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Abstract

The problem of selecting a portfolio has been largely faced in terms of minimizing the risk, given the return. While

the complexity of the quadratic programming model due to Markowitz has been overcome by the recent progress in

algorithmic research, the introduction of linear risk functions has given rise to the interest in solving portfolio selection

problems with real constraints. In this paper we deal with the portfolio problem with minimum transaction lots. We

show that in this case the problem of ®nding a feasible solution is, independently of the risk function, NP-complete.

Moreover, given the mixed integer linear model, new heuristics are proposed which starting from the solution of the

relaxed problem allow to ®nd a solution close to the optimal one. The algorithms are based on the construction of

mixed integer subproblems (using only a part of the securities available) formulated using the information obtained

from the solution of the relaxed problem. The heuristics have been tested with respect to two disjoint time periods, using

real data from the Milan Stock Exchange. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The portfolio selection problem has found a
®rst mathematical formulation in the pioneering
paper of Markowitz [1] thanks to which the in-
vestments diversi®cation has been translated into
computational terms. In the last 40 years we have
been witness to a great evolution with respect to
the traditional Mean±Variance (MV) scheme, in-
troduced by Markowitz. Some of the main draw-

backs recognized to MV model are its high
computational complexity and the input problem
of estimating 2n� n�nÿ 1�=2 parameters (expect-
ed returns, variances and covariances), which
made the model a milestone in ®nance theory, but
a scarcely used tool in practice. This situation
justi®ed the several attempts in literature to line-
arize the quadratic objective function (see [2±4]).

Nowadays MV models consisting of more than
a few thousand assets have been solved changing
dramatically the practical role of MV approach for
constructing large scale portfolios. Real time so-
lutions are obtainable through the use of interior
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point algorithm for quadratic programming
problem [5], or by using compact factorizations
and piecewise linear approximations [6,7].

The ®rst linear model for portfolio selection is
due to Konno and Yamazaki [8]. The linear form
of the model is made possible by the use of a risk
function di�erent from the classical portfolio
variance, namely the portfolio absolute deviation.
A relevant feature of the model is that no proba-
bilistic assumptions are made on the securities
rates of return, while in the case the rates of return
are multivariate normally distributed the model is
shown to be equivalent to Markowitz's one. The
Konno and Yamazaki's model, the so-called Mean
Absolute Deviation (MAD), has been applied by
Zenios and Kang [9] to a mortgage-backed secu-
rities portfolio optimization in which the rates of
return distribution is asymmetric. Speranza [10]
introduced a more general model with a weighted
risk function. The author showed how a suitable
choice for the coe�cients in the linear combination
gives rise to a model equivalent to Konno and
Yamazaki's but halving its number of constraints.
A similar result has been independently obtained
by Feinstein and Thapa [11].

The largest part of the portfolio selection
models which have been proposed in the literature
are based on the assumption of a perfect frac-
tionability of the investments in such a way that
the portfolio fraction for each security could be
represented by a real variable. In the real world,
securities are negotiated as multiples of a mini-
mum transaction lot (the so called rounds). As a
consequence of considering rounds, solving a
portfolio selection problem requires ®nding the
solution of a mixed integer programming model.
When applied to real problems, the tractability of
the integer model is subject to the availability of
algorithms able to ®nd a good, even if not optimal,
integer solution in a reasonable amount of time. A
general mixed integer model including real char-
acteristics of the problem has been presented in
Speranza [12], where a simple heuristic is proposed
and tested for the case when minimum transaction
lots are considered. The problem with ®xed
transaction costs with and without minimum
transaction lots has been recently studied in
Mansini and Speranza [13].

In this paper we show that, when rounds are
taken into account, the problem of ®nding a
feasible solution is, independently of the risk
function, NP-complete. Moreover, new algo-
rithms are proposed for the solution of the model
with rounds. As the number of securities selected
by a standard (quadratic or linear) portfolio op-
timization model is observed to be almost always
smaller than 20, the heuristics proposed herein
are based upon the idea of constructing and
solving mixed integer subproblems which con-
sider subsets of the investment choices available.
The subsets are generated by exploiting the in-
formation obtained from the relaxed problem
(selected securities and reduced costs). The heu-
ristics have the relevant advantage of being gen-
eral. Di�erent mixed integer models can be of
interest in portfolio selection if, for instance,
transaction costs are considered. The presented
algorithms can be applied or easily generalized to
such models.

We present three di�erent heuristics based on
the above idea, each of which represents a domi-
nating version of the previous one. The solutions
obtained using data from the Milan Stock Ex-
change with respect to the time periods (1989±
1991) and (1992±1994) show that the errors gen-
erated by the ®rst and the second heuristic are
always less than 5.588% and than 2.615%, with
respect to the optimal solution value, respectively.
The errors found by the third heuristic, computed
with respect to the continuous relaxation solution
value, are always smaller than 1.472%.

The most e�ective of the heuristics gives a
maximum error of 1.472% over the period (1989±
1991) and of 1.323% over the period (1992±1994),
both errors computed with respect to the contin-
uous relaxed optimum; besides, it ®nds the optimal
solution on about 65% and 80% of the tested in-
stances of the two time intervals, respectively.
Moreover, even the simplest of the heuristics out-
performs the heuristic proposed in [12].

The paper is organized as follows. In Section 2
the general Mean Semi-absolute Deviation model
including minimum transaction lots is described,
after a brief overview of Markowitz's classical
portfolio selection problem and of Konno and
Yamazaki's linear model. NP-completeness results
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for the Portfolio Feasibility Problem with and
without tight bounds on the capital are given in
Section 3. In Section 4 the new heuristics are pre-
sented and in Section 5 the experiments and the
results on data from the Milan Stock Exchange are
discussed. Finally, some remarks on future re-
search are made.

2. The Mean Semi-absolute Deviation model with

minimum lot constraints

Markowitz's original work was based on the
rule that the investor does consider expected re-
turn as a desirable thing and variance as an un-
desirable one. Analytically, this implies that given
jSj securities, where S is the set of investment al-
ternatives (securities), and a level q of expected
return the model turns out to be a quadratic pro-
gramming problem as follows:

min
X
i2S

X
j2S

rijxixj; �1�

X
i2S

rixi � q; �2�

X
i2S

xi � 1; �3�

xi P 0; i 2 S; �4�
where xi represents the percentage of money in-
vested in security i, ri � E�Ri� with Ri the random
variable representing the return of security i and
rij is the covariance between returns of security i
and of security j. The most commonly adopted
assumption for this model is multivariate normally
distributed rates of return.

In 1991 Konno and Yamazaki [8] developed a
new approach having an important implication in
portfolio analysis especially when the previous
assumptions are not satis®ed. In their original
formulation of the L1 risk model, Konno and
Yamazaki proposed the following risk function:

min w�x� � E
X
j2S

Rjxj ÿ E
X
j2S

Rjxj

" #�����
�����

" #
: �5�

The random variable Rj still represents the rate of
return, while xj is the amount of money invested in
security j.

According to Konno and Yamazaki, rjt is the
realization of the random variable Rj during the
period t and is obtainable through historical (or
forecasted) data. Alternative models in which dif-
ferent scenarios for the rates of returns are taken
into account are described in [10]. In particular,
they assume that the mean of Rj can be estimated
as

rj � E�Rj� �
PT

t�1 rjt

T
; �6�

where T is the length of the time horizon, and that
w�x� can be reformulated as follows:

w�x� � 1

T

XT

t�1

j
X
j2S

�rjt ÿ rj�xjj: �7�

This objective function is equivalent to the
following linear program:

min

PT
t�1 yt

T
�8�

yt �
X
j2S

�rjt ÿ rj�xj P 0; t � 1; . . . ; T ; �9�

yt ÿ
X
j2S

�rjt ÿ rj�xj P 0; t � 1; . . . ; T : �10�

If the risk is measured by means of the mean
semi-absolute deviation instead of the absolute
deviation, as in Speranza [10], the objective func-
tion isPT

t�1 jminf0;Pj2S�rjt ÿ rj�xjgj
T

�11�
and can be rewritten as

min

PT
t�1 yt

T
; �12�

yt �
X
j2S

�rjt ÿ rj�xj P 0; t � 1; . . . ; T ; �13�

that is with a smaller number of constraints. It has
been shown in [10] that (11) is equivalent to (7) and
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thus to the variance under the assumption of
multivariate normally distributed returns.

Since the model based on a mean semi-absolute
deviation risk function is linear, it becomes natural
to introduce new speci®cations deriving from
market structure as well as from operative con-
straints.

We brie¯y describe the required notation for
the mixed integer model with minimum transac-
tion lot constraints. We denote by cj the pur-
chasing price for the minimum lot of security j. In
this way, for each security, the minimum lot is
expressed in terms of money and is equivalent to
cj � Njpj, where pj is the market price for security
j at the date of the purchase of the portfolio and Nj

is the number of units of security j required as
minimum quantity. Trivially, it is cj � pj when
asset j is traded without minimum lot.

The integer variable xj, 8j 2 S, represents the
number of minimum lots, for each security j,
which will make part of the optimal portfolio. The
quantity cjxj indicates the part of the total avail-
able amount of money that the investor decides to
put in security j. For example, the Exchange
Board establishes that security 5 has to be bought
in multiples of 5000 units (i.e. N5 � 5000). On the
date we decide to purchase a portfolio, security 5
has a price equal to p5 � 2700 Italian Liras. This
implies that security 5 has a minimum round of
13.5 million Italian Liras (i.e. c5� 13,500,000). If
the ®nal solution shows that x5 � 7, then an
amount of 94.5 million Italian Liras of the total
fund C will be invested in security 5.

The constant dj, which may vary according to
market conditions and agreement types, expresses
the transaction cost proportional to the value of
the purchase. In Section 5 an example of how the
dj are computed is given. Since the proportional
transaction costs can be directly incorporated in
the price, from now on we assume that the price cj

includes all possible proportional transaction
costs.

The mixed integer linear program for the
portfolio selection problem with minimum lot
constraints is

min

PT
t�1 yt

T
; �14�

yt �
X
j2S

�rjt ÿ rj�cjxj P 0; t � 1; . . . ; T ; �15�

C �
X
j2S

cjxj; �16�

X
j2S

rjcjxj P qC; �17�

C06C6C1; �18�

06 xj6 uj; integer j 2 S; �19�

yt P 0; t � 1; . . . ; T : �20�

Constraint (16) de®nes as C the total portfolio
expenditure. The constraint on the expected return
(17) implies that the selected portfolio has a com-
bined rate of return greater than q. With con-
straint (18), the unknown investment C is ®xed to
range between C0 and C1, i.e. between the mini-
mum and the maximum amount of money avail-
able for the investment. Finally, constraints (19)
de®ne limitations on the value each xj can take,
being cjuj an upper bound on the investment in
security j.

3. NP-completeness results

The portfolio selection problem with minimum
transaction lots establishes the minimization of a
risk function f �x� given constraints on the return
and on the investment and it can be formulated as
follows:

min f �x�;X
j2S

cjxj � C;

X
j2S

rjcjxj P qC;

C06C6C1;

06 xj6 uj; integer j 2 S;
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where uj represents an upper bound on the number
of lots purchased of security j.

We will refer to the problem of identifying a
feasible solution of the above problem as the
Portfolio Feasibility Problem. We now show that
the Portfolio Feasibility Problem is NP-complete
both in the case with C0 � C1 and in the case with
C0 6� C1.

Theorem 1. If C0 � C1 the Portfolio Feasibility
Problem is NP-complete.

Proof. We show a transformation from the Parti-
tion Problem to the Portfolio Feasibility Problem.
The Partition Problem, which is known to be NP-
complete (see Garey and Johnson [14]), is de®ned
as follows:

Instance: A set A � fa1; a2; . . . ; ang with ai P 0
and such that

Pn
i�1 ai � 2s.

Question: Does there exist a partition of A into
two subsets A1 and A2 such thatX
ai2A1

ai �
X
ai2A2

ai � s?

Let an instance of the Partition Problem be
given. We associate to it an instance of the Portfolio
Feasibility Problem with jSj � n. For each item ai,
we create a security i whose unit cost is ai and such
that ui � 1 is the upper bound on the number of
units xi. The capital bounds are C0 � C1 � s, the
expected rate of return is q � 0 and the rit are
arbitrarily chosen in such a way that ri P 0, 8i.

If the Partition Problem has ``yes'' answer let
xi � 1 if ai 2 A1 and xi � 0 otherwise. Then the
portfolio obtained by selecting xi units of security i
satis®es the budget constraint. Moreover, as ai P 0
and q � 0 the constraint on the expected rate of
return is satis®ed as well. Similarly, it can be easily
seen that if a feasible solution of the Portfolio
Problem exists, then by including in A1 the items
such that xi � 1 the Partition Problem has ``yes''
answer. �

Theorem 2. If C0 6� C1 the Portfolio Feasibility
Problem is NP-complete.

Proof. We show a transformation to the Portfolio
Feasibility Problem from a particular case of the

Knapsack Problem, known to be NP-complete
(see Garey and Johnson [14]) and de®ned as:

Instance: A set A � fa1; a2; . . . ; ang, with ai P 0,
and positive integers B and K.

Question: Is there a subset A0 � A such thatP
ai2A0 ai6B and such that

P
ai2A0 ai P K?

Take an instance of the special case of the
Knapsack Problem. We associate to such an in-
stance, an instance of the Portfolio Feasibility
Problem with jSj � n. For each item ai, we create a
security i whose unit cost is ai and such that ui � 1
is the upper bound on the number of units xi. The
capital bounds are C0 � K and C1 � B, the ex-
pected rate of return is q � 0 and the rit are arbi-
trarily chosen in such a way that ri P 0, 8i.

It can be easily veri®ed that the Portfolio Fea-
sibility Problem has ``yes'' answer if and only if the
special case of the Knapsack Problem has ``yes''
answer. �

Although the Portfolio Feasibility Problem is
NP-complete both when C0 � C1 and when
C0 6� C1, it is clear that a feasible solution of the
portfolio selection problem with minimum lots is
more likely to exist when the gap between C0 and
C1 is not too tight.

4. Linear programming based heuristics

Aiming at facing the complexity of a MILP, it is
necessary to work out some heuristic methods
which approximate the optimal integer solutions
when the instance of the problem is too large to be
optimally solved with an e�cient commercial
package, such as CPLEX. A heuristic method for
the above problem can be found in Speranza [12],
where an algorithm inspired by the natural be-
havior of an investor is presented. The algorithm is
based on the solution of the LP-relaxation and a
subsequent adjustment of the continuous solution
which has the aim of reaching feasibility with re-
spect to the original constraints. The algorithm has
the advantage of being simple, but the main dis-
advantage of having been designed for a speci®c
problem. A modi®cation of the above model with
the introduction of additional features of the real
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problem makes the design of a new algorithm
necessary. On the contrary, the heuristics pre-
sented in the following have a general scheme
which can be applied to modi®cations of the above
model.

4.1. Procedure A: Basic MILP-based heuristic

The heuristic is based on solving the continuous
relaxation of the problem and retaining the secu-
rities with a positive value in the solution. Then the
original problem is solved on this subset of secu-
rities.

The procedure is essentially composed of the
following steps.

1. Relaxed problem solution: Solve the LP-re-
laxation of the problem. Let us denote by xR the
vector of solutions and by n the number of xR

components with value greater than zero (i.e. n is
the number of securities selected by the relaxed
problem), while jSj ÿ n represents the remaining
null components.

2. Local MILP construction: Construct a mixed
integer linear programming problem only using
the n positive components of xR. This problem has
n� T variables and a total number of constraints
equal to T � 2.

3. Local MILP solution: Solve the mixed integer
problem. Let xI be the vector of solutions.

An evident pitfall for this procedure is that the
limited number of securities considered to formu-
late the new instance at step 2 can exclude some
desirable securities. The following algorithms will
overcome the problem by using a di�erent criteri-
on of selection.

4.2. Procedure B: Reduced cost MILP-based heu-
ristic

The present procedure is an extension of the
previous one: the number of variables for the local
MILP is no more limited to the positive compo-
nents of the relaxed problem solution. The local
MILP instance is constructed using the ®rst k
(where k is established from the beginning) secu-

rities selected after sorting the variables according
to the nondecreasing order of the reduced costs.
The procedure is organized as follows.

1. Relaxed problem solution: Solve the relaxed
problem. Let xR be the solutions vector.

2. Sort on securities: Sort the securities accord-
ing to the nondecreasing order of the reduced cost
coe�cients. We assume that xR is now the ordered
solutions vector. Let n be the number of positions
of xR ®lled in by securities with positive values and
null reduced costs, while, in the remaining jSj ÿ n
positions, the securities have value equal to zero
and positive reduced costs sorted in nondecreasing
order.

3. Local MILP construction: Select the ®rst k
securities (with k > n), in order to construct the
local MILP problem. k can be determined by using
one of the following rules

(a) Fix k as

k � n� pn; �21�

where p represents a convenient percentage.
(b) Take k equal to the number of constraints
in the original problem, i.e. take k � T � 2.
The rule takes into account the fact that in
the relaxed problem the maximum number
of variables with a value di�erent from zero
is exactly equal to the number of the con-
straints.
(c) Fix k to a value, independent from n, which
is the maximum number of variables for which
the MILP problem can be solved within a rea-
sonable amount of time and space.
4. Local MILP solution: Solve the MILP

problem. Let xI be the vector of solutions.
Since k is greater than the number n of positive

components in the relaxed problem, this solution
dominates the solution of the procedure A.

It is worth noticing that each rule for the
value of k in step 3 gives rise to a variant of the
procedure. Moreover, a di�erent formulation of
the heuristic can be easily obtained by replacing
step 2 with a step in which the securities are
sorted according to a di�erent criterion, e.g. by
the nondecreasing order of the absolute devia-
tion normalized with respect to the expected
return.
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4.3. Procedure C: Iterated MILP-based heuristic

As a further extension of heuristic B the fol-
lowing algorithm uses an iterative procedure which
changes at each iteration the securities on which
the mixed integer model is solved.

1. Relaxed problem solution: Solve the relaxed
problem. Let xR be the solutions vector.

2. Sort on securities: Sort the securities accord-
ing to the nondecreasing order of the reduced cost
coe�cients.

3. Securities selection: Select the ®rst k securities
of vector xR using one of the three rules presented
in the description of heuristic B. Cancel the ®rst k
components of the vector xR.

4. Local MILP problem construction: Use the
selected securities to create the MILP problem.

5. Local MILP problem solution: Solve the in-
stance of the problem created at the previous step
and indicate with xI the vector of solutions. Let s
be the number of securities with value di�erent
from zero in xI and k ÿ s the components of xI

with value equal to zero, sorted in the nonde-
creasing order of the reduced cost coe�cients.
Replace the last b�k ÿ s�=2c securities with value
zero with the ®rst b�k ÿ s�=2c securities of the
vector xR. Cancel the ®rst b�k ÿ s�=2c components
of xR. Repeat steps 4 and 5 until a total limit
number of securities N � has been considered,
keeping the best solution found.

A variant of this procedure can be obtained by
modifying the number �k ÿ s�=2 of securities which
are replaced at each iteration or the stopping rule.
For instance, a maximum number of iterations can
be ®xed.

5. Computational experiences in the Milan Stock

Exchange

The mixed integer programming model for
portfolio selection has been applied to data from
the Milan Stock Exchange: all the considered in-
vestment alternatives are represented by securities
quoted on the Milan Stock Exchange.

We brie¯y recall that in the Milan Stock Ex-
change the minimum transaction lot, directly ®xed
by the Stock Exchange Board for each security, is

worked out by using as reference the number of
securities for stocks and the nominal value for
bonds and Government securities.

Table 1 reports the percent weight of taxes on
the total amount of money invested. Taxes repre-
sent an additional proportional cost which varies
according to the type of traders involved and the
kind of operation realized.

The three groups of operations A, B and C
di�er in their objective indicating respectively
stakes in all the types of company (group A),
money values (group B) and Government securi-
ties and bonds (group C). The groups referred to
as 1, 2 and 3 indicate the di�erent kinds of
intermediaries involved in the agreement: agree-
ments set among brokers and specialized insti-
tutes, the so-called Italian SIM (®rst group),
agreements among banks or other institutional
traders and private buyers (second group), agree-
ments realized among noninstitutional traders
(third group).

According to this distinction, it is easy to work
out the average commission. For example, if we
consider a private investor who decides to put his
money in a portfolio of stocks his average com-
mission will be of 0.5% while his taxation on the
agreement will be equal to 0.05% (see cell �A; 2� of
Table 1) for a total proportional cost of 0.55%.
Since we have supposed to operate exactly in this
condition, we have set dj � 0:0055, 8 j 2 S.

The computational experiences have been car-
ried out on two sets of data which cover the dis-
joint time periods 1989±1991 and 1992±1994 with
a total of 277 securities available in the ®rst set and
244 in the second one. From now on, we de®ne by
S1 the time period (1989±1991) and by S2 the time
period (1992±1994).

Securities quotation is not always available on
the market. The availability of securities price in

Table 1

Percent weight of taxation over amount invested

Operations Traders

1 (%) 2 (%) 3 (%)

A 0.012 0.05 0.14

B 0.04 0.09 0.10

C 0.009 0.009 0.016
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the market, at a given date, is related to the way in
which the securities are admitted to quotation.
Due to technical reasons the Exchange Board can
decide to exclude from quotation on the market
some securities for a limited time period (days or
weeks) during which the security itself or the cor-
responding issuing company do not satisfy ®xed
acceptability standards. The two selected groups
of securities include all the securities which have
never been excluded from quotation respectively in
the time periods S1 and S2.

We have created 48 di�erent problem instances
for each time period. The instances have been
formulated according to di�erent levels of capital
and to di�erent values for the parameter q. Spe-
ci®cally, the fund C which represents the amount
of money that, at the end, will result to be invested
in the portfolio, is allowed to range within the
interval �C0;C1�. We have established four di�er-
ent values for C0 (100, 500, 1000, 5000 million of
Italian Liras) and we have ®xed C1 (the upper
bound) as follows:

C1 � C0 � c C0: �22�
In this way C1 is carried out by increasing C0 (the
lower bound) by a ®xed percentage c. Two values
have been considered for c (1% and 2% respec-
tively) for a total number of capital intervals equal
to eight.

E�cient frontiers, generated for each capital
range in each time period, are analyzed with re-
spect to six di�erent values for the expected return:
the parameter q is supposed to range between a
minimum value of 0.25% per month to a maxi-
mum of 1.50%, with a step of 0.25%, taking the

values 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 re-
spectively.

We tried to solve each instance by using
CPLEX, on a Personal Computer 52E with mi-
croprocessor Intel Pentium (120 MHz). We ®xed a
treememory parameter to 50Mb of memory. This
parameter sets an upper limit on the amount of
memory that the branch-and-bound tree can use.
This implies that CPLEX will terminate when the
amount of memory required to store branch-and-
bound tree information exceeds the treememory
parameter setting. With this memory limit, the
computational time ranged between few minutes
to a maximum of 30 minutes. In Table 2, a `*'
shows the instances in which the optimum was not
found within the memory limit. For the solved
instances the number of positive variables, that is
the number of selected securities, is shown. In each
cell the ®rst number refers to time period S1 while
the second one to S2. Note that this number is
always below 20 and almost always below 15. It is
worth noticing that when the capital range is (100±
101) and (100±102) million of Italian Liras, the
MILP is always solved to optimality in both time
periods, while for all the other cases this is not
always possible. For the instances in which the
capital varies in the intervals (500±505) and (500±
510) the problem is always solved to optimality
when data belonged to the period S1, while it is
solved to optimality ®ve times over six for the
period S2: in this last case the unique critical value
is for q � 1:50 corresponding to a 19.56% a year
rate of return. As far as period S2 is concerned, for
the cases with capital ranging within (1000±1010)
or within (1000±1020) no integer optimum is found

Table 2

Number of positive variables in the optimal solutions for the time periods S1 and S2

Capital range Expected return

q � 0:25 q � 0:50 q � 0:75 q � 1:00 q � 1:25 q � 1:50

100±101 8±12 6±10 5±10 6±10 7±8 7±8

100±102 6±12 6±10 5±10 6±10 7±8 7±8

500±505 12±15 12±15 11±14 9±14 10±14 9±*

500±510 12±15 12±15 11±14 9±14 10±14 9±*

1000±1010 *±17 *±16 *±17 8±* 10±15 11±15

1000±1020 *±17 *±16 *±17 8±* 10±15 11±15

5000±5050 *±19 *±18 *±18 *±* *±18 *±*

5000±5100 *±19 *±18 *±18 *±* *±18 11±*
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for q � 1:00, while for the instances with capital
range equal to (5000±5050) or to (5000±5100) the
integer optimum is reached only four times over
six (for q � 0:25, q � 0:50, q � 0:75 and q � 1:25).
Finally, no optimal solution is determined for the
period S1 when the capital ranges between 5000
and 5100 with the lone exception for q � 1:50,
while for the instances with (1000±1010) or (1000±
1020) only three cases over six, those with the
highest rates of return, are successful.

Whenever the optimum was found within this
limit, the error generated by each heuristic is
evaluated as

zH ÿ z�

z�
; �23�

where zH and z� are the values of the objective
function found by the heuristic and the optimal

value. In the cases when the optimum was not
available, the error of the heuristic is evaluated
with respect to the optimal solution of the relaxed
problem zR as

zH ÿ zR

zR
: �24�

Note that the latter errors represent an over-
estimation of the errors with respect to the opti-
mum.

In each table which shows the computational
results of the heuristics the symbol `*' identi®es the
errors computed with respect to the relaxed opti-
mal solution. Herewith, we present in detail the
computational results. The groups Tables 3±5 and
Tables 6±8 show the percent errors reported on
each instance (de®ned by a ®xed range of capital
and a ®xed rate of return) by procedure A (the

Table 3

Percent errors for the Basic MILP-based heuristic ± Time period S1

Capital range Expected return

q � 0:25(%) q � 0:50(%) q � 0:75(%) q � 1:00(%) q � 1:25(%) q � 1:50(%) Average(%)

100±101 0.897 5.588 5.252 3.430 1.028 0.978 2.862

100±102 2.669 5.326 4.032 3.430 1.028 0.978 2.910

500±505 0.892 0.211 1.451 0.097 0.212 0.0263 0.482

500±510 0.892 0.211 1.451 0.097 0.212 0.0263 0.482

1000±1010 2.189� 1.061� 1.895� 0.00 0.0351 0.141 0.887

1000±1020 2.189� 1.061� 1.895� 0.00 0.0351 0.141 0.887

5000±5050 0.189� 0.281� 0.318� 0.114� 0.067� 0.06� 0.172

5000±5100 0.189� 0.281� 0.318� 0.114� 0.067� 0.009 0.163

Average 1.263 1.753 2.077 0.91 0.336 0.295 1.106

Table 4

Percent errors for the Reduced cost MILP-based heuristic B(a), with k � 2n ± Time period S1

Capital range Expected return

q � 0:25(%) q � 0:50(%) q � 0:75(%) q � 1:00(%) q � 1:25(%) q � 1:50(%) Average(%)

100±101 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100±102 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500±505 0.101 0.00 0.00 0.00 0.00 0.00 0.0168

500±510 0.101 0.00 0.00 0.00 0.00 0.00 0.0168

1000±1010 1.604� 0.902� 0.872� 0.00 0.00 0.00 0.563

1000±1020 1.604� 0.902� 0.872� 0.00 0.00 0.00 0.563

5000±5050 0.171� 0.281� 0.122� 0.114� 0.0558� 0.05� 0.132

5000±5100 0.171� 0.281� 0.122� 0.114� 0.0558� 0.00 0.124

Average 0.469 0.296 0.248 0.028 0.014 0.006 0.177
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Basic MILP-based heuristic), by procedure B (we
speci®cally present the results for the ®rst version
(rule (a) of step 3) of the procedure ®xing k � 2n,
i.e. the case in which the value k is ®xed to be equal
to two times the number n of positive components

of the solution of the relaxed problem) and by
procedure C (the Iterated MILP-based heuristic is
implemented using as securities selection rule
k � 2n while the stopping rule has been ®xed to
N� � 100, as suggested by the results obtained for

Table 5

Percent errors for the Iterated MILP-based heuristic ± Time period S1

Capital range Expected Return

q � 0:25% q � 0:50% q � 0:75% q � 1:00% q � 1:25% q � 1:50% Average %

100±101 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100±102 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500±505 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500±510 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1000±1010 1:472� 0:902� 0:599� 0.00 0.00 0.00 0.495

1000±1020 1:472� 0:902� 0:599� 0.00 0.00 0.00 0.495

5000±5050 0:171� 0:195� 0:122� 0:094� 0:0558� 0:05� 0.115

5000±5100 0:171� 0:195� 0:122� 0:094� 0:0558� 0:00 0.106

Average 0.411 0.274 0.180 0.0235 0.014 0.006 0.151

Table 6

Percent errors for the Basic MILP-based heuristic ± Time period S2

Capital range Expected return

q � 0:25(%) q � 0:50(%) q � 0:75(%) q � 1:00(%) q � 1:25(%) q � 1:50(%) Average(%)

100±101 0.235 1.969 0.00 3.317 0.00 4.243 1.627

100±102 0.032 0.342 0.00 3.076 0.00 3.927 1.229

500±505 0.00 0.351 0.574 0.205 0.090 1.448� 0.445

500±510 0.00 0.351 0.574 0.205 0.090 1.448� 0.445

1000±1010 0.082 0.0053 0.308 0.942� 0.00 0.087 0.237

1000±1020 0.082 0.0053 0.308 0.942� 0.00 0.087 0.237

5000±5050 0.117 0.0462 0.0443 0.153� 0.037 1.421� 0.303

5000±5100 0.117 0.0462 0.0443 0.153� 0.037 1.421� 0.303

Average 0.0835 0.389 0.232 1.124 0.027 1.760 0.603

Table 7

Percent errors for the Reduced Cost MILP-based heuristic B(a), with k � 2n ± Time period S2

Capital range Expected return

q � 0:25(%) q � 0:50(%) q � 0:75(%) q � 1:00(%) q � 1:25(%) q � 1:50(%) Average(%)

100±101 0.00 0.00 0.00 0.00 0.00 2.615 0.436

100±102 0.00 0.00 0.00 0.00 0.00 2.210 0.368

500±505 0.00 0.0734 0.00 0.00 0.00 1.338� 0.235

500±510 0.00 0.0734 0.00 0.00 0.00 1.338� 0.235

1000±1010 0.00 0.00 0.00 0.904� 0.00 0.00 0.151

1000±1020 0.00 0.00 0.00 0.904� 0.00 0.00 0.151

5000±5050 0.00 0.00 0.00 0.153� 0.037 0.926� 0.186

5000±5100 0.00 0.00 0.00 0.153� 0.037 0.926� 0.186

Average 0.00 0.0184 0.00 0.264 0.009 1.169 0.243
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di�erent values of N� in Mansini [15]), for the time
periods S1 and S2, respectively.

It is evident how, in some instances, all the
heuristic procedures terminate with the same ob-
jective function value. For example, with capital
range (500±505) and expected rate of return equal
to 0.25% per month all the heuristics get the op-
timal solution over the period S2. However, while
CPLEX takes about 6 min to get the integer op-
timum, the Basic MILP-based heuristic less than
20 s, the Reduced cost MILP-based heuristic
about 1 min and the Iterated MILP-based heu-
ristic about 5 min. Similarly, if we consider the
case (1000±1020) for the capital and a higher rate
of return, for example q � 1:25% (i.e. a rate of
return greater than 12% per year) the computa-
tional time of both CPLEX and the heuristics in-
crease and so does the gap between the
performances. While CPLEX is unable to ®nd the
optimum within 30 min, the Basic MILP-based
heuristic takes only 2 min and 45 s and the Iterated
MILP-based heuristic 9 min and 29 s.

We can notice from Table 9 that the compu-
tational time is not directly depending from the
number of securities. If on an average the com-
putational time increases with the number of se-

curities, we observe that procedure A solved with
respect to S1 has an average time lower than pro-
cedure A with respect to S2. The result is partially
justi®ed by the fact that in some instances the
number of securities selected in the optimal solu-
tion is lower in S1 than in S2.

As it can be easily veri®ed looking at the tables,
the errors produced by procedure B are smaller
than the errors produced by procedure A and the
errors of procedure C are smaller than the errors
of procedure B. However, smaller errors imply
higher computational time. In particular, the It-
erated MILP-based heuristic reaches the optimal
integer solution on 40 over 48 di�erent considered
instances of the problem when the period S2 is
taken into account, while the ratio decreases to 31
over 48 when the period S1 is considered. The only
instances in which a positive error is shown are
those for which the optimum was not found. In
these cases the errors shown in the tables for the
iterated procedure, always smaller than 1.472%
for S1 and smaller than 1.323% for S2, may be due
to the gap between the optimum and the relaxed
solution. The number of times procedure A gets
the integer optimum is 8 over 48 for S2 and only 2
over 48 for S1, with a maximum error equal to

Table 9

Minimum, average and maximum computational times (in minutes and seconds) for the heuristic procedures

1989±1991 (277) 1992±1994 (244)

Min Average Max Min Average Max

Proced. A 1700 3800 202000 2400 5100 302000

Proced. B 2700 105300 70300 3600 103400 602100

Proced. C 202000 1102100 1701300 403100 100600 1901400

Table 8

Percent errors for the Iterated MILP-based heuristic ± Time period S2

Capital range Expected return

q � 0:25(%) q � 0:50(%) q � 0:75(%) q � 1:00(%) q � 1:25(%) q � 1:50(%) Average(%)

100±101 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100±102 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500±505 0.00 0.00 0.00 0.00 0.00 1.323� 0.2205

500±510 0.00 0.00 0.00 0.00 0.00 1.323� 0.2205

1000±1010 0.00 0.00 0.00 0.904� 0.00 0.00 0.151

1000±1020 0.00 0.00 0.00 0.904� 0.00 0.00 0.151

5000±5050 0.00 0.00 0.00 0.153� 0.00 0.121� 0.0457

5000±5100 0.00 0.00 0.00 0.153� 0.00 0.121� 0.0457

Average 0.00 0.00 0.00 0.264 0.00 0.361 0.104
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4.243% in the ®rst case and equal to 5.588% in the
second one. However, while the average compu-
tational time required by the Basic MILP-based
heuristic does not exceed 38 s for S1 and 51 s for
S2, the Iterated MILP-based heuristic has an
average computational time greater than 11 min
for the period S1 and 10 min for the period S2,
reaching a peak of more than 17 min in some
instances of S1 and of 19 min in the other time
period.

From the above results, it is evident that the
proposed heuristics, and especially the last one, are
extremely e�ective. It is also interesting to see the
di�erences in portfolio composition between the
optimal portfolio and the portfolios obtained by
the heuristics. In Fig. 1 we show such di�erences,
as functions of budget size, for the time period S2

and with monthly rates of return q � 0:50% and
q � 1:25%. We used as measure of the di�erence in
composition the quantityP

i2S�x�i ÿ xH
i �2

jSj ;

where x�i and xH
i denote the number of units of

security i in the optimal and in the heuristic solu-
tions, respectively. While Procedure C always ®nds
the optimal portfolio in the considered instances,
Procedure B does not obtain the optimal portfolio
in two cases, namely for the capital range
(500,505) when q � 0:50% and for the capital
range (5000,5050) when q � 1:25%.

In order to give an idea of the detailed portfolio
composition and of the actual size of the minimum
transaction lots in the Italian Stock Exchange, in
Table 10 we present more detailed results for one
experiment over the time period 1992±1994 with
an expected monthly rate of return equal to 0.75%
and the capital ranging from 1000 to 1010 million
Italian Liras. The values are expressed in thou-
sands of Italian Liras. The ®rst two columns report
the securities selected and the corresponding value
for the minimum transaction lot, respectively. The
third column shows the optimal integer solution:
we notice that in this case the integer optimal so-
lution is also found by the heuristics B and C (see
Tables 7 and 8). In the last column the actual in-
vestment for each security is shown.

Finally, Tables 11 and 12 show the results ob-
tained for the heuristic algorithm proposed by
Speranza [12]. The heuristic, which is inspired by
the natural behavior of an investor which solves
the relaxed problem and then adapts the solution
to the integrality constraints, does not require the
solution of any MILP problem. However, the re-
sults show that the heuristic never reaches the
optimum and may generate quite large errors, with
an average of 23% over the period (1992±1994).
Moreover the algorithm may terminate without a
feasible solution (see ®rst line of Tables 11 and 12).

As it is common practice to solve the portfolio
selection problems with minimum lots by applying
a rounding procedure to the relaxed optimal so-

Fig. 1.
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Table 11

Percent errors for Speranza's heuristic. Time period S1

Capital range Expected return

q � 0:25% q � 0:50% q � 0:75% q � 1:00% q � 1:25% q � 1:50% Average %

100±101 5.614 infeas. infeas. infeas. infeas. infeas. 5.614

100±102 7.469 24.095 infeas. infeas. 7.493 infeas 13.019

500±505 3.636 3.881 3.258 5.037 3.431 1.128 3.395

500±510 3.636 3.881 3.258 5.037 5.328 1.128 3.711

1000±1010 3:546� 1:462� 2:713� 3.294 2.657 0.782 2.409

1000±1020 3:546� 1:462� 2:713� 3.294 2.657 0.782 2.409

5000±5050 2:468� 1.871� 1.224� 0.294� 1:183� 0:274� 1.219

5000±5100 2:468� 1.871� 1.224� 0.294� 0:237� 0.224 1.053

Average 4.048 5.503 2.398 2.875 3.284 0.719 3.25

Table 12

Percent errors for Speranza's heuristic. Time period S2

Capital range Expected return

q � 0:25% q � 0:50% q � 0:75% q � 1:00% q � 1:25% q � 1:50% Average %

100±101 1.890 infeas. infeas. infeas. 44.924 15.725 20.846

100±102 3.697 62.269 20.928 12.988 44.924 15.725 26.755

500±505 224.4 6.592 4.849 5.817 11.030 6.869� 43.26

500±510 224.4 6.592 4.849 5.901 11.030 7.267� 43.34

1000±1010 107 1.990 0.093 3.830� 5.571 2.704 20.198

1000±1020 107 1.990 0.093 3.830� 5.571 3.096 20.263

5000±5050 18.849 0.616 0.512 0.756� 3.495 0.528� 4.126

5000±5100 18.849 0.616 0.512 0.756� 3.495 0.528� 4.126

Average 88.26 11.52 4.548 4.84 16.255 6.555 23

Table 10

Portfolio composition for the case with C0 � 1000 and C1 � 1010 million Italian Liras and q � 0:75. Time period S2

Security Min. trans. lot Solution Investment

Finarte prv 2375 9 21,375

Finarte ord. 5050 3 15,150

Gewiss 11,450.5 1 11,450.5

Riva Finanziaria 4600 11 50,600

Boni®che Ferraresi 6696 1 6696

Merloni ord. 9435 10 94,350

Teknecomp ord. 9880 1 9880

Bayer 11,750 9 105,750

Volkswagen 13,750 12 165,000

Cantoni Itc ord. 5750 7 40,250

Mondadori ord. 6779.5 2 13,559

Ausiliare 3986 70 279,020

Acquedotto De Ferrari ord. 4772 9 42,948

Marangoni 13,697.5 3 41,092.5

Terme Acqui ord. 2375 3 7125

Parmalat Finanziaria 7520 1 7520

Sme 4080 22 89,760
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lution, it is interesting to analyze the relative e�-
ciency gain of our heuristics with respect to a
rounding procedure. At this aim, in Tables 13 and
14 we give the relative errors generated by the
rounding procedure proposed by Speranza with
respect to the best of our heuristics, namely the
Iterated MILP-based Heuristic. When the round-
ing procedure has been unable to ®nd any feasible
solution a `±' appears. It can be observed that the
rounding procedure never happens to ®nd a better
solution than the Iterated heuristic. Moreover,
especially on S2, our heuristic greatly reduces the
errors produced by the rounding procedure.

6. Conclusions and future research

In this paper the model for portfolio selection
with minimum rounds has been applied, by using

three di�erent heuristics, to the Milan Stock Ex-
change. The experiments have shown how the high
computational complexity of the problem may
prevent from getting the optimal solution in a
reasonable amount of time, while the proposed
heuristics get very good solutions in a reasonable
computational time. The average error generated
by the Iterated MILP-based procedure, the most
e�ective heuristic, is 0.151% with a maximum error
of 1.472% for the time period S1 and 0.104%, with
a maximum error of 1.323% for S2. The proposed
heuristic which requires the shortest computa-
tional time generates an average error of 0.603% in
S2 and of 1.106% in S1, with a maximum of 4.243%
in the ®rst case and of 5.588% in the second one.

Among the possible future directions of re-
search, on one side it is of interest to evaluate the
performance of the proposed heuristics when ap-
plied to the variant of Markowitz's model which

Table 13

Relative errors for Speranza's heuristic with respect to the Iterated MILP-based Heuristic. Time period S1

Capital range Expected return

q � 0:25% q � 0:50% q � 0:75% q � 1:00% q � 1:25% q � 1:50% Average %

100±101 5.614 ± ± ± ± ± 5.614

100±102 7.469 24.095 ± ± 7.493 ± 13.019

500±505 3.636 3.881 3.258 5.037 3.431 1.128 3.395

500±510 3.636 3.881 3.258 5.037 5.328 1.128 3.711

1000±1010 2.044 0.555 2.101 3.294 2.657 0.782 1.905

1000±1020 2.044 0.555 2.101 3.294 2.657 0.782 1.905

5000±5050 2.293 1.673 1.101 0.199 1.126 0.2338 1.104

5000±5100 2.293 1.673 1.101 0.199 1.126 0.224 1.103

Average 3.629 5.187 2.153 2.843 3.403 0.713 3.085

Table 14

Relative errors for Speranza's heuristic with respect to the Iterated MILP-based Heuristic. Time period S2

Capital range Expected return

q � 0:25% q � 0:50% q � 0:75% q � 1:00% q � 1:25% q � 1:50% Average %

100±101 1.890 ± ± ± 44.924 15.725 20.846

100±102 3.697 62.269 20.928 12.988 44.924 15.725 26.755

500±505 224.4 6.592 4.849 5.817 11.030 5.473 43.027

500±510 224.4 6.592 4.849 5.901 11.030 5.866 43.106

1000±1010 107 1.990 0.093 2.899 5.571 2.704 20.043

1000±1020 107 1.990 0.093 2.899 5.571 3.096 20.108

5000±5050 18.849 0.616 0.512 0.602 3.495 0.406 4.08

5000±5100 18.849 0.616 0.512 0.602 3.495 0.406 4.08

Average 88.26 11.52 4.548 4.530 16.255 6.175 22.805
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takes the rounds into account, although some
problems may arise with the solution of a qua-
dratic model with integer variables. On the other
hand, the present model, opportunely changed,
can be used to manage a selection portfolio
problem based on derivatives, which implies a
higher di�culty of risk management due to their
asymmetry.
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