
 © 1996, 2000 by Scott Robert Ladd (scott@coyotegulch.com)
 Published by Coyote Gulch Productions on 29 November, 1999
 Licensing and Open Source Agreements posted at http://www.coyotegulch.com

4
Optimization by Evolution

Organic life, we are told, has developed gradually from the
protozoon to the philosopher, and this development, we are
assured, is indubitably an advance. Unfortunately it is the
philosopher, not the protozoon, who gives us this assurance.
Bertrand Russell, Mysticism & Logic

Computer scientists often encounter problems that are not amenable to numerical methods of

solution. A common problem is that of finding input value that produces a minimum or
maximum output from a function. It’s quite easy to optimize a function that maps a single high
or low value; things become quite a bit more difficult when a function generates several such
values, as shown in Figure 4-1.

Figure 4-1 Function with several maximums

The graph in Figure 4-1 was generated by applying the following formula to the ranges -1 <=

x <= 1 and -1 <= y <= 1:

() () () ()
f x y

x y x y
(,)

. . . cos . cos .
=

+ + − − − +
1

05 2 05 0 3 3 04 4 08
2 2 π π

2 – Scott Robert Ladd – Chapter 4: Optimization by Evolution

How should a program go about finding the maximum for f(x,y)? The graph shows several
local maxima in the upper quadrant, including two tall spikes in close proximity. Traditional
approaches to finding function maxima or minima—a process known as optimization—use a
variety of techniques that rely on the ability to climb “upward” to a solution. In optimizing f(x,y),
most optimization techniques (hill climbing, for example) become “trapped” on the smaller
“hills”—unless they begin looking for maxima in just the right place.

A genetic algorithm begins with a set of randomly-selected points from which it selects the
best performers through fitness testing. Crossover combines the best attributes from the most
successful members of the population, and random mutation introduces new characteristics that
may produce better solutions. As I’ll demonstrate, a genetic algorithm is particularly effective in
finding optimal solutions to functions.

Characteristics of a Genetic Algorithm
The population size is the most important factor affecting the run-time of a genetic algorithm.

More chromosomes mean more time spent in fitness calculation—a fitness calculation is the
most time-consuming component of most genetic algorithms. And while a large population size
provides more chromosomes for testing, it also dilutes the fitness of the best chromosomes. If we
have ten chromosomes with fitness of 10, 8, 5, 1, 1, 1, 1, 1, 1 and 1, the three most-fit
chromosomes have a combined 77% chance of reproducing; if another ten chromosomes of
fitness 1 were included in the population, the reproduction probability for the three best drops to
57%. A balance must be struck between diversity (large populations) and relative fitness (small
populations.)

Numerical Precision
In the real world of science, few calculations involve values of incredible precision; in fact,

Heisenberg’s Uncertainty Principles guarantees that we’ll never know everything “exactly.”
Scientists work with the concept of significant digits—the number of valid non-zero decimal
digits in scientific notation. The accuracy of a result is only as good as the accuracy of the
operands used in the calculation.

For example, if you ask C++ to perform these calculations:

double a = 1.5;
double b = 2.01;
double c = a * b;

The compiler will dutifully assign c the result of multiplying 1.5 by 2.01, which is 3.015.
However, the accuracy of that result must be compared against the accuracy of the numbers used
to calculate it. In this case, while b has four decimal digits, we only know the accuracy of a to
two decimal places. Unless we know that ib is exactly equal to 1.5, we cannot assume that c is
exactly equal to 3.015. It's a case of being sure of our results. If we aren't certain of a's value
beyond the second digit, then we cannot be certain beyond the second decimal place about the
value of any result which is calculated using a.

It's common in science to know a value to a specific number of decimal places, without
certainty that the value is exact. So long as there is doubt about the absolute accuracy of a value,
all calculations involving that number are limited to the number of digits that we know are
absolutely correct. In the example above, the correct value for c is 3.0, since the least accurate of

 Scott Robert Ladd – Chapter 4: Optimization by Evolution – 3

operand used in its calculation (a) had only two digits of accuracy. The compiler, of course,
knows nothing about significant digits. It blithely goes about its business of assigning 3.015 to c.
Now, what happens later in the program when another calculation involving c is made?

double d = c * 250.0; // assume 250.0 is exact

d is assigned the value 3.015 * 250, or 753.75. The error continues to mount! The correct
result should be 750, since c is only known reliably to 2 digits of accuracy (making it 3.0). The
problem only grows worse as calculations continue.

To solve this problem, I extended the rounding features of C++ to set a specific number of
significant digits in a value. Here's the double versions of the sigdig function, and a support
function named round_nearest that rounds a number at a specific number of significant digits.

double Coyote::round_nearest(double x)
{
 double i, f, dummy;

 f = fabs(modf(x,&i));

 if (f == 0.0)
 return i;

 if (f == 0.5)
 {
 if (modf(i / 2.0, &dummy) != 0.0)
 {
 if (x < 0.0)
 i -= 1.0;
 else
 i += 1.0;
 }
 }
 else
 {
 if (f > 0.5)
 {
 if (x < 0.0)
 i -= 1.0;
 else
 i += 1.0;
 }
 }

 return i;
}

//--
// set number of significant digits in a value

double Coyote::sigdig(double x,size_t n)
{
 double s, result;

 // a very small number rounds to zero
 if (fabs(x) < 1.0E-300)
 result = 0.0;
 else
 {
 // is asking for no digits, or more didgits than in double
 // simply return x

4 – Scott Robert Ladd – Chapter 4: Optimization by Evolution

 if ((n == 0U) || (n > DBL_DIG))
 result = x;
 else
 {
 // find a factor of ten such that all significant digits will
 // be in the integer part of the double
 s = pow(10.0,double((int)n - 1 - (int)floor(log10(fabs(x)))));

 // scale up, round, and scale down
 result = round_nearest(x * s) / s;
 }
 }

 return result;
}

The setting of significant digits in the dialog box will cause numbers to be rounded and
truncated at the specified decimal position by sigdig. It also affects the output precision of
floating-point numbers. The default of 8 digits is usually more than adequate, for the simple
reason that most C++ numerical functions have limited precision.

The inexact nature of IEEE floating-point numbers combines with the limitations of C++
functions to produce inexact results. For example, in practical terms, 1.23456E-76 is such a small
number that it generates the same result from the sin function as does zero. Since very tiny
numbers and zero produce the same result, their fitness as chromosomes is the same, thus
preventing a genetic algorithm from distinguishing the two values.

Perhaps it would make sense to convert very tiny number to zero automatically—but it might
very well be that the function actually does produce a peak at a very tiny number and not at zero.
In general, a 64-bit IEEE double can only be used to analyze a search grid with a precision of
about DBL_EPSILON, and any number smaller than DBL_EPSILON can be considered zero.

The range settings set constraints on the x and y values being analyzed. Set these ranges to
bracket the search area; if you want to find a local maxima instead of a global one, set these
values to limit the search to your area of interest.

Optimizing the Equation
The namespace OptByEvol encapsulates types and functions used in optimizing the equation

in Figure 4-1.

namespace OptByEvol
{
 enum ScalingMode
 {
 stNONE,
 stEXPONENTIAL,
 stWINDOW,
 stLINEAR
 };

 enum FunctionType
 {
 ftF6,
 ftF7,
 ftF8,
 ftChapter4
 };

 Scott Robert Ladd – Chapter 4: Optimization by Evolution – 5

 void testOptByEvol(size_t populationSize,
 size_t numGenerations,
 double crossoverRate,
 double mutationRate,
 bool elitismEnabled,
 ScalingMode fitnessScaling,
 FunctionType function);

} // end namespace OptByEvol

The testOptByEvol function has several parameters that define the operation of the algorithm:

• populationSize declares the number of chromosomes in the population

• numGenerations is a limit on the number of “cycles” the simulation will run
• crossoverRate is the percentage chance (0.0 to 1.0) of crossover when a new

chromosome is bred
• mutationRate is another percentage defining the chance of mutation

• elitismEnabled determines whether the “best” chromosome is saved from one
generation to the next

• fitnessScaling turns fitness scaling on or off
• function selects one of four different equations to be optimized; ftChapter4 is the

equation in Figure 4-1

Another Type of Fitness Scaling
When fitness scaling is on, several other factors come into play. The three most common

types of fitness scaling are: windowed, exponential, and linear normalization. The first two
techniques were covered in Chapter Two; linear normalization is something new. Fitness scaling
emphasizes the reproductive chances of the most-fit chromosomes in a population; linear
normalization accomplishes this by changing fitness values to reflect a gradation of values. For
example, here is a set fitness values for five chromosomes, as calculated directly by the fitness
function:

1: 0.255
2: 0.773
3: 0.405
4: 0.928
5: 0.318

While chromosome 4 is obviously the most fit, its reproductive chance relative to the entire
population is only 35 percent. Assuming a base value of 20, a decrement of 8, and a minimum
value of 1, linear normalization would assign new fitness values as shown in Table 4-1. For
comparison, I’ve also included the fitness values as scaled by windowing and exponentiation.

Chromosome

Original
Fitness

Scaled by
Windowing

Scaled by
Exponential

Scaled by
Linear Norm

1 0.255 (10%) 0.000 (0%) 1.575 (13%) 1.00 (3%)
2 0.773 (29%) 0.518 (37%) 3.144 (26%) 12.00 (31%)

6 – Scott Robert Ladd – Chapter 4: Optimization by Evolution

3 0.405 (15%) 0.150 (11%) 1.974 (16%) 4.00 (10%)
4 0.928 (35%) 0.673 (48%) 3.717 (31%) 20.00 (53%)

5 0.318 (11%) 0.063 (4%) 1.737 (14%) 1.00 (3%)

Table 4-1 Fitness Scaling Example

Windowing increases the reproductive chances of the strongest chromosomes, but eliminates

the least-fit chromosome from producing offspring. Exponential fitness scaling (adding one to
the original fitness and squaring the result) increases the reproductive capability of less-fit
chromosomes, while maintaining the superiority of the best. Linear normalization puts a
premium on success, enhancing the reproductive chances of the best chromosomes while still
maintain a possibility the less-fit chromosomes might produce offspring.

Why not have the most-fit chromosome produce all members of the new population? Because
the most-fit chromosomes may not have all the components necessary for reaching an optimal
solution. As I discussed in Chapter Two, crossover mixes the most fit parts of different
chromosomes; it may be that a few bits of a less-fit chromosome may be essential to creating the
optimum fitness. And in some cases, we don’t want to eliminate the least-fit chromosomes since
they may just have an essential piece of the final solution.

What I call exponential fitness scaling is my own—or, at least, I haven’t seen it discussed in
the genetic algorithm literature. At first glance, the exponential scaling might seem
counterproductive in that it “evens out” the reproductive chances within a population. In testing,
I’ve found the exponential method to work quite well, particularly in populations where the
fitness is heavily biased toward specific values. Or, to put it another way: When the landscape of
a function includes steep approaches to maxima, some values will have dramatically higher
fitnesses than their neighbors; exponential scaling can often prevent getting stuck in a
sub-optimal peak by allowing apparently unfit chromosomes a chance at reproducing.

Picking an Equation
The program supports the optimization of four different functions, three classic and one of my

own invention. The first three functions come from the work of I.O. Bohachevsky, M.E.
Johnson, and M.L. Stein in a 1986 paper that analyzes techniques for function optimization. The
functions were selected because they generate a “wavy” landscape that contain various
configurations of local maxima. Properly, these three functions are known in the genetic
algorithm literature as F6, F7, and F8. Functions one through five, developed by K. A. DeJong in
1975, lack several local maxima, and are thus less useful than six through eight in testing the
effectiveness of optimization algorithms.

Even these three functions suffer from significant problems. To begin with, all three produce
an bowl-shaped plot in which the minimum value is located at x = 0, y = 0. I’m never thrilled
with test examples with such easy answers; and, since the functions produce a minimum instead
of a maximum, fitness values need to be adjusted by “flipping” the plot upside down, so that the
minimum becomes a peak. Otherwise, the most fit chromosomes will produce the smallest
fitness value—zero.

I played around a bit, and eventually came up with the equation the produces the plot shown
in Figure 4-1. My equation is quite tricky to optimize, since it has a broad plain of low maxima

 Scott Robert Ladd – Chapter 4: Optimization by Evolution – 7

punctuated by some very strong peaks. Essentially, I modified the equation F6 to offset its
maximum away from the origin to a point that is not easily predicted by induction or guesswork.

Implementation
Now for the meat, the implementation of the testOptByEvol function. And here it is:

static const double PI = 3.141592653589793238;

template <class T> inline T sqr(const T & n) { return n * n; }

static double fitnessF6(double x,double y)
{
 return 0.7 + sqr(x)
 + 2.0 * sqr(y)
 - 0.3 * cos(3.0 * PI * x)
 - 0.4 * cos(4.0 * PI * y);
}

static double fitnessF7(double x,double y)
{
 return 0.3 + sqr(x)
 + 2.0 * sqr(y)
 - 0.3 * (cos(3.0 * PI * x) * cos(4.0 * PI * y));
}

static double fitnessF8(double x,double y)
{
 return 0.3 + sqr(x)
 + 2.0 * sqr(y)
 - 0.3 * (cos(3.0 * PI * x)
 + cos(4.0 * PI * y));
}

static double fitnessC4(double x,double y)
{
 return 1.0 / (0.8 + sqr(x + 0.5)
 + 2.0 * sqr(y - 0.5)
 - 0.3 * cos(3.0 * PI * x)
 - 0.4 * cos(4.0 * PI * y));
}

void OptByEvol::testOptByEvol(size_t populationSize,
 size_t numGenerations,
 double crossoverRate,
 double mutationRate,
 bool elitismEnabled,
 ScalingMode fitnessMode,
 FunctionType function)
{
 cout << "Function Optimization (Peak Search)" << endl
 << "-----------------------------------" << endl << endl;

 // adjust any invalid parameters
 if (populationSize < 10)
 populationSize = 10;

 if (numGenerations < 1)
 numGenerations = 1;

 if (crossoverRate < 0.0F)
 crossoverRate = 0.0F;

8 – Scott Robert Ladd – Chapter 4: Optimization by Evolution

 else
 if (crossoverRate > 1.0F)
 crossoverRate = 1.0;

 if (mutationRate < 0.0F)
 mutationRate = 0.0F;
 else
 if (mutationRate > 1.0F)
 mutationRate = 1.0;

 // display parameters for this run
 cout << " Equation: ";

 switch (function)
 {
 case ftF6:
 cout << "f6(x,y) = x²+2y²-0.3cos(3px)-0.4cos(4py)+0.7";
 break;
 case ftF7:
 cout << "f7(x,y) = x²+2y²-0.3[cos(3px)cos(4py)]+0.3";
 break;
 case ftF8:
 cout << "f8(x,y) = x²+2y²-0.3[cos(3px)+cos(4py)]+0.3";
 break;
 case ftChapter4:
 cout << "f(x,y) = 1/((x+0.5)²+2(y-0.5)²-0.3cos(3px)-0.4cos(4py)+0.8)";
 }

 // display parameters for this run
 cout << endl
 << " population size: " << populationSize << endl
 << " # of generations: " << numGenerations << endl
 << " crossover rate: " << crossoverRate * 100.0F << "%" << endl
 << " mutation rate: " << mutationRate * 100.0F << "%" << endl
 << " elitism enabled: " << elitismEnabled << endl
 << "fitness algorithm: ";

 switch(fitnessMode)
 {
 case stNONE:
 cout << "None";
 break;
 case stEXPONENTIAL:
 cout << "Exponential";
 break;
 case stWINDOW:
 cout << "Windowing";
 break;
 case stLINEAR:
 cout << "Linear Normalization";
 break;
 }

 // create random deviate and mutation objects
 Random<double> randNum;
 FloatBreeder mutator;

 // constants to define ranges for fitness scaling
 const double FIT_BASE = 100.0;
 const double FIT_MIN = 10.0;
 const double FIT_DEC = 10.0;

 // ranges for X,Y grid
 const double MIN_XY = -10.0;

 Scott Robert Ladd – Chapter 4: Optimization by Evolution – 9

 const double MAX_XY = 10.0;
 const double RANGE_XY = MAX_XY - MIN_XY;

 // other constants
 const size_t SIG_DIGITS = 8;

 cout << endl << endl << setprecision(SIG_DIGITS) << dec;

 // allocate population and fitness arrays
 double * x = new double [populationSize];
 double * xnew = new double [populationSize];
 double * y = new double [populationSize];
 double * ynew = new double [populationSize];
 double * fitness = new double [populationSize];

 double * ptrf = fitness - 1;
 double * ptrx = x - 1;
 double * ptry = y - 1;

 // various variables
 double bestFitness, lowFitness, fitn, vf, vx, vy;
 size_t i, j, inc, genCounter, bestIndex, parent1, parent2;

 // generate initial X & Y values
 for (i = 0; i < populationSize; ++i)
 {
 x[i] = sigdig(RANGE_XY * randNum() + MIN_XY,8);
 y[i] = sigdig(RANGE_XY * randNum() + MIN_XY,8);
 }

 // do the generations
 for (genCounter = 0; genCounter < numGenerations; ++genCounter)
 {
 // calculate fitness for x values
 bestFitness = DBL_MIN;
 lowFitness = DBL_MAX;
 bestIndex = 0;

 for (i = 0; i < populationSize; ++i)
 {
 switch (function)
 {
 case ftF6:
 fitness[i] = 1.0 - fitnessF6(x[i],y[i]);
 break;
 case ftF7:
 fitness[i] = 1.0 - fitnessF7(x[i],y[i]);
 break;
 case ftF8:
 fitness[i] = 1.0 - fitnessF8(x[i],y[i]);
 break;
 case ftChapter4:
 fitness[i] = fitnessC4(x[i],y[i]);
 }

 fitness[i] = sigdig(fitness[i],SIG_DIGITS);

 // track bestFitness fitness
 if (fitness[i] > bestFitness)
 {
 bestFitness = fitness[i];
 bestIndex = i;
 }

10 – Scott Robert Ladd – Chapter 4: Optimization by Evolution

 // track lowest fitness
 if (fitness[i] < lowFitness)
 lowFitness = fitness[i];
 }

 // display bestFitness solution so far
 if ((genCounter % 10) == 0)
 {
 cout.setf(ios::internal | ios::showpoint);

 cout << setw(6) << genCounter << setfill('0')
 << ": (" << setw(SIG_DIGITS+1) << x[bestIndex] << "," <<
setw(SIG_DIGITS+1) << y[bestIndex]
 << ") fitness = " << setw(SIG_DIGITS+1) << bestFitness << endl
<< setfill(' ') ;

 cout.unsetf(ios::internal);
 }

 // sort by fitness if linear normalization
 if (stLINEAR == fitnessMode)
 {
 // shell sort three arrays in order of fitness
 fitn = FIT_BASE;

 for (inc = 1; inc <= populationSize / 9; inc = 3 * inc + 1) ;

 for (; inc > 0; inc /= 3)
 {
 for (i = inc + 1; i <= populationSize; i += inc)
 {
 vf = ptrf[i];
 vx = ptrx[i];
 vy = ptry[i];

 j = i;

 while ((j > inc) && (ptrf[j - inc] < vf))
 {
 ptrf[j] = ptrf[j - inc];
 ptrx[j] = ptrx[j - inc];
 ptry[j] = ptry[j - inc];

 j -= inc;
 }

 ptrf[j] = vf;
 ptrx[j] = vx;
 ptry[j] = vy;
 }
 }
 }

 if (fitnessMode != stNONE)
 {
 for (i = 0; i < populationSize; ++i)
 {
 // fitness scaling
 switch (fitnessMode)
 {
 case stEXPONENTIAL:
 fitness[i] = sqr(fitness[i] + 1.0);
 break;
 case stWINDOW:

 Scott Robert Ladd – Chapter 4: Optimization by Evolution – 11

 fitness[i] -= lowFitness;
 break;
 case stLINEAR:
 fitness[i] = fitn;

 if (fitn > FIT_MIN)
 {
 fitn -= FIT_DEC;

 if (fitn < FIT_MIN)
 fitn = FIT_MIN;
 }
 break;
 }
 }
 }

 // create roulette wheel for reproduction selection
 RouletteWheel<double> * selector;
 selector = new RouletteWheel<double> (fitness,populationSize);

 // if elitist, include bestFitness from orig. population
 if (elitismEnabled)
 {
 if (stLINEAR == fitnessMode)
 {
 xnew[0] = x[0];
 ynew[0] = y[0];
 }
 else
 {
 xnew[0] = x[bestIndex];
 ynew[0] = y[bestIndex];
 }

 i = 1;
 }
 else
 i = 0;

 // create new population of x's
 for (; i < populationSize; ++i)
 {
 // create a new x
 parent1 = selector->get_index();

 if (randNum() <= crossoverRate)
 {
 parent2 = selector->get_index();
 xnew[i] = mutator.crossover(x[parent1],x[parent2]);
 }
 else
 xnew[i] = x[parent1];

 // create a new y
 parent1 = selector->get_index();

 if (randNum() <= crossoverRate)
 {
 parent2 = selector->get_index();
 ynew[i] = mutator.crossover(y[parent1],y[parent2]);
 }
 else
 ynew[i] = y[parent1];

12 – Scott Robert Ladd – Chapter 4: Optimization by Evolution

 // mutate X
 if (randNum() <= mutationRate)
 xnew[i] = mutator.mutate(xnew[i]);

 // mutate Y
 if (randNum() <= mutationRate)
 ynew[i] = mutator.mutate(ynew[i]);

 // make sure x & y fitness ranges
 if (xnew[i] > MAX_XY)
 xnew[i] = MAX_XY;

 if (xnew[i] < MIN_XY)
 xnew[i] = MIN_XY;

 if (ynew[i] > MAX_XY)
 ynew[i] = MAX_XY;

 if (ynew[i] < MIN_XY)
 ynew[i] = MIN_XY;

 // truncate digits
 xnew[i] = sigdig(xnew[i],SIG_DIGITS);
 ynew[i] = sigdig(ynew[i],SIG_DIGITS);
 }

 // remove roulette wheel
 delete selector;

 // copy new population
 memcpy(x,xnew,populationSize * sizeof(double));
 memcpy(y,ynew,populationSize * sizeof(double));
 }

 // delete buffers
 delete [] fitness;
 delete [] ynew;
 delete [] y;
 delete [] xnew;
 delete [] x;
}

The algorithm begins by creating a configuration object and displaying the parameters. Next, I
allocate buffers to hold fitness values and populations of x and y chromosomes. Initial
populations contains random values distributed between specified minimum and maximum
values.

A loop, containing the main algorithm, then counts the generations. The first part of
processing a generation is to calculate fitness values for the population, calling the selected
fitness function for each x-y pair in the population. The loop also tracks the highest and lowest
fitness values for reporting and later fitness scaling. To implement linear normalization, a shell
sort orders the chromosomes by their calculated fitness, before the algorithm assigns new values
from top to bottom.

Producing a new population requires the selection of parents, who are combined by crossover
and then mutated based on the chosen configuration. After the generation loop ends, the
algorithm deletes dynamically-allocated buffers and displays its output.

 Scott Robert Ladd – Chapter 4: Optimization by Evolution – 13

What You’ll See
The output of testOptByEvol will look like this (I’ve manually inserted ellipses for repetitive

cycles, so you just see when the fitness changed):

Function Optimization (Peak Search)

 Equation: f(x,y) = 1/((x+0.5)²+2(y-0.5)²-0.3cos(3px)-0.4cos(4py)+0.8)
 population size: 1000
 # of generations: 1000
 crossover rate: 90.000000%
 mutation rate: 10.000000%
 elitism enabled: 1
fitness algorithm: Windowing

 0: (-0.53235396,0.40350782) fitness = 1.6967843
 10: (-0.65735396,0.49727308) fitness = 7.9261430
 20: (-0.65735396,0.49921094) fitness = 7.9405427
 30: (-0.65625914,0.49921091) fitness = 7.9440813
 40: (-0.65637741,0.49945533) fitness = 7.9444938
 50: (-0.65625917,0.49945508) fitness = 7.9447716
 60: (-0.65637738,0.49969922) fitness = 7.9449309
 70: (-0.65625535,0.49969946) fitness = 7.9452182
 80: (-0.65625532,0.49970707) fitness = 7.9452278
 .
 .
 .
 110: (-0.65625496,0.49970682) fitness = 7.9452283
 120: (-0.65625103,0.49970700) fitness = 7.9452374
 130: (-0.65625137,0.49994349) fitness = 7.9454118
 140: (-0.65625101,0.49997383) fitness = 7.9454180
 150: (-0.65625101,0.49997788) fitness = 7.9454184
 .
 .
 .
 200: (-0.65527589,0.49991281) fitness = 7.9467265
 .
 .
 .
 230: (-0.65527599,0.49992253) fitness = 7.9467298
 240: (-0.65527592,0.49997976) fitness = 7.9467417
 250: (-0.65527365,0.49997205) fitness = 7.9467420
 .
 .
 .
 280: (-0.65500604,0.49995912) fitness = 7.9468029
 290: (-0.65497993,0.49997338) fitness = 7.9468042
 .
 .
 .
 310: (-0.65497312,0.49998268) fitness = 7.9468047
 .
 .
 .
 330: (-0.65497503,0.49998268) fitness = 7.9468048
 .
 .
 .
 350: (-0.65500412,0.49998278) fitness = 7.9468058
 .
 .
 .

14 – Scott Robert Ladd – Chapter 4: Optimization by Evolution

 390: (-0.65499792,0.49999136) fitness = 7.9468062
 .
 .
 .
 420: (-0.65499812,0.49999706) fitness = 7.9468064
 .
 .
 .
 950: (-0.65501338,0.49999690) fitness = 7.9468065
 .
 .
 .

For the functions F6 through F8, testOptByEvol performs remarkably well, finding the
approximate answer in fewer than 10 generations.

Function Optimization (Peak Search)

 Equation: f6(x,y) = x²+2y²-0.3cos(3px)-0.4cos(4py)+0.7
 population size: 1000
 # of generations: 1000
 crossover rate: 90%
 mutation rate: 10%
 elitism enabled: 1
fitness algorithm: Windowing

 0: (-0.68040694,9.2169483) fitness = 2.2250739e-308
 10: (7.7943307e-010,6.0263372e-154) fitness = 1.0000000
 .
 .
 .

 Function Optimization (Peak Search)

 Equation: f7(x,y) = x²+2y²-0.3[cos(3px)cos(4py)]+0.3
 population size: 1000
 # of generations: 1000
 crossover rate: 90.000000%
 mutation rate: 10.000000%
 elitism enabled: 1
fitness algorithm: Windowing

 0: (0.21172395,-0.051639709) fitness = 0.55136173
 10: (-1.8036076e-038,3.5417319e-019) fitness = 1.0000000
 .
 .
 .

Function Optimization (Peak Search)

 Equation: f8(x,y) = x²+2y²-0.3[cos(3px)+cos(4py)]+0.3
 population size: 1000
 # of generations: 1000
 crossover rate: 90.000000%
 mutation rate: 10.000000%
 elitism enabled: 1
fitness algorithm: Windowing

 0: (0.35563143,-0.45448293) fitness = 0.11926576

 Scott Robert Ladd – Chapter 4: Optimization by Evolution – 15

 10: (3.7216025e-019,2.7317749e-019) fitness = 1.3000000
 .
 .
 .

For the simpler functions, the genetic algorithm quickly zeros in on the optimal value. My
custom function presents a more difficult problem, as evidenced by the GA’s slower
performance. The highest possible fitness value, to fifteen decimal places, is 7.94680648572638,
which is generated by x and y values close to x = -0.655 and y = 0.5. If you’re looking for six to
eight digits of precision, the peak is usually found in a few hundred generations. Being a
stochastic process, the genetic algorithm doesn’t always produce identical performance. Play a
bit with the configuration, selecting a variety of parameters to gain a feel for how they affect
performance. Reducing the influence of chance will be one of the topics in Chapter Six, along
with further analysis of genetic algorithm performance and parameter selection.

Onward
Genetic algorithms can do more than optimize a function. The next chapter shows how to use

genetic algorithms for finding optimum strategies—and I’ll describe how scientists use
evolutionary programming to explore mysterious aspects of the universe.

