A large number of networks of diverse origin have been
found (Newman, 2002) to be of disassortative nature, and
questions regarding the origin of this property and whether this
is an universal property of complex networks, has been
adjudged as ‘one of the ten leading questions for network
research’ (Amaral et al., 2004). Our discovery of assortativity
in the amino acid networks in protein structures at short- and
long-contact scales questions the invoked generality of the
property in natural networks. The assortative nature of the
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social networks has been claimed to be originating from their
unusually high clustering coefficients and community structure
(Newman, 2003). In proteins, LINs have high assortativity
without necessarily having high clustering coefficients. It would
be interesting to study if the secondary structures provide any
role in shaping the ‘community structure’ in these molecular
networks that help in conferring assortative mixing at both
contact length scales (Newman, 2003; Palla et al., 2005).
Disassortative mixing observed in certain biological
networks (metabolic signaling pathways network, and gene
regulatory network) is conjectured to be responsible for
decreasing the likelihood of crosstalk between different func-
tional modules of the cell, and increasing the overall robustness
of a network by localizing effects of deleterious perturbations
(Maslov and Sneppen, 2002). In contrast to these two networks,
PCNs are not disassortative. For the PCN, one may put
forward the possibility of the backbone chain connectivity as
a means of conferring greater robustness against perturbations.
From computational studies, it has been observed (Newman,
2002; Xulvi-Brunet and Sokolov, 2004) that assortative net-
works percolate easily, i.e. information gets easily transferred
through the network as compared to that in disassortative
networks. Protein folding is a cooperative phenomenon, and
hence, communication amongst nodes is essential, so that
appropriate non-covalent interactions can take place to form
the stable native state structure (Maity et al., 2005). Thus,
percolation of information is very much essential and could
lead to the observed cooperativity and fast folding of the
proteins. Hence, assortative mixing observed in proteins could
be an essential prerequisite for facilitating folding of proteins.
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