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Abstract An overview of physical annealing and

simulated annealing methods is presented. The tar-

get audience includes computational analysts and

software engineers who are considering simulated

annealing for the solution of a combinatorical opti-

mization problem. Several important implementa-

tion issues are discussed including decompositions

for parallel programming. Special emphasis is given

to the often ignored perspective of thermodynam-

ics.
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1 Introduction

Annealing is a formal term for the ancient art

of heating and/or cooling materials to forge

pottery, tools, weapons, and works of art. It

is the process of subjecting a substance to

changes in pressure or temperature to achieve

desired material properties. Annealing has

played a key role in human history: entire na-

tions have been won and lost on the abilities of

craftsmen to produce �t materials.

A contemporary example of annealing is the

manufacture of glass products from raw silica.

The silica is �rst heated from an ordinary solid

phase to a liquid. The liquid silica is then

cooled according to a precise cooling schedule

to achieve a desired solid phase; for example,

a solid with better optical properties [1, 2].

A depiction of an annealing process is given

in �gure 1. Note that the path from A through

B to C is not the shortest path in phase space
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Figure 1: Example temperature-pressure

phases of a material. The dotted line shows an

annealing path from phase A through phase B

to phase C.

from A to C, but may nonetheless represent the

most time and cost e�cient path. Although it

might be desirable to move directly from A to

C, it is sometimes the case that a direct path

is too costly, too time-intensive, or physically

intractable.

Modern research in annealing techniques in-

cludes both the \art" of experimental material

science [3, 4] and theoretical work based on

statistical thermodynamics [5, 6]. The latter

describes the relationship between macrostates

of the material and the states of the atoms or

molecules that compose it. A practical appli-

cation of this theory is to determine what an-



nealing schedule should be observed to e�ect

desired changes in the properties of a given ma-

terial.

1.1 Fundamentals of Temperature

A material is composed of a set S of atoms

or molecules. The states ! 2 
 of atoms or

molecules in S include measures of their po-

sition, orientation, rotation, velocity, etc. The

energy E(!) of any particular atom or molecule

is a function of its state at some instant in time.

The set of E(!)'s can be expressed by E =

fE(!) : ! 2 
g. In real materials these ener-

gies occur in quantized intervals1 so that #E

� #
.

A material is said to be at temperature

�(
) = T when the individual energies E(!)

are Boltzmann-distributed at temperature T .

For example, the informal statement \the room

temperature is 68�F" is equivalent to \the

individual energies of the gas molecules in

this room are Boltzmann-distributed at tem-

perature T = 293�K". For systems of non-

interacting particles, this can be mathemati-

cally stated:

�(
) = T , 8! 2 
 ;

p(! jT ) =
e�E(!)=kTP

!2
 e�E(!)=kT
: (1)

The Boltzmann constant k may be set equal

to 1 by using the same units for energy and

temperature.

In real materials, changes in temperature

are always due to adding or subtracting energy

through conductive, convective, mechanical, or

radiative means. It is possible for the energy

distribution of a set of atoms or molecules to

be in a transition state where temperature is

not de�ned (i.e., not Boltzmann distributed).

A system composed of ice cubes dropped into

a hot drink are one example.

To extend equation 1 to systems of interact-

ing particles, Gibbs [5] considered an ensemble

G composed of many copies of S. Each 
 2 G

represents one possible con�guration of states

1We consider only bound states of 


f!g attainable by S. Each 
 has an associated

bulk state u; e.g., one glass state vs. another.

The entire collection of these states X enumer-

ate the combinatorally large number of possi-

ble bulk states available to S. The elements

u 2 X are termed microstates. In this theo-

retical framework, the probability of attaining

some microstate u is:

p(u jT ) =
e�E(u)=TP

u2X e�E(u)=T
: (2)

For example, the microstate energies which

have high probability in material phase A of

�gure 1 will have low probability in phase C.

This is true even when states in each phase are

equilibrated at the same temperature T. The

range of attainable u 2 X are physically con-

strained by the properties of the constituent

atoms or molecules and laws of energy conser-

vation. Microstate statistics for a given ma-

terial can be obtained by laboratory measure-

ments or derived from theoretical predictions

of desirable material phases.

1.2 Pressure

Pressure is a function of constituent states and

interaction forces. Changes in temperature will

coincide with proportional changes in pressure

(and vis a vis) unless volume is increased or di-

minished to hold the current pressure constant.

For example, when a piece of metal is heated

in open air, it expands.

1.3 Annealing with Optimal Speed

In the example of �gure 1, an initial heat-

ing process is required in the transition from

phase A to phase C. This is equivalent to ac-

quiring a distribution of microstates associated

with phase B for which subsequent transition

probabilities to microstates in C are of suitable

magnitude. Once a distribution is obtained

for which paths to C are tractable, a cooling

process is initiated. Of practical importance

is how to perform annealing tasks in the most

time e�cient manner. To establish this result,

we will �rst discuss some basic terminology and



constructs, then derive an equation for thermo-

dynamic speed.

In the previous section it was stated that

the microstates of material at �xed tempera-

ture T will occur with probability p(ujT ). Let

P (T ) represent the distribution of microstate

energies at temperature T

P (�; T ) �
#fE(u) = � j Tg

#fug
:

If � is notationally suppressed in P , then P (T )

represents a vector of fractions indexed by en-

ergy vector ~�. The density of states � is de�ned

as the distribution of P at temperature T =1.

The heat capacity of 
 at T is

c(T ) =
�2(T )

T 2

where the standard deviation of the energy dis-

tribution is de�ned

�(T ) = stdev�(P (T )) :

The mean energy �E(T ) is the �rst moment of

the energy distribution

�E(T ) = ~�� P (T ) :

The transition probability of moving from

con�gurate uj to neigboring con�guration ui
at in�nite temperature is

�i j(T1) =
1

d
(3)

where d is the number of neighbors of ui. In

otherwords, all states are equally likely at T1.

At �nite temperatures, the probability of at-

tempted transitions among neighbors is still

equally likely, but with the additional Boltz-

mann dynamics

�i j(T ) =

(
1 �i � �j
e�(�i��j)=T �i > �j

: (4)

Coupling (3) and (4) yields the �nite temper-

ature transition probabilities

�i j(T ) =

(
1
d �i � �j
1
d
e�(�i��j)=T �i > �j

: (5)

The Boltzmannized matrix [7] is constructed

from �:

Bij(�; T ) =

(
1
d�i j i 6= j

1� 1
d

P
k 6=i �i k i = j

(6)

B is a stochastic matrix with largest eigen-

value 1 corresponding to p(ujT ). The second

largest eigenvalue �2 of B is related to the ther-

modynamic relaxation time

�(T ) =
1

1� �2
:

Knowing B, or an estimate of B, is su�cient

for computing a cooling schedule from a known

distribution of states to some desired distribu-

tion [7]. Complete knowledge of B is a rare

luxury.

The optimal annealing speed to minimize

entropy production in a �xed number of equi-

librations is

� =
dL

d�

where L is the characteristic length of displace-

ment between distributions and � is the char-

acteristic length of time at temperature T [8].

To express dL as a function of T , we consider

(dL)2 = �
@2S

@E2
dE2

= �dE2
�
@( 1T )

@E

= dE2
�
1

T 2
�
@T

@E

= (c � dT )2 �
1

T 2
�
1

c

=

�
dT

T

�2
�
�2

T 2

) dL = � �

�
dT

T 2

�
(7)

The characteristic time di�erential is

d� =
dt

�

so that

� =
dT

dt
�
�(T )�(T )

T 2



or

dT

dt
= � �

T 2

�(T )�(T )
(8)

In equation 8, �(T ) is measurable and �(T )

can be computed from (an estimate of) B or

by other thermodynamic considerations. This

equation can be numerically integrated for the

purpose of simulation. Solutions T (t) are

known as constant thermodynamic speed an-

nealing schedules. Time-dependent phase re-

lations < E(T ) > that result from these solu-

tions are termed annealing curves.

2 Annealing as an Optimiza-

tion Heuristic

Annealing is often cited as a useful heuristic for

global optimization problems [9, 10, 11]. Expe-

rience has shown that this claim is a bit zeal-

ous. In practice, annealing is a poor choice

for problems readily solved by standard opti-

mization tools, but is useful when the search

space is huge, little is known about the prob-

lem structure, or the cost function is noisy with

signi�cant variance [12, 13, 14, 15, 16, 17]. The

heuristic is constructed as follows:

(Annealing Heuristic)

a. A value x in the problem domain D is iden-

ti�ed with the microstate of a �ctitious

material. A set of N values fxg in D

are identi�ed with the microstate ensem-

ble fug � X .

b. The cost function F (x) : x 2 D is identi-

�ed with the (�ctitious) energy function,

E(u) : u 2 X (
).

c. A small perturbation of u (from u to u0) is

analogous to a small perturbation in the

value of x (to x0).

d. A change in some u may e�ect a change

in its energy. The transition of u from

some energy value E(u) = �m to some

neighboring energy E(u0) = �n is identi-

�ed with a change on the cost surface from

F (x) = fm to F (x0) = fn.

e. The reduction of an initial set of values in

the problem domain D to a distribution of

(nearly) global minima is identi�ed with

the cooling of material from some initial

temperature T0 to some �nal temperature

Tf .

The term most often applied to this heuris-

tic is \simulated annealing" (SA). However, it

is evident from item e above that \simulated

cooling" might be a more accurate description.

A literal interpretation leads to the following

algorithm:

(Algorithm 1)

1. Initial stage:

a. Initialize N values x 2 D to form an

ensemble for �ctitious material 
.

b. Estimate initial temperature T0.

c. Equilibrate fug at T0 by repeated ap-

plication of the transition probabil-

ities � until �E(T ) approaches some

steady state.

2. Cooling stage:

a. Directly adjust T (according to some

schedule) in a generally decreasing

trend until some stopping criteria are

met; e.g., �E(
) or some F (x) is suf-

�ciently low.

b. At each increment of T , equilibrate fug

as in 1c. As T is reduced, the prob-

ability of any x making an \uphill"

move in cost is also reduced.

In practice, formulating an optimization

problem for annealing is easy but achieving sat-

isfying results can be hard. The following two

subsections discuss important di�erences be-

tween physical and simulated annealing along

with implementation issues. A survey of im-

plementations is presented in section 3.

2.1 Issues and Observations

Physical annealing is an inherently paral-

lel process. In real materials about 1023



atoms or molecules make asynchronous energy

transistions in the range of every 10�12 to

10�9 seconds. Consequently, SA is inherently

parallel|albeit on a smaller scale. Historically,

SA algorithms have been serialized to accomo-

date limitations in computer architectures.

At the core of the annealing heuristic is the

mapping of individual energy transitions to

perturbations in the values of state variables

(annealing heuristic, item d). A change in the

value of any particular x might e�ect a small or

a large change in the value of F (x). This will

depend upon the choice of discretization and

coordinate systems in a grid structured prob-

lem, or the choice of neighborhood regions in

an a�ne or graph structured problem. Such

choices are termed move classes. If a move

class is chosen so that local variances are (al-

most) everywhere large in comparison with the

overall variance of F (x), then the performance

of the SA implementation will be extremely

poor.

Two useful strategies for selecting a move

class [18] are:

� at each time step, the movement of the

ensemble as a whole should yield a char-

acteristic value for j�Ej, and

� these ensemble \moves" should be well

separated, but within a standard devia-

tion of �E.

Thus, the investigator should strive for a move

class that yields

�(T ) > j�Ej � T (9)

for (at least) readily observable samples of D.

If the size of the search space is exceed-

ingly large, it might be tempting to expand

the neighbor-to-neighbor step length to include

moves to 2, 3, . . . up to L coordinate (or graph)

points away from the current state. The mo-

tivation here is to shorten the number of steps

required to traverse a diameter of D. A typi-

cal implementation utilizing this approach se-

lects moves from point j in both a probabilis-

tic direction and a probabilistic fraction of step

length L. Doing so increases connectivity and

thus increases the dimension of the problem.

At some step length, the dimensionality will

approach the problem size. Expanding the step

length to include all points in the search space

is equivalent to random search.

The struggle to �nd an e�ective move class

can be challenging. The surface of F (x) un-

der any of choice of move class must be largely

unknown|otherwise the optimization problem

would be (nearly) solved! Nonetheless, it is

desirable to construct a move class such that

the global cost surface resembles more a set of

rolling hills, mountains, and valleys than the

characteristic function of a Cantor set. Soft-

ware tools to assist with the construction of

cost functions and move classes would be of

great use to researchers.

In SA, a cooling schedule refers to the in-

cremental alteration of T in step 2a of Algo-

rithm 1. Cooling too fast will result in the fxg

being trapped in local minima, while cooling

too slow can be a waste of valuable compu-

tational resources and production time. Sev-

eral advances in the formulation of cooling

schedules for SA have been made in recent

years [8, 19, 20]. Cooling schedules are dis-

cussed in the context of implementations in

section 3.

2.2 Di�erences between Physical

and Simulated Annealing

In SA, the investigator starts with a relatively

small set of known or randomly sampled points

in the domain. This di�ers signi�cantly from

physical annealing. For example, in the appli-

cation of annealing to the production of glass

lenses, the manufacturer can obtain a sup-

ply of raw silica which is equilibrated at some

low temperature. In contrast, a random sam-

ple of points (microstates) for the optimiza-

tion problem corresponds to in�nite temper-

ature in statistical mechanics. Consequently,

trial values for T0 are often estimated (or pur-

posefully set [21]) too low. Such conditions

can result in wild oscillations in temperature

or non-equilibration in step 1c of Algorithm 1.



This is sometimes termed \the warmup prob-

lem" [18].

A second major di�erence is that there is

only one way to control temperature in SA: di-

rect manipulation of the temperature param-

eter. In physical annealing, temperature can

be controlled by applying a variety of energy

sources or sinks.

In optimization problems, it is not always

the case that #E � #
. A 
oating-point im-

plementation will of course discretize the prob-

lem on a �ne scale (about O(1015) for double

precision). Coarser scales can be obtained by

modifying the cost function to \bin" energy

values. Alternately, the move class can be tai-

lored to select discrete values in the domain

and thus \bin" energies in what may be non-

uniform energy slices.

A �nal di�erence worth noting is that the

number of microstates in any simulated en-

semble will be very small in comparison to

the theoretical number in real materials. This

means that assumptions used in the derivation

of annealing theory [6] may be invalid for sta-

tistically insigni�cant samples of the problem

domain. Thus, it is important in any imple-

mentation of SA to (a) choose large enough N

and (b) achieve a good distribution of values in

step 1c of Algorithm 1 before proceeding with

step 2.

3 Implementations

3.1 Monte-Carlo SA

The early days of computational SA [22] fol-

lowed two decades of computational Monte-

Carlo methods based on similar constructs [23,

24]. The capability of computing resources was

minimal. Consequently, early algorithms were

simpli�ed and resembled Monte-Carlo trials.

Calculations were often performed in batch

runs as follows:

(Algorithm 2)

1. Initial set-up (manual):

a. Select N initial values fxg.

b. Select or guess initial and �nal temper-

atures T0 and Tf .

c. Select temperature de
ator � such that

Tf = �MT0 in M steps.

2. Monte-Carlo runs. For each x:

a. T = T0 ; Write x, F (x).

b. Do t = 1, M

� compute T := �T .

� Do d = 1, #neighbors(x)

{ perturb the value of x to

some neighborhood value

x0 with probability �j i.

{ write x, F (x).

c. Store the output of each run in separate

�les.

3. Post-processing.

a. Examine the output of all runs to de-

termine what minima (if any) were

found.

b. Examine the output of each run to de-

termine what distributions of ener-

gies were achieved.

c. Utilize the output of b to formulate

better estimates of T0 and Tf in fu-

ture runs on same or similiar prob-

lems.

The capabilities of computing technology

have advanced several orders of magnitude

since the early days of SA. However, the ba-

sic form of this algorithm is still widely used.

It has proven most e�ective in repetitive time-

critical applications [25] and where background

post-processing can be utilized to compute bet-

ter initial values or static cooling schedules for

future production runs [21].

3.2 Fixed-schedule SA

Algorithm 2 uses a �xed geometric cooling

schedule in step 2b. Geometric [11], linear [26],

and other �xed schedules are pervasive in the

SA literature. The best application of a �xed



schedule is when an annealing schedule T (t) de-

rived from thermodynamic principles is known

a priori . In absence of this, any other �xed

schedule should be treated with extreme cau-

tion [18]. As in the annealing of real materials,

the wrong schedule can lead to poor results.

3.3 Ensemble-based SA

To implement Algorithm 1 e�ectively, an en-

semble size N should be selected which is ap-

propriate for both the problem under study

and the available computing resources [27, 7].

To estimate optimal N , the investigator can

make pre-production runs of Algorithm 1 and

store (among other things) the minimum en-

ergy seen up to time step t. The result will

be an estimate of the \Very Best So Far En-

ergy" distribution V BSFE(t;N). Plotting

< V BSFE(t;N) > vs. N should reveal an

N̂ (or range of N values) which minimizes

< V BSFE(t;N) > [16].

Once N is determined, a set of initial values

can be selected, either at random or by execut-

ing the move class N
K � 1 times on K known

values. If the initial values are known a priori,

then T0 might also be known. If not, then T0
is either unknown or in�nite and in either case

a �nite value must be computed.

Intuitively, one would like to �nd T0 = Tcrit
which is \just hot enough" [28, 26]. The phys-

ical interpretation is that at high temperature

the system will have a small relaxation time.

As White [18] pointed out, this condition is

�2(T0)

T 2
0

= c(T0) � 1 (10)

The ratio �(T0)
T0

� 0:01 is a common trial value.

Equilibration at �xed T means that succes-

sive application of the move class to the en-

semble with probability � causes little or no

change in mean energy �E(T ). However, the

implemented ensemble size will invariably be

a small sample of the problem space. Thus,

implementors should expect signi�cant 
uc-

tuatons in �2(T0) unless great care has been

taken to broadly sample the problem domain.

A novice implementation may nonetheless en-

counter 
oating point exceptions. Using a cu-

mulative distribution for �(T0) over the �rst

d = #neighbors time steps will avoid both

anomalies.

Once T0 has been established, the implemen-

tation can proceed with step 2 of Algorithm 1.

If the cooling schedule is known, then the en-

semble is cooled according to this schedule. If

instead the cooling curve �E(T ) is known, the

ensemble is equilibrated from T0 to min(T ) in

increments �T (t) � �2 �E(t). In both cases,

prior investigation(s) of the problem must be

performed.

Initially, little is known about a problem

with the possible exception of values discov-

ered during the construction of a move class.

These might help with the determination of T0
and B(T ) at high temperature, but not much

else. The investigator now needs an adaptive

method which can cool with optimal speed.

To do so, equation 8 can be implemented ei-

ther by adaptively constructing Bij(T ) to es-

timate �(T ), or by using the \heat capacity"

method [16] :

(Heat Capacity method for step 2,

Algorithm 1)

� t = 0

� �E0; �̂E0 = �E(T0)

� �0 = �(T0)

� while annealing do

{ t := t+ 1

{ �̂Et = �Et�1 � � � �t�1

{ Tt = Tt�1 + ( �̂Et �
�̂Et�1)

T 2

t�1

�2
t�1

{ move ensemble with probability �

and equilibrate at Tt

{ compute �Et; �t

The algorithm owes its name to the appear-

ance of T 2=�2 = c in the temperature update

step. This algorithm uses target mean energy

values �̂Et to implicitly estimate changes in T



in characteristic time �(T ). The constant cool-

ing speed � should be set to a modest percent-

age value. If equation 9 has been observed

in the construction of the move class, then

� =< � �E(T ) > = < �(T ) > will su�ce. Equi-

libration at Tt can be estimated by repetitive

application of the move class with probability

� until �Et behaves more or less asymptotically,

or by repetitive application for d steps, where

d � O(dimension(
)).

The question of when to stop annealing

seems obvious enough to those with harsh time

constraints. There are however penalties for

annealing too long . The �rst penalty is re-

lated to the limited dynamics and size of the

simulated ensemble. Some microstates will in-

evitably become trapped in \valleys" of less-

optimal solutions and upwardly bias �E and

thus T . This will in turn slow progress towards

better solutions. As progress slows, it is best

to abandon states above a threshold (e.g., �E)

and generate new states from the remaining

set [16]. The second penalty is wasting time in

the noise region of the system [13]. Once T is

low enough that j� �E(T )j � T � \noise of the

system" the simulation should be terminated.

3.4 Other Adaptive Schedules

Schedules similar in form to

dT

dt
= �

T

�(T )
p
c(T )

(equation 8) have been discussed elsewhere in

the literature. A method for cooling in con-

stant energy slices was �rst developed at UC

Berkeley [15] and later published in Numerical

Recipies [10]. Kirkpatrick argued that dT=dt

should somehow vary inversely to heat capac-

ity [22] which has led others to ponder heuris-

tics for incorporating heat capacity into adap-

tive schedules [21]. Ingber [12] has a freely

available software package based on Gaussian

probability distributions.

3.5 Parallel SA

We take the point of view that all algorithms

are parallel until proven otherwise. The tech-

niques of \porting a serial program to a parallel

system" or \parallelizing an application pro-

gram" are often mis-used as a starting point

for the initial implementation of a parallel pro-

gram. These methods are really only viable

when the cost of re-writing a program is high

in comparison with engineering a \port". Im-

plementing a parallel version of an applica-

tion directly from the underlying mathematics

or system-level design is far more e�ective in

producing e�cient code than \porting" a pro-

gram [29].

Fixed-schedule SA is embarrassingly parallel

and hence no communication between paral-

lel tasks is required. It is easily implemented

on SIMD, MIMD, and Vector-Parallel2 (VP)

architectures. Adaptive SA methods may re-

quire communication of values for a few reduc-

tion calculations. However, these can be per-

formed asynchronously and thus the computa-

tion should rarely wait on communication. In

the case of �E and �, a global sum of energies

can be requested to produce �E on every pro-

cessor, then a global sum of partial deviates

can be requested to likewise produce �.

SA algorithms will vectorize e�ciently when

individual vectors are used to store individual

microstate data; e.g., vectors for E, previous
�E, etc. Most modern RISC processors now

support pipeline vector-like processing. Taking

this approach is therefore bene�cial to imple-

mentations running on both architectures.

Two levels of parallelism exist when im-

plementing for MIMD architectures (including

networks of workstations). At the gross system

level there is the parallelism of multiple pro-

cessors. At the processor level there is (or may

be) vector or pipeline computation units. Thus

the implementation is faced with the meta-

optimization problem that seeks the optimal

number of processors and states per processor

which balances interprocessor communication

time, memory per processor, processor speed,

processor vector e�ciency, and any I/O or de-

vice dependent operations. See Foster [29] for

details on parallel program design.

2see [29] for a taxonomy



\Task Farming" is a parallel programming

paradigm in which one processor serves as

a master of task allocations and communica-

tions, while the other processors serve as com-

putational slaves. Due to the high degree

of parallelism in SA, this approach is a poor

match. Rather than wait in linear time for re-

duction calculations, a strict SPMD implemen-

tation will wait at most in logarithmic time for

global sums and then perform any remaining

operations (such as a divide for �E) in parallel.

When creating data structures for use on

symmetric multiprocessors (shared memory

parallel architectures) the implementor should

be careful to pre-allocate memory in a con-

tiguious fashion, then provide some simple

memory management scheme to use the pre-

allocated memory as necessary. In particu-

lar, any linked-list structure should be pre-

allocated at compile time as a �nite-length ar-

ray. The application can then build a linked

list on top of the array with the added bene�t

of knowing when memory resources have been

exhausted. This will avoid distributed memory

fragmentations, a phenomena which can limit

parallel speedup to O(2) processors.
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