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Abstract

There is growing interest both in the �eld of neural computing and in the �nancial world in the pos-

sibility of using neural networks to forecast the future changes in prices of stocks, exchange rates and

commodities. Since networks have been shown to be capable of modelling the underlying structure

of a time series, many attempts have been made at exploiting that capability in order to carry out

a technical analysis of such prices. If the e�cient markets hypothesis is true however, there is no

underlying structure to be modelled and the whole endevour is doomed to failure. This paper investi-

gates the common methods for such an approach and outlines the major pitfalls and common errors

to avoid. It is the author's hope that in pointing out the possible pitfalls now, we can avoid making

claims to the commercial world before we are properly ready to do so.

1 Introduction

There is a justi�able scepticism surrounding the idea that it is possible to make money by predicting

price changes in a given market based only on its past behaviour and a number of publicly available

indicators. Ignoring the cases involving insider information, this scepticism exists for a number of

reasons; many of which are explained by the e�cient markets hypothesis. The hypothesis is based

�rstly on the assertion that markets follow a random walk which cannot be predicted from past prices.

Any chance of potential pro�ts is snapped up immeadiatly, removing the opportunity almost as soon

as it is created and certainly before the technical analyst has seen it in the data. It would seem that

�nancial prediction, as far as the technical analyst is concerned, just has no future in it.

There is a possible way around the e�cient markets hypothesis because it relies on the public availability

of market information. If prices do not follow a random walk, but a chaotic one, then anybody who

is able to model the price structure and make valid predictions using that model will have access to

information which is not publicly available. The e�cient markets hypothesis will no longer apply to

the person with the model until everybody gains access to the same technology and things even out

once more. Given that the e�cient markets hypothesis relies on perfect knowledge; perfect prediction

technology would only serve to enforce the conditions under which that technology is useless; as soon

as a possible pro�t is predicted, it is snapped up and expected pro�ts return to the level of the risk

free return plus a risk premium associated with a stock holding. Put another way, chances of superior

pro�ts occur when brokers set their prices incorrectly and investors are able to spot the discrepancy

before it is corrected. Perfect prediction for all would remove these discrepancies and with them the

opportunities for superior pro�t.



2 Time Series Prediction

The two main neural network based approaches to time series forecasting are time windowing and

recurrent networks. Both attempt to capture the dynamics of the system which underlies the data
series by training a neural network to take as input a representation of the current state of the system
and to output a prediction of the state of the system at some point in the future. In the case under

consideration here, that system is a �nancial market.

2.1 Time Windowing

Several authors [Waibel, 1989], [Refenes, 1991] have shown how the temporal dimension can be trans-

posed into a spatial vector by taking a moving window over the last n elements in a series. Using a
feedforward network with n input units|one for each time step up to time t|and one output unit

representing the value of the series at t + 1, we can learn to perform one step ahead prediction. By
increasing output window size or|more usually|feeding the single output back to the top end of the
input window it is possible to extend the predictions to several steps ahead. Predicting an unstable

system more than one step ahead however can produce exponentially growing errors. Adding noise to
the training set or using a regularisation term during learning can be used to reduce these errors but

only if the information is in the data in the �rst place.

2.2 Recurrent Networks

[Elman, 1990] showed how an otherwise feedforward network with a recurrent context layer which took

a copy of the network's hidden layer at time t�1 and re-applied it in addition to the input vector at time
t was able to learn temporal dependencies. [Williams and Zipser, 1989] showed how a fully recurrent

neural network was capable of simulating a Turing machine and so reproduce any deterministic sequence.
[Swingler, 1994] showed how extra context layers could be added during training in order to allow a
recurrent network to be trained on several examples of a time series from the same source system.

By building a recurrent network with one input unit representing the value of the time series at time t,
one output unit representing the value of the time series at time t+1 and a recurrent layer to store and
re-apply the state of the hidden layer from time t, we can forecast one step ahead along a time series.

By taking the network output and feeding it back in as input, this method can be extended to multiple
steps forward.

3 Common Pitfalls to Avoid

Having selected a network architecture and carried out rigorous data preparation to establish the limits
of what one would expect from a prediction system, one must be aware of certain possible pitfalls

awaiting the unsuspecting analyst. The following sections describe a few of these pitfalls in the hope
that we can save a few people some time, e�ort and disappointment.

3.1 One Step Ahead Prediction

Taking the set of Swiss Franc, U.S Dollar exchange rate values from the Santa Fe time series forecasting
competition [Weigend and Gershenfeld, 1993] and training a recurrent network on a one step ahead

prediction task appears, at �rst glance, to give the key to a fortune. Figure 1 a) shows a plot of the
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a) This one step ahead network prediction looks very good.

b) A closer look at the are in the box in a) shows how the
     chance  of a profit is missed.
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b) A closer look at the area in the box in a) shows how the chance of
     a profit is missed.

Figure 1: Predicting the hourly Dollar / Swiss Franc exchange rates

output of a recurrent neural network predicting one hour ahead and then taking the actual value, rather
than the predicted value, as input in order to predict the next step. Looking at the graph and reasoning
that An hour is all you need may give the impression that superior pro�ts are possible. Clearly this

is too good to be true: a closer inspection of the graph|as in �gure 1 b)|shows that the network is
simply predicting that the price level one hour from now will be the same as it is now. A commonly

quoted e�ect of the e�cient markets hypothesis is that such a policy is actually optimal. Figure 1 b)
also illustrates the point that the new information is not re
ected in the time series until too late: the
drop in price drags the prediction down one step later but the price has already 
attened out again and

the chance of a pro�t has been lost.

3.2 Many Step ahead Prediction

[Refenes, 1991] used overlapping time windows to convert exchange rate series into spatial vectors. The

data { hourly updates of 260 days worth of US dollar/DM exchange rate values { were coded into two
moving windows with the intention of mapping the contents of the earlier window of size n onto those

of the second, later, window of size m. The two windows move across the data series at a step of s. The
task then is to predict the contents of window m from those of n. The authors show how important

network design is; choosing the sizes of n;m and s carefully as well as constructively adding hidden
units to maximise the data �t. One step ahead prediction was achieved by setting m = 1, i.e setting
the output vector to be a single value. Multi step prediction was achieved by taking the single valued

prediction and feeding it back as input rather than by extending the size of the output window, m.
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Figure 2: The prediction from Refenes et al (1992)

a) First 60 data points                   b) The 60 predicted steps

Figure 3: a) shows the �rst 60 steps in the training sequence, b) shows the 60 predicted steps. Note

that once the prediction is near a state close to that of the start of the series, it simply repeats itself.

Refenes notes the importance of correctly predicting major turning points rather than simply predicting

the next step ahead. Based on a system of buying and selling in anticipation of predicted turning points,
the Refenes network made at least 22% pro�t on the last 60 trading days of 1989.

However, if we take a closer look at Refenes' �ndings a few cautionary tales are revealed. His return

of 22% is based on a prediction which takes 200 data points from a non-stationary, noisy, non-periodic
time series and predicts the next 60 values. It is always sensible to look at the amount of information

you believe that you have extracted from a data set and ask yourself, Was there su�cient information

in the data in the �rst place or have I performed a conjuring trick?.

Closer inspection of the results chart in �gure 2 and �gure 3 shows that the 60 point prediction falls

dramatically to a point so low that is is outside the operating space of the model and then picks up
following an almost identical path as the data followed from its original (and equally low) starting point.

It appears that the match to the actual time series is quite coincidental.

Further, if we examine the �gures quoted in the pro�t breakdown we see that the bulk (15 of the 22%)
is made on the �rst pair of transactions. Refenes sells a holding of his stock at step 200 in the series
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and buys again at the predicted low turning point. His pro�t is gained from the fact that he sold at a

high price an bought back at a lower price but we need to know what he payed for the stocks which he

sold before we can know what his true pro�t was. Had he started with a zero holding, his pro�t before

transaction costs would only have been 0.07%. [LeBaron, 1993] points out that it is not realistic to talk

about the success or otherwise of a system unless trading costs are taken into account. A trading cost

of between 0.1% and 0.01% should be accounted for before any claims can be made. Assuming such a

trading cost sees the pro�t disappear.

4 Methods for Avoiding False Assumptions

Mean squared error (MSE) is not always the best measure of how well a network has learned a time

series. You may get MSE down to 0.02 but if the average change from one time step to the next is also

0.02, then you've not achieved a great deal. Such small errors also cause very 
at error gradients which

require the learning rate to be managed very carefully.

Having obtained a good MSE there are several ways in which one can destructively test a network which

appears to be making good predictions. One involves reducing the number of hidden units, or even

using a perceptron on the same training task. If you have looked at your data set and decided that

N hidden units would produce a good �t, and found that it seems to do so, then a lot can be learned

by the deterioration (or lack of it) a network displays when N is reduced. Another way is to test the

network on data with a totally unrelated structure; a sine wave for example. If you still seem to be

getting good results, then it is clear that there is an error in your interpretation.

5 Market Modelling: Why Neural Networks are Useful After

all

One arguement against technical analysis is based on the very premise which makes it seem possible.

The technical analysts claim that all market information is re
ected in the price levels and so these

prices are the only data required. Detractors from this viewpoint argue that whilst the price levels do

re
ect available information, by the time they do so its too late. [Pettit, 1972] showed that when a new

piece of information, an increase in dividend for example, becomes publicly available price change will

make one large jump and then 
atten out. By the time the information is re
ected in the price level,

the technical analysts are too late. As the time series prior to this change is said to contain all available

information and the dividend announcement is a new fact, it cannot possibly be re
ected in the time

series. In order to pro�t from such a situation you must be able to look at a company's performance

and its current stock value and know the value has been erroneously set too low.

[Hoptro�, 1992] used a feedforward network to model the performance of Britain's top 100 construction

companies revealing a model of pro�tability and volatility against company size which showed the

optimal size of company one should invest in for maximal return. Using such a model it may be

possible to spot occasions when prices have been set at the wrong level and so make a pro�t when they

reach equilibrium.
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6 Summary

Whilst not ruling out the possibility of carrying out time series based �nancial prediction, there are

several aspects that must be borne in mind when carrying out research into such an application:

� Ensure that you have su�cient information in your training data to allow the possibility of making
the kind of predictions you plan to carry out.

� When performing one step ahead prediction, check that you really are predicting ahead.

� When predicting several steps ahead, start the prediction from many di�erent steps along the

time series and check to see that there is no coincidence in your results. An example is a predictor
which simply follows the current or overall trend and so appears to be correct for several steps.
Only when the predictor consistently forecasts turning points can you claim success.

� Take into account trading costs and frequencies: You may be able to predict one step ahead

every minute and accumulate sixty small pro�ts an hour, but if you have to pay 0.05% on each
transaction, your sum may actually dwindle to nothing. Similarly it is not possible to trade at

such a speed and nor is it so easy to swap from a buying to a selling position at will without
accounting for di�erences in brokers' buy and sell prices.

Above all, neural networks must be viewed as a statistical tool. They are bound by the same restrictions

on data information content, data quality and model generalisation as any statistical technique. No
statistical technique can extract information where there is none to be had.
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