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4 
Optimization by Evolution 

Organic life, we are told, has developed gradually from the 
protozoon to the philosopher, and this development, we are 
assured, is indubitably an advance. Unfortunately it is the 
philosopher, not the protozoon, who gives us this assurance.  
Bertrand Russell, Mysticism & Logic 

 
Computer scientists often encounter problems that are not amenable to numerical methods of 

solution. A common problem is that of finding input value that produces a minimum or 
maximum output from a function. It’s quite easy to optimize a function that maps a single high 
or low value; things become quite a bit more difficult when a function generates several such 
values, as shown in Figure 4-1. 

 

 

Figure 4-1 Function with several maximums 
 
The graph in Figure 4-1 was generated by applying the following formula to the ranges -1 <= 

x <= 1 and -1 <= y <= 1: 
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How should a program go about finding the maximum for f(x,y)? The graph shows several 
local maxima in the upper quadrant, including two tall spikes in close proximity. Traditional 
approaches to finding function maxima or minima—a process known as optimization—use a 
variety of techniques that rely on the ability to climb “upward” to a solution. In optimizing f(x,y), 
most optimization techniques (hill climbing, for example) become “trapped” on the smaller 
“hills”—unless they begin looking for maxima in just the right place.  

A genetic algorithm begins with a set of randomly-selected points from which it selects the 
best performers through fitness testing. Crossover combines the best attributes from the most 
successful members of the population, and random mutation introduces new characteristics that 
may produce better solutions. As I’ll demonstrate, a genetic algorithm is particularly effective in 
finding optimal solutions to functions. 

Characteristics of a Genetic Algorithm 
The population size is the most important factor affecting the run-time of a genetic algorithm. 

More chromosomes mean more time spent in fitness calculation—a fitness calculation is the 
most time-consuming component of most genetic algorithms. And  while a large population size 
provides more chromosomes for testing, it also dilutes the fitness of the best chromosomes. If we 
have ten chromosomes with fitness of 10, 8, 5, 1, 1, 1, 1, 1, 1 and 1, the three most-fit 
chromosomes have a combined 77% chance of reproducing; if another ten chromosomes of 
fitness 1 were included in the population, the reproduction probability for the three best drops to 
57%. A balance must be struck between diversity (large populations) and relative fitness (small 
populations.) 

Numerical Precision 
In the real world of science, few calculations involve values of incredible precision; in fact, 

Heisenberg’s Uncertainty Principles guarantees that we’ll never know everything “exactly.” 
Scientists work with the concept of significant digits—the number of valid non-zero decimal 
digits in scientific notation. The accuracy of a result is only as good as the accuracy of the 
operands used in the calculation. 

For example, if you ask C++ to perform these calculations: 

double a = 1.5; 
double b = 2.01; 
double c = a * b; 

The compiler will dutifully assign c the result of multiplying 1.5 by 2.01, which is  3.015. 
However, the accuracy of that result must be compared against the accuracy of the numbers used 
to calculate it. In this case, while b has four decimal digits, we only know the accuracy of a to 
two decimal places. Unless we know that ib is exactly equal to 1.5, we cannot assume that c is 
exactly equal to 3.015. It's a case of being sure of our results. If we aren't certain of a's value 
beyond the second digit, then we cannot be certain  beyond the second decimal place  about the 
value of any result which is calculated using a. 

It's common in science to know a value to a specific number of decimal places, without 
certainty that the value is exact. So long as there is doubt about the absolute accuracy of a value, 
all calculations involving that number are limited to the number of digits that we know are 
absolutely correct. In the example above, the correct value for c is 3.0, since the least accurate of 
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operand used in its calculation (a) had only two digits of accuracy. The compiler, of course, 
knows nothing about significant digits. It blithely goes about its business of assigning 3.015 to c. 
Now, what happens later in the program when another calculation involving c is made? 

double d = c * 250.0; // assume 250.0 is exact 

d is assigned the value 3.015 * 250, or 753.75. The error continues to mount! The correct 
result should be 750, since c is only known reliably to 2 digits of accuracy (making it 3.0). The 
problem only grows worse as calculations continue. 

To solve this problem, I extended the rounding features of C++ to set a specific number of 
significant digits in a value. Here's the double versions of the sigdig function, and a support 
function named round_nearest that rounds a number at a specific number of significant digits. 

double Coyote::round_nearest(double x) 
{ 
    double i, f, dummy; 
 
    f = fabs(modf(x,&i)); 
 
    if (f == 0.0) 
        return i; 
 
    if (f == 0.5) 
    { 
        if (modf(i / 2.0, &dummy) != 0.0) 
        { 
            if (x < 0.0) 
                i -= 1.0; 
            else 
                i += 1.0; 
        } 
    } 
    else 
    { 
        if (f > 0.5) 
        { 
            if (x < 0.0) 
                i -= 1.0; 
            else 
                i += 1.0; 
        } 
    } 
 
    return i; 
} 
 
//-------------------------------------------------- 
// set number of significant digits in a value 
 
double Coyote::sigdig(double x,size_t n) 
{ 
    double s, result; 
 
    // a very small number rounds to zero 
    if (fabs(x) < 1.0E-300) 
        result = 0.0; 
    else 
    { 
        // is asking for no digits, or more didgits than in double 
        // simply return x 
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        if ((n == 0U) || (n > DBL_DIG)) 
            result = x; 
        else 
        { 
            // find a factor of ten such that all significant digits will 
            // be in the integer part of the double 
            s = pow(10.0,double((int)n - 1 - (int)floor(log10(fabs(x))))); 
 
            // scale up, round, and scale down 
            result = round_nearest(x * s) / s; 
        } 
    } 
 
    return result; 
} 

The setting of significant digits in the dialog box will cause numbers to be rounded and 
truncated at the specified decimal position by sigdig. It also affects the output precision of 
floating-point numbers. The default of 8 digits is usually more than adequate, for the simple 
reason that most C++ numerical functions have limited precision. 

The inexact nature of IEEE floating-point numbers combines with the limitations of C++ 
functions to produce inexact results. For example, in practical terms, 1.23456E-76 is such a small 
number that it generates the same result from the sin function as does zero. Since very tiny 
numbers and zero produce the same result, their fitness as chromosomes is the same, thus 
preventing a genetic algorithm from distinguishing the two values. 

Perhaps it would make sense to convert very tiny number to zero automatically—but it might 
very well be that the function actually does produce a peak at a very tiny number and not at zero. 
In general, a 64-bit IEEE double can only be used to analyze a search grid with a precision of 
about DBL_EPSILON, and any number smaller than DBL_EPSILON can be considered zero. 

The range settings set constraints on the x and y values being analyzed. Set these ranges to 
bracket the search area; if you want to find a local maxima instead of a global one, set these 
values to limit the search to your area of interest. 

Optimizing the Equation 
The namespace OptByEvol encapsulates types and functions used in optimizing the equation 

in Figure 4-1. 

namespace OptByEvol 
{ 
    enum ScalingMode 
    { 
        stNONE, 
        stEXPONENTIAL, 
        stWINDOW, 
        stLINEAR 
    }; 
 
    enum FunctionType 
    { 
        ftF6, 
        ftF7, 
        ftF8, 
        ftChapter4 
    }; 
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    void testOptByEvol(size_t       populationSize, 
                       size_t       numGenerations, 
                       double       crossoverRate, 
                       double       mutationRate, 
                       bool         elitismEnabled, 
                       ScalingMode  fitnessScaling, 
                       FunctionType function); 
 
} // end namespace OptByEvol 

 
The testOptByEvol function has several parameters that define the operation of the algorithm: 

• populationSize  declares the number of chromosomes in the population 

• numGenerations  is a limit on the number of “cycles” the simulation will run 
• crossoverRate is the percentage chance (0.0 to 1.0) of crossover when a new 

chromosome is bred 
• mutationRate is another percentage defining the chance of mutation 

• elitismEnabled determines whether the “best” chromosome is saved from one 
generation to the next 

• fitnessScaling turns fitness scaling on or off 
• function selects one of four different equations to be optimized; ftChapter4 is the 

equation in Figure 4-1 

Another Type of Fitness Scaling 
When fitness scaling is on, several other factors come into play. The three most common 

types of fitness scaling are: windowed, exponential, and linear normalization. The first two 
techniques were covered in Chapter Two; linear normalization is something new. Fitness scaling 
emphasizes the reproductive chances of the most-fit chromosomes in a population; linear 
normalization accomplishes this by changing fitness values to reflect a gradation of values. For 
example, here is a set fitness values for five chromosomes, as calculated directly by the fitness 
function: 

1: 0.255 
2: 0.773 
3: 0.405 
4: 0.928    
5: 0.318 

While chromosome 4 is obviously the most fit, its reproductive chance relative to the entire 
population is only 35 percent. Assuming a base value of 20, a decrement of 8, and a minimum 
value of 1, linear normalization would assign new fitness values as shown in Table 4-1. For 
comparison, I’ve also included the fitness values as scaled by windowing and exponentiation. 

 
 
Chromosome 

Original 
Fitness 

Scaled by 
Windowing 

Scaled by 
Exponential 

Scaled by 
Linear Norm 

1 0.255 (10%) 0.000 ( 0%) 1.575 (13%)  1.00 ( 3%) 
2 0.773 (29%) 0.518 (37%) 3.144 (26%) 12.00 (31%) 
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3 0.405 (15%) 0.150 (11%) 1.974 (16%)  4.00 (10%) 
4 0.928 (35%) 0.673 (48%) 3.717 (31%) 20.00 (53%) 

5 0.318 (11%) 0.063 ( 4%) 1.737 (14%)  1.00 ( 3%) 

Table 4-1 Fitness Scaling Example 
 
Windowing increases the reproductive chances of the strongest chromosomes, but eliminates 

the least-fit chromosome from producing offspring. Exponential fitness scaling (adding one to 
the original fitness and squaring the result) increases the reproductive capability of less-fit 
chromosomes, while maintaining the superiority of the best. Linear normalization puts a 
premium on success, enhancing the reproductive chances of the best chromosomes while still 
maintain a possibility the less-fit chromosomes might produce offspring. 

Why not have the most-fit chromosome produce all members of the new population? Because 
the most-fit chromosomes may not have all the components necessary for reaching an optimal 
solution. As I discussed in Chapter Two, crossover mixes the most fit parts of different 
chromosomes; it may be that a few bits of a less-fit chromosome may be essential to creating the 
optimum fitness. And in some cases, we don’t want to eliminate the least-fit chromosomes since 
they may just have an essential piece of the final solution. 

What I call exponential fitness scaling is my own—or, at least, I haven’t seen it discussed in 
the genetic algorithm literature. At first glance, the exponential scaling might seem 
counterproductive in that it “evens out” the reproductive chances within a population. In testing, 
I’ve found the exponential method to work quite well, particularly in populations where the 
fitness is heavily biased toward specific values. Or, to put it another way: When the landscape of 
a function includes steep approaches to maxima, some values will have dramatically higher 
fitnesses than their neighbors; exponential scaling can often prevent getting stuck in a 
sub-optimal peak by allowing apparently unfit chromosomes a chance at reproducing. 

Picking an Equation 
The program supports the optimization of four different functions, three classic and one of my 

own invention. The first three functions come from the work of I.O. Bohachevsky, M.E. 
Johnson, and M.L. Stein in a 1986 paper that analyzes techniques for function optimization. The 
functions were selected because they generate a “wavy” landscape that contain various 
configurations of local maxima. Properly, these three functions are known in the genetic 
algorithm literature as F6, F7, and F8. Functions one through five, developed by K. A. DeJong in 
1975, lack several local maxima, and are thus less useful than six through eight in testing the 
effectiveness of optimization algorithms. 

Even these three functions suffer from significant problems. To begin with, all three produce 
an bowl-shaped plot in which the minimum value is located at x = 0, y = 0. I’m never thrilled 
with test examples with such easy answers; and, since the functions produce a minimum instead 
of a maximum, fitness values need to be adjusted by “flipping” the plot upside down, so that the 
minimum becomes a peak. Otherwise, the most fit chromosomes will produce the smallest 
fitness value—zero. 

I played around a bit, and eventually came up with the equation the produces the plot shown 
in Figure 4-1. My equation is quite tricky to optimize, since it has a broad plain of low maxima 
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punctuated by some very strong peaks. Essentially, I modified the equation F6 to offset its 
maximum away from the origin to a point that is not easily predicted by induction or guesswork. 

Implementation 
Now for the meat, the implementation of the testOptByEvol function. And here it is:  

static const double PI = 3.141592653589793238; 
 
template <class T> inline T sqr(const T & n) { return n * n; } 
 
static double fitnessF6(double x,double y) 
{ 
    return  0.7 + sqr(x) 
          + 2.0 * sqr(y) 
          - 0.3 * cos(3.0 * PI * x) 
          - 0.4 * cos(4.0 * PI * y); 
} 
 
static double fitnessF7(double x,double y) 
{ 
    return  0.3 + sqr(x) 
          + 2.0 * sqr(y) 
          - 0.3 * (cos(3.0 * PI * x) * cos(4.0 * PI * y)); 
} 
 
static double fitnessF8(double x,double y) 
{ 
    return  0.3 + sqr(x) 
          + 2.0 * sqr(y) 
          - 0.3 * (cos(3.0 * PI * x) 
          + cos(4.0 * PI * y)); 
} 
 
static double fitnessC4(double x,double y) 
{ 
    return 1.0 / (0.8 + sqr(x + 0.5) 
         + 2.0 * sqr(y - 0.5) 
         - 0.3 * cos(3.0 * PI * x) 
         - 0.4 * cos(4.0 * PI * y)); 
} 
 
void OptByEvol::testOptByEvol(size_t populationSize, 
                              size_t numGenerations, 
                              double crossoverRate, 
                              double mutationRate, 
                              bool   elitismEnabled, 
                              ScalingMode  fitnessMode, 
                              FunctionType function) 
{ 
    cout << "Function Optimization (Peak Search)" << endl 
         << "-----------------------------------" << endl << endl; 
     
    // adjust any invalid parameters 
    if (populationSize < 10) 
        populationSize = 10; 
 
    if (numGenerations < 1) 
        numGenerations = 1; 
 
    if (crossoverRate < 0.0F) 
        crossoverRate = 0.0F; 
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    else 
        if (crossoverRate > 1.0F) 
            crossoverRate = 1.0; 
 
    if (mutationRate < 0.0F) 
        mutationRate = 0.0F; 
    else 
        if (mutationRate > 1.0F) 
            mutationRate = 1.0; 
 
    // display parameters for this run 
    cout << "   Equation: "; 
     
    switch (function) 
    { 
    case ftF6: 
        cout << "f6(x,y) = x²+2y²-0.3cos(3px)-0.4cos(4py)+0.7"; 
        break; 
    case ftF7: 
        cout << "f7(x,y) = x²+2y²-0.3[cos(3px)cos(4py)]+0.3"; 
        break; 
    case ftF8: 
        cout << "f8(x,y) = x²+2y²-0.3[cos(3px)+cos(4py)]+0.3"; 
        break; 
    case ftChapter4: 
        cout << "f(x,y) = 1/((x+0.5)²+2(y-0.5)²-0.3cos(3px)-0.4cos(4py)+0.8)"; 
    } 
     
    // display parameters for this run 
    cout << endl 
         << "  population size: " << populationSize << endl 
         << " # of generations: " << numGenerations << endl 
         << "   crossover rate: " << crossoverRate * 100.0F << "%" << endl 
         << "    mutation rate: " << mutationRate * 100.0F << "%" << endl 
         << "  elitism enabled: " << elitismEnabled << endl 
         << "fitness algorithm: "; 
     
    switch(fitnessMode) 
    { 
    case stNONE: 
        cout << "None"; 
        break; 
    case stEXPONENTIAL: 
        cout << "Exponential"; 
        break; 
    case stWINDOW: 
        cout << "Windowing"; 
        break; 
    case stLINEAR: 
        cout << "Linear Normalization"; 
        break; 
    } 
     
    // create random deviate and mutation objects 
    Random<double> randNum; 
    FloatBreeder mutator; 
 
    // constants to define ranges for fitness scaling 
    const double FIT_BASE = 100.0; 
    const double FIT_MIN  =  10.0; 
    const double FIT_DEC  =  10.0; 
 
    // ranges for X,Y grid 
    const double MIN_XY   = -10.0; 
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    const double MAX_XY   =  10.0; 
    const double RANGE_XY = MAX_XY - MIN_XY; 
 
    // other constants 
    const size_t SIG_DIGITS =   8; 
     
    cout << endl << endl << setprecision(SIG_DIGITS) << dec; 
     
    // allocate population and fitness arrays 
    double * x       = new double [populationSize]; 
    double * xnew    = new double [populationSize]; 
    double * y       = new double [populationSize]; 
    double * ynew    = new double [populationSize]; 
    double * fitness = new double [populationSize]; 
     
    double * ptrf = fitness - 1; 
    double * ptrx =  x  - 1; 
    double * ptry =  y  - 1; 
     
    // various variables 
    double bestFitness, lowFitness, fitn, vf, vx, vy; 
    size_t i, j, inc, genCounter, bestIndex, parent1, parent2; 
     
    // generate initial X & Y values 
    for (i = 0; i < populationSize; ++i) 
    { 
        x[i] = sigdig(RANGE_XY * randNum() + MIN_XY,8); 
        y[i] = sigdig(RANGE_XY * randNum() + MIN_XY,8); 
    } 
     
    // do the generations 
    for (genCounter = 0; genCounter < numGenerations; ++genCounter) 
    { 
        // calculate fitness for x values 
        bestFitness = DBL_MIN; 
        lowFitness  = DBL_MAX; 
        bestIndex   = 0; 
         
        for (i = 0; i < populationSize; ++i) 
        { 
            switch (function) 
            { 
            case ftF6: 
                fitness[i] = 1.0 - fitnessF6(x[i],y[i]); 
                break; 
            case ftF7: 
                fitness[i] = 1.0 - fitnessF7(x[i],y[i]); 
                break; 
            case ftF8: 
                fitness[i] = 1.0 - fitnessF8(x[i],y[i]); 
                break; 
            case ftChapter4: 
                fitness[i] = fitnessC4(x[i],y[i]); 
            } 
             
            fitness[i] = sigdig(fitness[i],SIG_DIGITS); 
             
            // track bestFitness fitness 
            if (fitness[i] > bestFitness) 
            { 
                bestFitness  = fitness[i]; 
                bestIndex = i; 
            } 
             



10 – Scott Robert Ladd – Chapter 4: Optimization by Evolution 

            // track lowest fitness 
            if (fitness[i] < lowFitness) 
                lowFitness = fitness[i]; 
        } 
         
        // display bestFitness solution so far 
        if ((genCounter % 10) == 0) 
        { 
            cout.setf(ios::internal | ios::showpoint); 
  
            cout << setw(6) << genCounter << setfill('0') 
                 << ": (" << setw(SIG_DIGITS+1) << x[bestIndex] << "," << 
setw(SIG_DIGITS+1) << y[bestIndex] 
                 << ") fitness = " << setw(SIG_DIGITS+1) << bestFitness << endl 
<< setfill(' ') ; 
 
            cout.unsetf(ios::internal); 
        } 
         
        // sort by fitness if linear normalization 
        if (stLINEAR == fitnessMode) 
        { 
            // shell sort three arrays in order of fitness 
            fitn = FIT_BASE; 
             
            for (inc = 1; inc <= populationSize / 9; inc = 3 * inc + 1) ; 
             
            for ( ; inc > 0; inc /= 3) 
            { 
                for (i = inc + 1; i <= populationSize; i += inc) 
                { 
                    vf = ptrf[i]; 
                    vx = ptrx[i]; 
                    vy = ptry[i]; 
                     
                    j  = i; 
                     
                    while ((j > inc) && (ptrf[j - inc] < vf)) 
                    { 
                        ptrf[j] = ptrf[j - inc]; 
                        ptrx[j] = ptrx[j - inc]; 
                        ptry[j] = ptry[j - inc]; 
                         
                        j -= inc; 
                    } 
                     
                    ptrf[j] = vf; 
                    ptrx[j] = vx; 
                    ptry[j] = vy; 
                } 
            } 
        } 
 
        if (fitnessMode != stNONE) 
        { 
            for (i = 0; i < populationSize; ++i) 
            { 
                // fitness scaling 
                switch (fitnessMode) 
                { 
                case stEXPONENTIAL: 
                    fitness[i] = sqr(fitness[i] + 1.0); 
                    break; 
                case stWINDOW: 
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                    fitness[i] -= lowFitness; 
                    break; 
                case stLINEAR: 
                    fitness[i] = fitn; 
                     
                    if (fitn > FIT_MIN) 
                    { 
                        fitn -= FIT_DEC; 
                         
                        if (fitn < FIT_MIN) 
                            fitn = FIT_MIN; 
                    } 
                    break; 
                } 
            } 
        } 
         
        // create roulette wheel for reproduction selection 
        RouletteWheel<double> * selector; 
        selector = new RouletteWheel<double> (fitness,populationSize); 
 
        // if elitist, include bestFitness from orig. population 
        if (elitismEnabled) 
        { 
            if (stLINEAR == fitnessMode) 
            { 
                xnew[0] = x[0]; 
                ynew[0] = y[0]; 
            } 
            else 
            { 
                xnew[0] = x[bestIndex]; 
                ynew[0] = y[bestIndex]; 
            } 
             
            i = 1; 
        } 
        else 
            i = 0; 
         
        // create new population of x's 
        for ( ; i < populationSize; ++i) 
        { 
            // create a new x 
            parent1 = selector->get_index(); 
             
            if (randNum() <= crossoverRate) 
            { 
                parent2 = selector->get_index(); 
                xnew[i] = mutator.crossover(x[parent1],x[parent2]); 
            } 
            else 
                xnew[i] = x[parent1]; 
             
            // create a new y 
            parent1 = selector->get_index(); 
             
            if (randNum() <= crossoverRate) 
            { 
                parent2 = selector->get_index(); 
                ynew[i] = mutator.crossover(y[parent1],y[parent2]); 
            } 
            else 
                ynew[i] = y[parent1]; 
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            // mutate X 
            if (randNum() <= mutationRate) 
                xnew[i] = mutator.mutate(xnew[i]); 
             
            // mutate Y 
            if (randNum() <= mutationRate) 
                ynew[i] = mutator.mutate(ynew[i]); 
             
            // make sure x & y fitness ranges 
            if (xnew[i] > MAX_XY) 
                xnew[i] = MAX_XY; 
             
            if (xnew[i] < MIN_XY) 
                xnew[i] = MIN_XY; 
             
            if (ynew[i] > MAX_XY) 
                ynew[i] = MAX_XY; 
             
            if (ynew[i] < MIN_XY) 
                ynew[i] = MIN_XY; 
             
            // truncate digits 
            xnew[i] = sigdig(xnew[i],SIG_DIGITS); 
            ynew[i] = sigdig(ynew[i],SIG_DIGITS); 
        } 
         
        // remove roulette wheel 
        delete selector; 
         
        // copy new population 
        memcpy(x,xnew,populationSize * sizeof(double)); 
        memcpy(y,ynew,populationSize * sizeof(double)); 
    } 
         
    // delete buffers 
    delete [] fitness; 
    delete [] ynew; 
    delete [] y; 
    delete [] xnew; 
    delete [] x; 
} 

The algorithm begins by creating a configuration object and displaying the parameters. Next, I 
allocate buffers to hold fitness values and populations of x and y chromosomes. Initial 
populations contains random values distributed between specified minimum and maximum 
values. 

A loop, containing the main algorithm, then counts the generations. The first part of 
processing a generation is to calculate fitness values for the population, calling the selected 
fitness function for each x-y pair in the population. The loop also tracks the highest and lowest 
fitness values for reporting and later fitness scaling. To implement linear normalization, a shell 
sort orders the chromosomes by their calculated fitness, before the algorithm assigns new values 
from top to bottom. 

Producing a new population requires the selection of parents, who are combined by crossover 
and then mutated based on the chosen configuration. After the generation loop ends, the 
algorithm deletes dynamically-allocated buffers and displays its output. 
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What You’ll See 
The output of testOptByEvol will look like this (I’ve manually inserted ellipses for repetitive 

cycles, so you just see when the fitness changed): 

Function Optimization (Peak Search) 
----------------------------------- 
 
   Equation: f(x,y) = 1/((x+0.5)²+2(y-0.5)²-0.3cos(3px)-0.4cos(4py)+0.8) 
  population size: 1000 
 # of generations: 1000 
   crossover rate: 90.000000% 
    mutation rate: 10.000000% 
  elitism enabled: 1 
fitness algorithm: Windowing 
 
     0: (-0.53235396,0.40350782) fitness = 1.6967843 
    10: (-0.65735396,0.49727308) fitness = 7.9261430 
    20: (-0.65735396,0.49921094) fitness = 7.9405427 
    30: (-0.65625914,0.49921091) fitness = 7.9440813 
    40: (-0.65637741,0.49945533) fitness = 7.9444938 
    50: (-0.65625917,0.49945508) fitness = 7.9447716 
    60: (-0.65637738,0.49969922) fitness = 7.9449309 
    70: (-0.65625535,0.49969946) fitness = 7.9452182 
    80: (-0.65625532,0.49970707) fitness = 7.9452278 
   . 
   . 
   . 
   110: (-0.65625496,0.49970682) fitness = 7.9452283 
   120: (-0.65625103,0.49970700) fitness = 7.9452374 
   130: (-0.65625137,0.49994349) fitness = 7.9454118 
   140: (-0.65625101,0.49997383) fitness = 7.9454180 
   150: (-0.65625101,0.49997788) fitness = 7.9454184 
   . 
   . 
   . 
   200: (-0.65527589,0.49991281) fitness = 7.9467265 
   . 
   . 
   . 
   230: (-0.65527599,0.49992253) fitness = 7.9467298 
   240: (-0.65527592,0.49997976) fitness = 7.9467417 
   250: (-0.65527365,0.49997205) fitness = 7.9467420 
   . 
   . 
   . 
   280: (-0.65500604,0.49995912) fitness = 7.9468029 
   290: (-0.65497993,0.49997338) fitness = 7.9468042 
   . 
   . 
   . 
   310: (-0.65497312,0.49998268) fitness = 7.9468047 
   . 
   . 
   . 
   330: (-0.65497503,0.49998268) fitness = 7.9468048 
   . 
   . 
   . 
   350: (-0.65500412,0.49998278) fitness = 7.9468058 
   . 
   . 
   . 
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   390: (-0.65499792,0.49999136) fitness = 7.9468062 
   . 
   . 
   . 
   420: (-0.65499812,0.49999706) fitness = 7.9468064 
   . 
   . 
   . 
   950: (-0.65501338,0.49999690) fitness = 7.9468065 
   . 
   . 
   . 

For the functions F6 through F8, testOptByEvol performs remarkably well, finding the 
approximate answer in fewer than 10 generations. 

Function Optimization (Peak Search) 
----------------------------------- 
 
   Equation: f6(x,y) = x²+2y²-0.3cos(3px)-0.4cos(4py)+0.7 
  population size: 1000 
 # of generations: 1000 
   crossover rate: 90% 
    mutation rate: 10% 
  elitism enabled: 1 
fitness algorithm: Windowing 
 
     0: (-0.68040694,9.2169483) fitness = 2.2250739e-308 
    10: (7.7943307e-010,6.0263372e-154) fitness = 1.0000000 
   . 
   . 
   . 
 
 
 Function Optimization (Peak Search) 
----------------------------------- 
 
  Equation: f7(x,y) = x²+2y²-0.3[cos(3px)cos(4py)]+0.3 
  population size: 1000 
 # of generations: 1000 
   crossover rate: 90.000000% 
    mutation rate: 10.000000% 
  elitism enabled: 1 
fitness algorithm: Windowing 
 
     0: (0.21172395,-0.051639709) fitness = 0.55136173 
    10: (-1.8036076e-038,3.5417319e-019) fitness = 1.0000000 
   . 
   . 
   . 
 
Function Optimization (Peak Search) 
----------------------------------- 
 
   Equation: f8(x,y) = x²+2y²-0.3[cos(3px)+cos(4py)]+0.3 
  population size: 1000 
 # of generations: 1000 
   crossover rate: 90.000000% 
    mutation rate: 10.000000% 
  elitism enabled: 1 
fitness algorithm: Windowing 
 
     0: (0.35563143,-0.45448293) fitness = 0.11926576 
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    10: (3.7216025e-019,2.7317749e-019) fitness = 1.3000000 
   . 
   . 
   . 

For the simpler functions, the genetic algorithm quickly zeros in on the optimal value. My 
custom function presents a more difficult problem, as evidenced by the GA’s slower 
performance. The highest possible fitness value, to fifteen decimal places, is 7.94680648572638, 
which is generated by x and y values close to x = -0.655 and y = 0.5. If you’re looking for six to 
eight digits of precision, the peak is usually found in a few hundred generations. Being a 
stochastic process, the genetic algorithm doesn’t always produce identical performance. Play a 
bit with the configuration, selecting a variety of parameters to gain a feel for how they affect 
performance. Reducing the influence of chance will be one of the topics in Chapter Six, along 
with further analysis of genetic algorithm performance and parameter selection. 

Onward 
Genetic algorithms can do more than optimize a function. The next chapter shows how to use 

genetic algorithms for finding optimum strategies—and I’ll describe how scientists use 
evolutionary programming to explore mysterious aspects of the universe. 

 


