A

Optimization by Evolution

Organic life, we are told, has developed gradually from the
protozoon to the philosopher, and this development, we are
assured, is indubitably an advance. Unfortunately it is the
philosopher, not the protozoon, who gives us this assurance.
Bertrand Russell, Mysticism & Logic

Computer scientists often encounter problems that are not amenable to numerical methods of
solution. A common problem is that of finding input value that produces a minimum or
maximum output from afunction. It's quite easy to optimize afunction that maps asingle high
or low vaue; things become quite a bit more difficult when afunction generates severd such
vaues, as shown in Figure 4-1.

(L,-1)

Figure 4-1 Function with several maxinmunms

The graph in Figure 4-1 was generated by applying the following formulato the ranges-1 <=
x<=land-l<=y<=1

1
(x+05"+2(y- 05’ - 0.3cos(3px) - 04cog4py) +08

f(xy) =

© 1996, 2000 by Scott Robert Ladd (scott@coyotegulch.com)
Published by Coyote Guich Productions on 29 November, 1999
Licensing and Open Source Agreements posted at http:/Aww.coyotegulch.com

2 — Scott Robert Ladd — Chapter 4: Optimization by Evolution

How should a program go abouit finding the maximum for f(x,y)? The graph shows severa
locd maximain the upper quadrant, including two tal spikesin close proximity. Traditiond
goproaches to finding function maxima or minima—a process known as optimization—use a
variety of techniquesthat rely on the ability to climb “upward” to asolution. In optimizing f(X,y),
maost optimization techniques (hill climbing, for example) become “trapped”’ on the smaller
“hills’—unless they begin looking for maximain just the right place.

A genetic dgorithm begins with aset of randomly-sdected points from which it sdlectsthe
best performers through fitness testing. Crossover combines the best attributes from the most
successful members of the population, and random mutation introduces new characterigtics that
may produce better solutions. AsI’ll demonstrate, a genetic agorithm is particularly effectivein
finding optimal solutions to functions.

Characteristics of a Genetic Algorithm

The population Sze is the most important factor affecting the run-time of a genetic dgorithm.
More chromosomes mean more time spent in fitness calculation—afitness caculaion isthe
most time- consuming component of most genetic dgorithms. And while alarge populeation sze
provides more chromosomes for testing, it o dilutes the fitness of the best chromosomes. If we
have ten chromosomes with fitness of 10, 8,5, 1, 1, 1, 1, 1, 1 and 1, the three most-fit
chromosomes have a combined 77% chance of reproducing; if another ten chromosomes of
fitness 1 were included in the population, the reproduction probability for the three best drops to
57%. A baance must be struck between diversity (large populations) and relative fitness (smal
populations.)

Numerical Precision

In the red world of science, few cdculationsinvolve vaues of incredible precison; in fact,
Helsenberg's Uncertainty Principles guarantees that we' |l never know everything “exactly.”
Scientists work with the concept of significant digits—the number of valid non-zero decimd
digitsin scientific notation. The accuracy of aresult is only as good as the accuracy of the
operands used in the calculation.

For example, if you ask C++ to perform these caculations:.

double a = 1.5;
double b = 2.01;
double ¢ = a * b;

The compiler will dutifully assign ¢ the result of multiplying 1.5 by 2.01, which is 3.015.
However, the accuracy of that result must be compared againgt the accuracy of the numbers used
to cdculateit. Inthis case, while b has four decimd digits, we only know the accuracy of a to
two decima places. Unlesswe know that ib isexactly equa to 1.5, we cannot assumethat c is
exactly equal to 3.015. It'sa case of being sure of our results. If we aren't certain of a'svaue
beyond the second digit, then we cannot be certain beyond the second decimd place about the
vaue of any result which is caculated using a.

It's common in science to know a vaue to a specific number of decimd places, without
certainty that the value is exact. So long as there is doubt about the absol ute accuracy of avaue,
al cdculaionsinvolving that number are limited to the number of digits thet we know are

absolutdly correct. In the example above, the correct value for ¢ is 3.0, since the least accurate of

Scott Robert Ladd — Chapter 4: Optimization by Evolution — 3

operand usad inits calculation (a) had only two digits of accuracy. The compiler, of course,
knows nothing about sgnificant digits. It blithely goes about its business of assgning 3.015toc.
Now, what happens later in the program when ancther caculation involving ¢ is made?

double d = ¢ * 250.0; // assume 250.0 is exact

d isassgned the value 3.015 * 250, or 753.75. The error continues to mount! The correct
result should be 750, since c is only known rdiably to 2 digits of accuracy (meking it 3.0). The
problem only grows worse as ca culations continue.

To solve this problem, | extended the rounding features of C++ to set a pecific number of
ggnificant digitsin avaue. Heres the double versons of the sigdig function, and a support
function named round_near est that rounds a number a a specific number of sgnificant digits.

double Coyote::round_nearest(double Xx)

{
double i, f, dummy;
T = fabs(modf(x,&i));
if (f ==0.0)
return i;
if (f == 0.5)
{
it (modf(i /7 2.0, &Jummy) != 0.0)
{
if (x <0.0)
i -=1.0;
else
i += 1.0;
¥
3
else
if (f > 0.5)
{
if (x <0.0)
i = 1.0;
else
i += 1.0;
}
ks
return i;
b
[/

// set number of significant digits in a value

double Coyote::sigdig(double x,size_t n)
{

double s, result;

// a very small number rounds to zero

if (fabs(x) < 1.0E-300)
result = 0.0;

else

{
// is asking for no digits, or more didgits than in double
// simply return x

4 — Scott Robert Ladd — Chapter 4: Optimization by Evolution

if ((hn=0U) || (n > DBL_DIG))
result = x;
else

{
// find a factor of ten such that all significant digits will

// be in the integer part of the double
s = pow(10.0,double((int)n - 1 - (int)floor(loglOo(fabs(x)))));

// scale up, round, and scale down
result = round_nearest(x * s) / s;
by
}

return result;

}

The sdtting of sgnificant digitsin the didog box will cause numbers to be rounded and
truncated at the specified decima position by sigdig. It dso affects the output precison of
floating-point numbers. The default of 8 digitsis usualy more than adequate, for the smple
reason that most C++ numerica functions have limited precision.

Theinexact nature of |EEE floating-point numbers combines with the limitations of C++

functions to produce inexact results. For example, in practica terms, 1.23456E-76 is such asmall

number thet it generates the same result from the sin function as does zero. Since very tiny
numbers and zero produce the same result, their fitness as chromosomes is the same, thus
preventing a genetic agorithm from digtinguishing the two vaues.

Perhaps it would make sense to convert very tiny number to zero automatically—but it might

very well bethat the function actualy does produce a peek at a very tiny number and not at zero.

In general, a 64-bit IEEE double can only be used to analyze a search grid with aprecison of

about DBL_EPSILON, and any number smdler than DBL_EPSIL ON can be considered zero.

The range settings set congtraints on the x and y vaues being analyzed. Set these rangesto
bracket the search areg; if you want to find aloca maximainstead of aglobal one, sat these
vauesto limit the search to your area of interest.

Optimizing the Equation

The namespace OptByEvol encapsulates types and functions used in optimizing the equation
in FHgure4-1.

namespace OptByEvol

{

enum Scal ingMode

SENONE,
StEXPONENTIAL,
StWINDOW,
StLINEAR

};

enum FunctionType
{
ftF6,
ftF7,
ftFs8,
ftChapter4

Scott Robert Ladd — Chapter 4: Optimization by Evolution — 5

void testOptByEvol(size_t populationSize,
size_t numGenerations,
double crossoverRate,
double mutationRate,
bool elitismEnabled,

ScalingMode fitnessScaling,
FunctionType function);

} 7/ end namespace OptByEvol

The testOptByEvoal function has severd parameters that define the operation of the agorithm:
populationSize declares the number of chromosomes in the population
numGenerations isalimit on the number of “cydes’ the smulation will run

crossover Rate isthe percentage chance (0.0 to 1.0) of crossover when anew
chromosome is bred

mutationRate is another percentage defining the chance of mutation

elitismEnabled determines whether the “best” chromosome is saved from one
generdion to the next

fitnessScaling turnsfitness scaing on or off

function sdlects one of four different equations to be optimized; ftChapter4 isthe
equationin Figure4-1

Another Type of Fitness Scaling

When fitness scaling is on, severd other factors come into play. The three most common
types of fitness scaling are: windowed, exponential, and linear normalization. The first two
techniques were covered in Chapter Two; linear normaization is something new. Fitness scaing
emphasizes the reproductive chances of the most-fit chromosomes in a population; linear
normaization accomplishes this by changing fitness vaues to reflect a gradation of values. For
example, hereisaset fitness vaues for five chromosomes, as caculated directly by the fithess
function:

0.255
0.773
0.405
0.928
0.318

GOrWNE

While chromosome 4 is obvioudy the mogt fit, its reproductive chance relative to the entire
population isonly 35 percent. Assuming abase vaue of 20, adecrement of 8, and aminimum
vaue of 1, linear normdization would assign new fitness vaues as shown in Table 4-1. For
comparison, I’ ve aso included the fithess vaues as scaled by windowing and exponentiation.

Original Scaled by Scaled by Scaled by
Chromosome | Fitness Windowing Exponential Linear Norm
1 0.255 (10%) 0.000 (0%) 1.575 (13%) 1.00 (3%)
2 0.773 (29%) 0.518 (37%) 3.144 (26%) 12.00 (31%)

6 — Scott Robert Ladd — Chapter 4: Optimization by Evolution

3 0.405 (15%) 0.150 (11%) 1.974 (16%) 2.00 (10%)
4 0.928 (35%) 0.673 (48%) 3.717 (31%) 20.00 (53%)
5 0.318 (11%) 0.063 (4%) 1.737 (14%) 1.00 (3%)

Table 4-1 Fitness Scaling Exanple

Windowing increases the reproductive chances of the strongest chromaosomes, but eiminates
the least-fit chromosome from producing offspring. Exponentid fitness scaling (edding oneto
the origind fitness and squaring the result) increases the reproductive capability of less-fit
chromasomes, while maintaining the superiority of the best. Linear normalization puts a
premium on success, enhancing the reproductive chances of the best chromosomes while il
maintain a posshility the less-fit chromosomes might produce offspring.

Why not have the mogt-fit chromosome produce al members of the new population? Because
the mogt-fit chromasomes may not have al the components necessary for reaching an optima
solution. As | discussed in Chapter Two, crossover mixes the most fit parts of different
chromosomes, it may be that afew bits of aless-fit chromosome may be essentid to creating the
optimum fitness. And in some cases, we don’t want to eliminate the least-fit chromosomes snce
they may just have an essentid piece of the fina solution.

What | cdl exponentid fitness scding ismy own—aor, at least, | haven't seen it discussed in
the genetic agorithm literature. At first glance, the exponentia scaling might seem
counterproductive in thet it “evens out” the reproductive chances within a population. In testing,
I"ve found the exponentid method to work quite well, particularly in populations where the
fitnessis heavily biased toward specific vaues. Or, to put it another way: When the landscape of
afunction includes stegp gpproaches to maxima, some vaues will have dramaticaly higher
fitnesses than their neighbors; exponentid scaling can often prevent getting stuck ina
sub-optima pesk by alowing gpparently unfit chromosomes a chance at reproducing.

Picking an Equation

The program supports the optimization of four different functions, three classic and one of my
own invention. The first three functions come from the work of 1.O. Bohachevsky, M.E.
Johnson, and M.L. Stein in a 1986 paper that anayzes techniques for function optimization. The
functions were sdected because they generate a“wavy” landscape that contain various
configurations of loca maxima. Properly, these three functions are known in the genetic
agorithm literature as F6, F7, and F8. Functions one through five, developed by K. A. DeJong in
1975, lack severd local maxima, and are thus less ussful than six through eight in testing the
effectiveness of optimization agorithms.

Even these three functions suffer from significant problems. To begin with, dl three produce
an bowl-shaped plot in which the minimum vaue islocated a x = 0, y = 0. I'm never thrilled
with test examples with such easy answers, and, since the functions produce a minimum instead
of amaximum, fitness values need to be adjusted by “flipping” the plot upside down, so that the
minimum becomes a peek. Otherwise, the mogt fit chromosomes will produce the smalest
fitness vdlue—zero.

| played around a bit, and eventudly came up with the equation the produces the plot shown
in Fgure 4-1. My equation is quite tricky to optimize, Snce it has abroad plain of low maxima

Scott Robert Ladd — Chapter 4: Optimization by Evolution — 7

punctuated by some very strong pesks. Essentidly, | modified the equation F6 to offset its
maximum away from the origin to a point that is not easily predicted by induction or guesswork.

I mplementation
Now for the mest, the implementation of the testOptByEvol function. And hereitis

static const double Pl = 3.141592653589793238;
template <class T> inline T sqgr(const T & n) { return n * n; }

static double fitnessF6(double x,double y)

{
return 0.7 + sqr(x)
+ 2.0 * sqr(y)
- 0.3 * cos(3.0 * PI * x)
- 0.4 * cos(4.0 * P1 * y);
}
static double fitnessF7(double x,double y)
{
return 0.3 + sqr(x)
+ 2.0 * sqr(y)
- 0.3 * (cos(3.0 * PI * x) * cos(4.0 * P1 * y));
}
static double fitnessF8(double x,double y)
{
return 0.3 + sgqr(x)
+ 2.0 * sqr(y)
- 0.3 * (cos(3.0 * PI * x)
+ cos(4.0 * P1 * y));
}
static double fitnessC4(double x,double y)
{
return 1.0 /7 (0.8 + sgr(x + 0.5)
+ 2.0 * sqr(y - 0.5)
- 0.3 * cos(3.0 * PI * x)
- 0.4 * cos(4.0 * P1 * y));
}

void OptByEvol: :testOptByEvol(size_t populationSize,
size_t numGenerations,
double crossoverRate,
double mutationRate,
bool elitismEnabled,
ScalingMode fitnessMode,
FunctionType function)

cout << "Function Optimization (Peak Search)" << endl
L e " << endl << endl;

// adjust any invalid parameters
ifT (populationSize < 10)
populationSize = 10;

if (numGenerations < 1)
numGenerations = 1;

if (crossoverRate < 0.0F)
crossoverRate = 0.0F;

8 — Scott Robert Ladd — Chapter 4: Optimization by Evolution

else
if (crossoverRate >
crossoverRate =

1.0F)

1.0;

if (mutationRate < 0.0F)
mutationRate = 0.0F;

else

if (nutationRate > 1.0F)
mutationRate = 1.0;

// display parameters for this run
cout << " Equation: *;

switch (function)

{

case TtF6:
cout << "f6(X,y)
break;

case TtF7:
cout << "F7(X,Yy)
break;

case TtF8:
cout << "f8(X,y)
break;

case ftChapter4:
cout << "F(X,y) = 1/((x+0.5)2+2(y-0.5)2-0.3cos(3px)-0.4cos(4py)+0.8)"";

}

// display parameters for this run
cout << endl

X2+2y2-0.3cos(3px)-0.4cos(4py)+0.7"";

x2+2y2-0.3[cos(3px)cos(4py)]+0.3";

x2+2y2-0.3[cos(3px)+cos(4py)]+0.3";

<< " population size: " << populationSize << endl
<< " # of generations: " << numGenerations << endl
<< " crossover rate: ' << crossoverRate * 100.0F << "%" << endl
<< " mutation rate: " << mutationRate * 100.0F << "%" << endl
<< " elitism enabled: " << elitismEnabled << endl

<< "Ffitness algorithm: *';
switch(fitnessMode)

case StNONE:
cout << "None';
break;

case STtEXPONENTIAL:
cout << "Exponential’;
break;

case sStWINDOW:
cout << "Windowing';
break;

case StLINEAR:
cout << "Linear Normalization";
break;

}

// create random deviate and mutation objects
Random<double> randNum;

FloatBreeder mutator;

// constants to define ranges for fitness scaling

const double FIT_BASE = 100.0;
const double FIT MIN = 10.0;
const double FIT_ DEC = 10.0;

// ranges for X,Y grid
const double MIN_XY = -10.0;

Scott Robert Ladd — Chapter 4: Optimization by Evolution — 9

const double MAX_XY
const double RANGE_XY

10.0;
MAX_XY - MIN_XY;

// other constants
const size_t SIG DIGITS = 8;

cout << endl << endl << setprecision(SIG_DIGITS) << dec;

// allocate population and fitness arrays

double * ynew
double * fitness

new double [populationSize];
new double [populationSize];

double * x = new double [populationSize];
double * xnew = new double [populationSize];
double * y = new double [populationSize];

double * ptrf
double * ptrx
double * ptry

fitness - 1;
x -1;
y -1;

// various variables
double bestFitness, lowFitness, fitn, vf, vx, vy;
size_t i, j, inc, genCounter, bestlndex, parentl, parent2;

// generate initial X & Y values

for (i = O0; 1 < populationSize; ++i)

{ i
x[i]
yLil

sigdig(RANGE_XY * randNum() + MIN_XY,8);
sigdig(RANGE_XY * randNum() + MIN_XY,8);

// do the generations
for (genCounter = 0; genCounter < numGenerations; ++genCounter)

// calculate fitness for x values

bestFitness = DBL_MIN;
lowFitness = DBL_MAX;
bestlndex = 0;

for (i = 0; i < populationSize; ++i)

{

switch (function)

{

case ftF6:
fitness[i]
break;

case ftF7:
fitness[i]
break;

case ftF8:
fitness[i] = 1.0 - FitnessF8(x[i].y[i]);
break;

case ftChapter4:
fitness[i] = fitnessCAx[i],y[iD):

}

fitness[i] = sigdig(Fitness[i],SIG_DIGITS);

1.0 - fitnessF6(x[i],.y[i]);

1.0 - fitnessF7(x[i].y[iD);

// track bestFitness fitness
if (Fitness[i] > bestFitness)

bestFitness = fitness[i];
bestlndex = i;

10 — Scott Robert Ladd — Chapter 4: Optimization by Evolution

// track lowest fitness
if (fitness[i] < lowFitness)
lowFitness = fitness[i];

}

// display bestFitness solution so far
iT ((genCounter % 10) == 0)

cout._setf(ios::internal | ios::showpoint);

cout << setw(6) << genCounter << setfill("0")
<< " (" << setw(SIG_DIGITS+1) << x[bestlndex] << ","™ <<
setw(SI1G_DIGITS+1) << y[bestindex]
<< ") Fitness = " << setw(SIG_DIGITS+1) << bestFitness << endl
< setfill(" *) ;

cout.unsetf(ios::internal);

}

// sort by fitness if linear normalization
ifT (StLINEAR == fitnessMode)

{
// shell sort three arrays in order of fitness
fitn = FIT_BASE;
for (inc = 1; inc <= populationSize / 9; inc = 3 * inc + 1) ;
for (; inc > 0; inc /= 3)
{
for (i = inc + 1; i <= populationSize; i += inc)
{
v = ptrf[i];
vx = ptrx[i];
vy = ptry[i];
i =1
while ((> inc) && (ptrf[j - inc] < vf))
{
ptrf[j] = ptrf[j - inc];
ptrx[j] = ptrx[J - inc];
ptry[il = ptry[J - inc];
j -= inc;
¥
ptrf[j] = vf;
ptrx[j] = VX;
ptry[J] = vy;
}
}
}

ifT (fitnessMode != stNONE)

for (i = 0; i < populationSize; ++i)
{

// fitness scaling

switch (FitnessMode)

éase STEXPONENTIAL:
fitness[i] = sqr(fitness[i] + 1.0);
break;

case stWINDOW:

Scott Robert Ladd — Chapter 4: Optimization by Evolution — 11

fitness[i] -= lowFitness;
break;

case StLINEAR:
fitness[i] = fitn;

if (Fitn > FIT_MIN)
{
fitn -= FIT_DEC;
if (Fitn < FIT_MIN)

fitn = FIT_MIN;
}

break;
}
// create roulette wheel for reproduction selection
RouletteWheel<double> * selector;

selector = new RouletteWheel<double> (Fitness,populationSize);

// if elitist, include bestFitness from orig. population
if (elitismEnabled)

{
it (StLINEAR == fitnessMode)
xnew[0] = x[0];
ynew[0] = y[0];
else
xnew[0] = x[bestlndex];
ynew[0] = y[bestlndex];
}
i =1;
}
else
i =0;

// create new population of x"s
for (; 1 < populationSize; ++i)
{
// create a new X
parentl = selector->get_index();

if (randNum() <= crossoverRate)

parent2 = selector->get_index();
xnew[i] = mutator.crossover(x[parentl],x[parent2]);

else
xnew[i] = x[parentl];

// create a new y
parentl = selector->get_index();

if (randNum() <= crossoverRate)

parent2
ynew[i]

= selector->get_index();
= mutator.crossover(y[parentl],y[parent2]);
else

ynew[i] = y[parentl];

12 — Scott Robert Ladd — Chapter 4: Optimization by Evolution

// mutate X
it (randNum() <= mutationRate)
xnew[i] = mutator.mutate(xnew[i]);

// mutate Y
if (randNum() <= mutationRate)
ynew[i] = mutator.mutate(ynew[i]);

// make sure x & y Fitness ranges
it (xnew[i] > MAX_XY)
xnew[i] = MAX_XY;

it (xnew[i] < MIN_XY)
xnew[i] = MIN_XY;

it (ynew[i] > MAX_XY)
ynew[i] = MAX_XY;

it (ynew[i] < MIN_XY)
ynew[i] = MIN_XY;

// truncate digits
xnew[i] = sigdig(xnew[i],SIG_DIGITS);
ynew[i] sigdig(ynew[i],SI1G_DIGITS);

}

// remove roulette wheel
delete selector;

// copy new population
memcpy (X, xnew,populationSize * sizeof(double));
memcpy(y,ynew,populationSize * sizeof(double));

}

// delete buffers
delete [] fitness;
delete [] ynew;
delete [] v:
delete [] xnew;
delete [] x;

}

The dgorithm begins by creating a configuration object and displaying the parameters. Next, |
dlocate buffers to hold fitness vaues and populations of x and y chromosomes. Initid
populaions contains random val ues distributed between specified minimum and maximum
values.

A loop, containing the main dgorithm, then counts the generations. Thefirgt part of
processing ageneration isto caculate fitness vaues for the population, caling the selected
fitness function for each x-y pair in the population. The loop aso tracks the highest and lowest
fithess values for reporting and later fitness scaling. To implement linear normalization, ashell
sort orders the chromosomes by their caculated fitness, before the agorithm assigns new vaues
from top to bottom.

Producing a new population requires the selection of parents, who are combined by crossover
and then mutated based on the chosen configuration. After the generation loop ends, the
agorithm deletes dynamicaly-dlocated buffers and displays its output.

Scott Robert Ladd — Chapter 4: Optimization by Evolution — 13

What You'll See

The output of testOptByEvol will look like this (I've manudly inserted dlipses for repetitive
cycles, so you just see when the fitness changed):

Function Optimization (Peak Search)

Equation: f(x,y) = 1/((x+0.5)2+2(y-0.5)2-0.3cos(3px)-0.4cos(4py)+0.8)
population size: 1000
of generations: 1000
crossover rate: 90.000000%
mutation rate: 10.000000%
elitism enabled: 1
fitness algorithm: Windowing

0: (-0.53235396,0.40350782) fitness = 1.6967843
10: (-0.65735396,0.49727308) fitness = 7.9261430
20: (-0.65735396,0.49921094) fitness = 7.9405427
30: (-0.65625914,0.49921091) fitness = 7.9440813
40: (-0.65637741,0.49945533) fitness = 7.9444938
50: (-0.65625917,0.49945508) fitness = 7.9447716
60: (-0.65637738,0.49969922) fitness = 7.9449309
70: (-0.65625535,0.49969946) fitness = 7.9452182
80: (-0.65625532,0.49970707) fitness = 7.9452278

110: (-0.65625496,0.49970682) fitness = 7.9452283
120: (-0.65625103,0.49970700) Ffitness = 7.9452374
130: (-0.65625137,0.49994349) fitness = 7.9454118
140: (-0.65625101,0.49997383) fitness = 7.9454180
150: (-0.65625101,0.49997788) fitness = 7.9454184

200: (-0.65527589,0.49991281) fitness = 7.9467265

230-

(-0.65527599,0.49992253) fitness = 7.9467298
240: (-0.65527592,0.49997976) fitness = 7.9467417
250: (-0.65527365,0.49997205) fitness = 7.9467420
280: (-0.65500604,0.49995912) fitness = 7.9468029
290: (-0.65497993,0.49997338) fitness = 7.9468042

élO: (-0.65497312,0.49998268) fitness = 7.9468047
éSO: (-0.65497503,0.49998268) fitness = 7.9468048

350: (-0.65500412,0.49998278) Fitness = 7.9468058

14 — Scott Robert Ladd — Chapter 4: Optimization by Evolution

7.9468062

390: (-0.65499792,0.49999136) fitness
AZO: (-0.65499812,0.49999706) fitness = 7.9468064

é50: (-0.65501338,0.49999690) fitness = 7.9468065

For the functions F6 through F8, testOptByEVvoal performs remarkably well, finding the
gpproximate answer in fewer than 10 generations.

Function Optimization (Peak Search)

Equation: f6(X,y) = x2+2y2-0.3cos(3px)-0.4cos(4py)+0.7
population size: 1000
of generations: 1000
crossover rate: 90%
mutation rate: 10%
elitism enabled: 1
fitness algorithm: Windowing

0: (-0.68040694,9.2169483) fitness = 2.2250739e-308
10: (7-.7943307e-010,6.0263372e-154) fitness = 1.0000000

Function Optimization (Peak Search)

Equation: F7(x,y) = x2+2y2-0.3[cos(3px)cos(4py)]+0.3
population size: 1000
of generations: 1000
crossover rate: 90.000000%
mutation rate: 10.000000%
elitism enabled: 1
fitness algorithm: Windowing

0: (0.21172395,-0.051639709) fitness = 0.55136173
10: (-1.8036076e-038,3.5417319e-019) fitness = 1.0000000

Function Optimization (Peak Search)

Equation: f8(X,y) = x2+2y2-0.3[cos(3px)+cos(4py)]+0.3
population size: 1000
of generations: 1000
crossover rate: 90.000000%
mutation rate: 10.000000%
elitism enabled: 1
fitness algorithm: Windowing

0: (0.35563143,-0.45448293) fitness = 0.11926576

Scott Robert Ladd — Chapter 4: Optimization by Evolution — 15

10: (38.7216025e-019,2.7317749e-019) fitness = 1.3000000

For the smpler functions, the genetic dgorithm quickly zeros in on the optima vaue. My
custom function presents a more difficult problem, as evidenced by the GA’s dower
performance. The highest possible fitness value, to fifteen decimal places, is 7.94680648572638,
whichisgenerated by x andy vaues doseto x =-0.655 and y = 0.5. If you're looking for six to
eight digits of precison, the peek is usudly found in afew hundred generations. Being a
stochagtic process, the genetic algorithm doesn’t dways produce identical performance. Play a
bit with the configuration, sdecting avariety of parametersto gain afed for how they affect
performance. Reducing the influence of chance will be one of the topicsin Chapter Six, aong
with further analysis of genetic dgorithm performance and parameter sdlection.

Onward

Gengetic dgorithms can do more than optimize a function. The next chapter shows how to use
genetic dgorithms for finding optimum srategies—and Il describe how scientists use
evolutionary programming to explore mysterious aspects of the universe.

