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Résumé :

Ce papier compare les méthodes heuristiques les plus efficaces pour le problème de l’affectation quadrati-
que. Ces méthodes sont connues sous les noms de recherche tabou stricte, recherche tabou robuste,
recherche tabou réactive et algorithme génétique hybride. Il est montré que l’efficacité de ces méthodes
dépend fortement du type de problème traité et qu’aucune ne surpasse toutes les autres. Une technique
rapide pour affiner les paramètres des mémoires à court terme des recherches tabou est proposée et sa vali-
dité est vérifiée expérimentalement sur des recherches de longue durée. Un nouveau type de problème
d’affectation quadratique, survenant dans la conception de trames de gris pour images de synthèse, est pro-
posé et il est montré comment les méthodes itératives existantes peuvent être adaptées et améliorées pour
ce problème spécifique. Finalement, la manière usuelle d’implanter une approximation d’une recherche
tabou stricte est discutée et de meilleures approximations sont proposées.

Mots clés : Affectation quadratique, recherche tabou, algorithmes génétiques.



COMPARISON OF ITERATIVE

SEARCHES FOR THE QUADRATIC

ASSIGNMENT PROBLEM

Éric D. Taillard*

Abstract :

This paper compares some of the most efficient heuristic methods for the quadratic assignment problem.
These methods are known as strict taboo search, robust taboo search, reactive taboo search and genetic
hybrids. It is shown that the efficiency of these methods strongly depends on the problem type and that no
one method is better than all the others. A fast method for tuning the short term memory parameters of taboo
searches is proposed and its validity is experimentally verified on long searches. A new type of quadratic
assignment problem occurring in the design of grey patterns is proposed and it is shown how to adapt and
improve the existing iterative searches for this specific problem. Finally, the usual way of implementing
approximations of strict taboo search is discussed and better approximations are proposed.

Key words : Quadratic assignment problem, taboo search, genetic algorithms.

1.INTRODUCTION

In location science, many practical problems (see among others Burkard (1984, 1991),

Burkard and Offermann (1985), Eiselt and Laporte (1991), Elshafei (1977), Finke et al.

(1987), Laporte and Mercure (1988), Nugent et al. (1968), Steinberg (1961)) may be

formulated as quadratic assignment problems (QAP). As this problem is NP-hard (Sahni

and Gonzalez, 1976) and can be optimally solved for very small instances only, many

heuristic methods have been developed. The problem may be stated as follows : n units

have to be assigned to n different locations ; knowing that a flow of value aij has to go

from unit i to unit j and that the distance between the locations r and s is brs, we want to

find an assignment of the units to the locations that minimizes the sum of the products

flow × distance. Mathematically, the problem can be stated as :

where A = (aij) and B = (brs) are two n × n matrices, P(n) is the set of all permutations of

{1, …, n} and πi gives the location of unit i in permutation π ∈ P(n).
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This paper compares some of the most efficient heuristic methods. We focus here on

methods that are able to find pseudo-optimal solutions of various practical problems in a

reasonable amount of computation time. We mean by “ pseudo-optimal solutions ” solu-

tions that we conjecture to be optimal, but for which the optimality is not proven. Indeed,

exact procedures require computation times that are much higher than those needed by

efficient heuristic methods (we are speaking of factors as large as 104 to 105 for a problem

of size 20, see, e. g. Clausen and Perregård, 1994). Therefore, it is almost certain that a

best known solution, repeatedly found (more than 30 times) with efficient heuristic

methods, is an optimal one ; as the optimality is not proven, we introduce the term of

pseudo-optimal solutions. The heuristic methods studied in this paper are not formally

compared in the literature and since, in general, their performances strongly depend on

the type of problem considered, the reader cannot easily determine which method is more

appropriate for his application.

The methods we have chosen to consider in this paper are known as Reactive tabu

search (Re-TS), due to Battiti and Tecchiolli (1994), Genetic Hybrids (GH), due to

Fleurent and Ferland (1993), and Robust taboo search (Ro-TS), due to Taillard (1991),

and are sketched in Section 2. We also consider approximations of the most elementary

taboo search, corresponding to the very basic idea of taboo search principles as proposed

by Glover (1989). We call Strict taboo search (S-TS) a method that simply forbids the

repetition of already visited configurations.

In order to explain the differences in the efficiency of these methods when applied to

various problems, we present and analyze the particularities of some of the problems

commonly used in the literature in Section 3. Then, in Section 4 we compare the methods

presented in Section 2 when applied to the problems of Section 3. In Section 5, we make

a synthesis of the remarks made in the previous sections and we propose some improve-

ments of the methods ; in particular, without restricting ourselves to the QAP, we show

how to improve a usual way of implementing approximations of S-TS. Finally, on a new

application of QAP to image synthesis, we illustrate how it is possible to adapt and speed

up by a huge factor (i. e. several hundreds) the general methods described in this paper.

2.EFFICIENT ITERATIVE SEARCHES FOR THE QAP

We are not going to present all the existing heuristic methods for the QAP but only a

selection of the most efficient ones. All of these methods are governed by taboo search

principles and are presented in chronological order. Let us quote that the authors of these

methods have reported all the best known solutions of classical problems (Skorin-Kapov

(1990 and 1994), Taillard (1991)). Among other iterative searches we do not consider in
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this section, let us quote the works of Chakrapani and Skorin-Kapov (1993), Voß (1993),

Skorin-Kapov (1994) and Kelly et al. (1994).

2.1. Robust taboo search (Ro-TS), Taillard (1991)

Robust taboo search is certainly not the best one, but it is the simplest to implement

among the methods presented in this section, since a procedure of less than two pages is

sufficient to programme it. We briefly recall the basic principles of this local search

method.

Let π be a current solution and N(π) the set of all the permutations that can be obtained

by exchanging two different elements of π : N(π) = {µ | µk = πk ∀ k ∉ {r, s}, µr = πs,

µs = πr, 1 ≤ r < s ≤ n}. N(π) is called the set of neighbour solutions of π. Let ∆(π, r, s) be

the cost of exchanging units r and s located at πr and πs. It can be shown that :

Moreover, if µ is the solution obtained by exchanging units r and s in the solution π, it

is possible to compute the value ∆(µ, u, v) faster by using the fact that, for

{u, v} ∩ {r, s} = ∅ we have :

Very generally, a local search can be formulated as follows :

a) Choose an initial solution π0 ; set k := 0 ;

b) While a stopping criterion is not satisfied, repeat :

c) Choose a solution πk + 1∈ N(πk)

k := k + 1

For the QAP, with the formulæ (1) and (2), it is possible to compute the values of all

the solutions contained in N(πk) (k ≠ 1) in O(n2) time. In Ro-TS, a random permutation is

chosen as initial solution π0. At iteration k, the choice of πk + 1, the next visited solution,

is the best solution of N(πk) that is allowed, even if πk + 1 is worse than πk, the current solu-

tion at iteration k. To be allowed, a solution must satisfy the following conditions (where

t and u are two parameters) :

∆ π r s, ,( ) arr bπsπs
bπrπr

–( ) ars bπsπr
bπrπs

–( )+ +=
asr bπrπs

bπsπr
–( ) ass bπrπr

bπsπs
–( )+ +

(akr bπkπs
bπkπr

–( ) aks bπkπr
bπkπs

–( )+ +
k 1 k r s,≠,=

n

∑
ark bπsπk

bπrπk
–( ) ask bπrπk

bπsπk
–( ) )+

(1)

∆ µ u v, ,( ) ∆ π u v, ,( ) aru arv asv+ asu––( )+ bµsµu
bµsµv

– bµrµv
bµrµu

–+( ) +=
aur avr avs+ aus––( ) bµuµs

bµvµs
– bµvµr

bµuµr
–+( )

(2)
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• If k > t and , ,  (i. e. if the number k of iterations performed
is greater than t and the element i has never been at location r during the last t
iterations), then the permutations of N(πk) that do not place i at location r are
forbidden.

• If  such that ,  and if ,  (i. e. during the
last u iterations, a solution had unit i placed at location r and unit j placed at loca-
tion s), then it is forbidden to place both i at location r and j at location s again
(unless this modification improves the quality of the best solution found so far).

The aim of parameters t and u is to prevent the algorithm from always visiting the same

solutions. In Taillard (1991), it is shown that modifying u randomly during the search by

choosing its value 10% around n, leads to a method that is fairly robust. The parameter t

must be larger than |N(π)| ; practically, values between 2n2 and 5n2 are perfectly conven-

ient. It is clear that these values for t and u may be bad for some problems, but, in general,

they produce acceptable results.

The effect of t is to diversify the search by imposing given solutions, even if their

values are very high. So, this mechanism can be viewed as a long term memory.

Conversely, the mechanism associated with u can be viewed as a short term memory.

2.2. The reactive tabu search (Re-TS), Battiti and Tecchiolli (1994)

As the reactive tabu search is also based on taboo search techniques, its working prin-

ciple is the same. The initial solution is also chosen randomly, however, the diversification

mechanism is different from the one used in Ro-TS : if given solutions are often visited,

then several units are moved randomly and the other data structures are cleared.

The short term memory is also implemented with the forbidding of solutions, but the

choice of the parameter u is different : if the search returns to a solution already visited,

then the value of u is increased ; conversely, if the value of u is not changed during many

iterations, then u is decreased. Naturally, many parameters regulate the mechanisms of

reaction and diversification ; Battiti and Tecchiolli give standard values for these param-

eters, but we think that other values might be better for some types of problems.

For our numerical experiments, we have re-implemented a version of Re-TS ; this

version is slightly different from the one of Battiti and Tecchiolli. It was not possible to

use the code programmed by these authors because it was unable to solve asymmetrical

problems and was coded in a programming language different from the one we have used

to code the other methods. However, comparisons between our code and the one of Battiti

and Tecchiolli have shown that the quality of the solutions produced by both codes are

more or less similar.

πr
v

i≠ v∀ k t– v k≤ ≤

v v k u–≥,∃ πr
v

i= πs
v

j= πr
k

i≠ πs
k

j≠
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2.3. Strict taboo search (S-TS), Battiti and Tecchiolli (1994)

Strict taboo search corresponds to the most basic taboo search where all the solutions

of N(πk) that have been visited up to iteration k are forbidden. This method is easy to

describe but hard to implement since all the visited solutions have to be recorded and all

candidate solutions have to be compared to the recorded ones. This can be done efficiently

using hashing techniques but the memory needed to store the visited solutions grows line-

arly with the number of iterations performed.

Battiti and Tecchiolli (1994) have implemented a S-TS in an efficient way (in O(n2)

time per iteration) and have shown that S-TS requires less iterations than Re-TS to find

pseudo-optimal solutions of random problems but the computation time may be higher. In

the following, we will consider an approximation of S-TS and not a true S-TS : instead of

storing each solution, an approximation of S-TS consists in computing a hashing function

h : P(n) → Z for each solution visited and to consider that a solution π ∈ N(πk) has been

visited if , where u is a parameter. As many different solu-

tions may have the same hashing value, this method is an approximation of S-TS.

In order to be able to test in O(1) time whether a value has been computed or not, (if

this test cannot be done in O(1) time the complexity of one step of TS is increased), a

vector v must be stored. The component k of this vector indicates whether the value k of

the hashing function has already been computed or not. In practice, the length of v must

be limited to a given length L (typically 104 ≤ L ≤ 106). Then, the computation of the func-

tion h must be done modulo L. Several functions may be defined : Woodruff and Zemel

(1993) propose h1(π) = z·π mod L (where z is a vector of pseudo-random integers). In the

remainder, we test other hashing functions : h2(π) = ∑i i3πi mod L and h3(π) = (objective

function value of π) mod L. This last hashing function was also used by Battiti and

Tecchiolli in their implementation of Re-TS (with L set to infinity ; for our implementa-

tion of Re-TS, we have used L = 200 000).

2.4. Genetic Hybrids (GH), Fleurent and Ferland (1994)

The basic ideas of genetic algorithms are the following (for more details see, among

others, Davis (1987) and Holland (1976)) : at each step of the search, we have a popula-

tion of solutions, that is to say a set of feasible solutions of the problem. One step consists

in selecting two solutions of the population, the parents, and to mix these solution with a

crossover operator in order to create a new solution, the child. Then, the child is randomly

modified by a mutation operator and inserted in the population. Finally, the size of the new

population is possibly decreased by a culling operator. There exist standard ways of

i, k u i≤– k≤ h π( ),∃ h πi
( )=
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implementing selecting and culling operators. The crossover and mutation operators are

the most difficult to define. For the QAP, the crossover operator used by Fleurent and

Ferland (1994) is the one proposed by Tate and Smith (1995) in a “ pure ” genetic algo-

rithm, and may be sketched as follows :

a) If an object is assigned to the same location for both parents, it remains at the
same location for the child ;

b)Unassigned sites are scanned from left to right. For an unassigned site, an object
is picked at random among those that occupied that site in the parent. Once an
object is assigned, it is no longer considered in future random choices.

c) The remaining objects are assigned at random to the unassigned sites.

The mutation operator used in GH consists in applying few steps of Ro-TS to the child

and to return to the best solution found during this search. There are several parameters in

GH that need to be set and for some of them the way to do this is left open by the authors.

For the numerical experiments of Section 4, we have chosen two parameter settings. For

problems of small size (up to n = 50, first variant of the algorithm), we limit the size of

the population to 2n and for larger problems (second variant) we limit the size of the popu-

lation to 100 and the total number of Ro-TS iterations to 1000n. The reasons for limiting

the population size to 100 are first that the authors of GH propose this population size and

second that having a larger population (or larger than 2n for problems with n ≤ 50) does

not improve the performance of the algorithm. More precisely, the parameter settings we

have chosen are the following :

• The initial population is obtained by choosing random permutations that are
passed through the mutation operator.

• The size of the population is 2n (or 100 for the second variant).

• The ith worst solution of the population has a probability 2i/p(p + 1) of being
selected (where p is the current size of the population).

• The mutation operator performs 4n iterations of Ro-TS.

• the culling operator eliminates the two worst solutions of the population every
two steps.

• The stopping criterion is met when all the solutions of the current population have
the same value or when a pseudo-optimal solution is found (or when the proce-
dure has performed a total number of 1000n iterations of Ro-TS for the second
variant).

Note that, for the first variant, it is possible that the process takes long to stop. Proba-

bilistically, it can be shown that the process always stops. In practice, we have never

observed extremely long runs (see e. g. Tables 2 and 3).
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3.PROBLEMS

We will see that the efficiency of the methods presented above very strongly depends

on the type of problem being solved. Hence, an excellent method for a given problem type

may be inefficient for another type. Moreover, very few authors compare their method

with other ones on many different problem types. This is what has motivated us to present

the characteristics of a representative sample of problems coming from the literature

before comparing the various methods on this sample. Most of the problems presented in

this section may be found in the QAPLIB library of Burkard et al. (1991).

3.1. Random and uniform distances and flows.

The problems considered in this paragraph are randomly generated from a uniform

distribution. Very often, the bounds between which the distances and flows are generated

are 0 and 99. This type of problem has been widely used : Roucairol (1987) has proposed

4 small problems of size n = 10, 12, 15 and 20 ; Taillard (1991) has proposed a set of 18

problems of size 5 to 100 that have been used by Battiti and Tecchiolli (1994) and Fleurent

and Ferland (1994) to measure the performances of their algorithms. From now on, we

will denote these problems by Tainna, where nn is the size of the problem considered.

Among the problems considered in this section, this type of problem is certainly the

most difficult to solve optimally. Indeed, in Taillard (1991) we succeeded in solving

pseudo-optimally the problems of size less or equal to 35, but it would be very hazardous

to consider that the optimum of the problems of larger size have been found.

Though these problems are very difficult to solve (pseudo-) optimally (see e. g. Tail-

lard, 1991), they are generally well handled by iterative searches, in the sense that all these

methods find solutions 1 or 2 per cent above the pseudo-optimum in a short computation

time. This paradox — it is difficult to find the optimum but simple to find a good

solution — may be explained by the fact that the different local optima are very slightly

correlated (see the entropy measure in § 3.4) but that their evaluation is contained between

tight bounds ; this is the direct consequence of a result obtained by Burkard and Fincke

(1985) who have shown that, with a probability tending to 1, the relative difference

between the best and the worst solution of this type of problems tends to 0 when the

problem size tends to infinity.

These problems have been widely used in the literature because they are almost the

only ones that have not been solved pseudo-optimally. However, even if they are not opti-

mally solved and if it is still possible to glean minute improvements, we think that these

problems are not interesting : all the recent heuristics find good solutions and the fact of
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having improved one of the best known solutions does not constitute a proof of the effi-

ciency of a method.

3.2. Random flows on grids

The problems considered in this paragraph are generated as follows : a rectangular

tiling constituted of n1 × n2 squares of unit size is considered. A location is one of these

squares and the distance between two squares is the Manhattan distance between them

(i. e. the distance between two squares located at (i, j) and (r, s) (Cartesian coordinates) is

|i – r| + |j – s|). The flows are randomly generated, but not necessarily uniformly.

These problems have the particularity of being symmetrical and hence to have multiple

of 4 (n1 ≠ n2) or 8 (n1 = n2) different optimal solutions. The problems of Nugent, Voll-

mann and Ruml (1968) (Nugnn), Skorin-Kapov (1990) (Skonn) and Wilhelm and Ward

(1987) are of this type. Pseudo-optimal solutions of this family of problem may be found

up to a size of 64.

3.3. Real-life problems

We have grouped in this paragraph isolate problems arising from practical

applications ; we are not going to make a complete list of real-life application of the quad-

ratic assignment problem, but we only present the instances of problems that are often

used in the literature. Moreover, we introduce a new type of problem occurring in the field

of image synthesis.

a) Steinberg’s problem (1961)

There are three versions of this problem whose goal is to minimize the length of

connections between units that have to be placed on a rectangular grid : the first version

has a distance matrix corresponding to Manhattan distances, the second the square of

Euclidean distances and the third Euclidean distances. The flow matrix (thrice the same)

gives the number of connections to make between the units. The size of the problem is

n = 9 × 4 = 36. They are denoted Ste36a, Ste36b, Ste36c and they are solved pseudo-

optimally.

b) Elshafei’s problem (1977)

This problem has been created to find the sites on which the various units of a hospital

have to be placed. The placement of the units has to minimize the total distance daily

performed by the users of the hospital. The distance matrix corresponds to the Euclidean

distances between the sites (with a penalty when the sites are not located on the same

floor) and the flow matrix corresponds to the displacement intensity of the users. The size

of the problem is n = 19. It is denoted Els19 and it is solved optimally.
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c) Burkard and Offermann’s problems (1977)
The goal of this problem type is to find out what would be, in theory, the best typewriter

keyboards for various languages and for mechanical or electrical machines. The distance

matrix corresponds to the time between the typing of two keys (the time depends on the

fact that the machine is an electrical or a mechanical one) and the flow matrix contains the

frequencies of appearance of two letters in a given language. As four different languages

and two typewriters are considered, there are 8 problems of this type. The size of the prob-

lems is n = 26. They are denoted Bur26a, …, Bur26h and they are solved pseudo-

optimally.

d) Density of grey
In order to print a grey of density of m/n, a technique consists of generating a rectan-

gular grid containing n = n1 × n2 square cases with m black cases and n – m white cases.

By juxtaposing many of these grids, one gets a grey surface of density m/n. To get the

finest frame, the black (or white) cases have to be spread as regularly as possible on the

grid. To present this problem as a QAP, we can consider m electrons that have to be put

on the cases. The placement must be done in such a way that the sum of the intensities of

the electrical repulsion forces is minimized.

In the problems we are going to treat, we have considered the forces frstu

(r, t = 1, …, n1, s, u = 1, …, n2) between the two cases i and j located at the coordinates

(r, s) and (t, u) :

To get a grey density of m/n, the QAP with the following matrices can be solved :

, .

The ith component (i ≤ m) of a solution π,  gives the location where

a black case has to be placed in the grid.

The problems of this type are relatively simple, but some methods may be trapped by

the fact that many solutions with the same objective value exist : exchanging two black

(or two white) cases or performing a symmetry, rotation or shifting of the cases does not

change the value of the solutions. These problems are denoted greyn1_n2_m and are

solved pseudo-optimally for n1 = n2 = 8. They constitute a new application of QAP that

has not yet been presented to our knowledge. By choosing other definitions of distances

and by varying the choices of n1, n2 and m it is possible to create many different problems.

frstu max
v w, 1 0,– 1{ , }∈

1

r t– n1v+( ) 2
s u– n2w+( ) 2

+
-----------------------------------------------------------------------------=

aij

1 if i m≤ and j m≤

0 otherwise



= bij bn2 r 1–( ) s+ n2 t 1–( ) u+ frstu= =

πi πn2 r 1–( ) s+=
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3.4. Characteristics of real-life problems

Real-life problems are very different from randomly generated ones as those presented

in §3.1 and §3.2. The first remark that can be made is that the flows matrices have a large

number of zero components and the remaining ones are clearly not uniformly distributed.

In Figure 1, we give, for the problems of Steinberg, Elshafei and Burkard and Offermann

(for German language) the distribution of the values (normalized between 0 and 1)

encountered in the flow matrices.

The second remark that can be done pertains to the structure of local optima. We say

that a solution is a local optimum if it is not possible to improve the quality of this solution

by exchanging the location of two units only. It turns out that real-life problems have some

structure that can be found by examining local optima. In other words, the permutations

corresponding to local optima privilege given locations for given units. This may be

measured by the entropy of a set of permutations, as defined by Fleurent and

Ferland (1994) : Let m be the number of solutions considered and nij the number of times

that the unit i is located on site j in the m solutions. Let us define the values

The entropy E of the m solutions is given by :

So, a set of identical solutions (permutations) has an entropy of E = 0 and a set of solu-

tions uniformly distributed in the set of permutations of n elements has an entropy tending

to 1 when m grows to infinity.

Empirically, to show that real-life problems have more structure than uniformly gener-

ated ones, we consider the local optima that are obtained from 10 000 random solutions

to the Elshafei’s problem. The initial solutions have an entropy E = 0.9996 and the local

optima have an entropy E = 0.8. For uniformly generated problems like those of §3.1, the

entropy of local optima is E = 0.97 for n = 19 and E = 0.996 for n = 50.

To illustrate this more intuitively, we give, in Figure 2, as a function of k, the propor-

tion of solutions having k units placed at the same location. We see that this proportion

decreases very fast when the solutions are drawn from a uniformly distributed

population ; the decrease is slower when the permutations are drawn from local optima of

random problems and that a relatively high proportion of local optima of the Elshafei’s

vij

0 if nij 0=
n– ij

m
---------

nij

m
------log otherwhise




=

E

vij
j 1=

n

∑
i 1=

n

∑
n nlog

------------------------=



Iterative searches for the QAP 11

problem differ by few units. Let us quote that 1/50 of the local optima of Elshafei’s

problem are global optima ; when starting with initial solutions such that 3 given units are

placed where they are located in a global optimum and placing randomly the other ones,

we have observed that about one half of the local optima were global optima. This means

that, when some information on the locations of few units is known, this problem becomes

very easy.

3.5. Non-uniform, random problems

The size of real-life problems is relatively small (except for the problems presented in

§ 3.3d) ; it is therefore difficult to compare the methods on an “ interesting ” type of prob-

lems over various sizes — we have seen that the random problems used in the literature

are not really interesting. So, we have tried to construct problems having about the same

characteristics as those of real-life problems. These problems are randomly generated, but

not uniformly : the distance matrix corresponds to the Euclidean distance between n

points of the plane. The locations of these points are generated by calling as many times

as needed the following procedure :

• Choose Θ randomly, uniformly between 0 and 2π.

• Choose R randomly, uniformly between 0 and M.

• Choose N randomly, uniformly between 1 and K

• Repeat N times :

Choose θ randomly, uniformly between 0 and 2π.

Choose r randomly, uniformly between 0 and m.

The Euclidean coordinates of the next generated point are :
(R cos Θ + r cos θ, R sin Θ + r sin θ)

Where M, K and m are parameters that allows to generate various problems types :

(0, 1, m) generates the points uniformly in a circle of radius m ; (1000, 20, 10) generates

clusters of 1 to 20 points that are uniformly distributed in a circle of radius 1000, the

points in the clusters being distributed in a circle of radius 10.

The matrix of flows is also randomly generated but not uniformly. Let X be a random

variable uniformly distributed between 0 and 1 ; the flow aij between units i and j is given

by : aij = 10((B – A)X + A) where A and B are parameters such that A < B and B > 0 ; these

parameters allow to generate various densities of flows : A = –10 and B = 5 generates a

matrix containing about 2/3 of zero entries and flows having a maximal value of 105, that

is to say something near to what is observed for the Elshafei’s problem. These problems

are denoted Tainnb and the instances we have generated are solved pseudo-optimally for

n ≤ 50.
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4.COMPARISON OF THE METHODS

4.1. Direct comparison based on published results

The first analysis that can be done is to look at the numerical experiments done by the

authors of the methods. First, Battiti and Tecchiolli (1994) show that S-TS and Re-TS find

the pseudo-optimal solutions of Tainna problems in less iterations than Ro-TS (when

n ≤ 25). Fleurent and Ferland (1994) show that GH finds better solutions than Ro-TS on

Skonn problems ; more precisely, for problem Sko100a, repeating 1000 times short Ro-

TS (4n iterations) is worse than performing one long Ro-TS (4000n iterations) which

itself is worse than a GH that calls 1000 times a mutation operator that performs 4n iter-

ations of Ro-TS. Considering the best solutions found, let us mention that the authors of

GH have slightly improved one solution (Sko81) of the set Sko42, …, Sko90, regarding

to the values found by Ro-TS.

Finally, Ro-TS, Re-TS and GH may be directly compared on the base of the best solu-

tions they have found on problems Tai40a, …, Tai100a ; in Table 1, we give the values

published by the authors of these methods, as well as the best known solution value of

these problems. The best known solutions of problems Tai40a and Tai100a has been

communicated to us by Roberto Battiti (october 13. 1994) and we have found the best

known solutions of Tai60a and Tai80a during the computational experiments performed

for the present paper.

For this type of problems, Re-TS is the best method, even if GH has found a solution

better than the other methods for Tai50a. Looking at this table, it could be thought that GH

is better than Ro-TS, but as we will see (tables 2 and 4), this is not true (at least for

“ short ” searches that perform less than 1000n iterations). As the authors of Re-TS give

results on QAP for Tainna problems only, it is not possible to directly compare the

methods on other problems.

Problem Ro-TS Re-TS GH
Best

known

Tai40a 3146541 3141702 3141702 3139370
Tai50a 4951186 4948508 4941410 4941410
Tai60a 7272020 7228214 7254564 7208572
Tai80a 13582038 13558710 13574084 13557864

Tai100a 21245778 21160946 21235482 21125314
Table 1 : Best solutions founds by the authors of Ro-TS, Re-TS

and GH on Tainna problems.
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4.2. Comparison of approximations of S-TS and Ro-TS

In this paragraph, we compare Ro-TS and the approximations of S-TS with hashing

functions h2 and h3 (c. f. §2.3). Here, we only consider short term comparisons ; longer

term comparisons are done in § 4.3. To make these short term comparisons, we proceed

as follows : the initial solutions given to the various methods are the best known solutions

to which m random exchanges of two units are performed. After 2n iterations, if a process

has not found the best known solution again, we consider that it is lost. In Figures 3 to 5,

we give, as a function of m, the supplementary (regarding to Ro-TS, and possibly nega-

tive) proportion of searches that have found the best known solution. We give these

proportions for the approximations of S-TS with the hashing functions h2 and h3 and for

a simple local search that stops at the first local optimum found (steepest descent).

Figure 3 gives these proportions for the problem Tai50a ; we see that both approxima-

tions of S-TS are much better than Ro-TS since, for S-TS, the number of searches

refinding the best known solution may be almost 40% higher than for Ro-TS. There is

almost no difference between the approximations with h2 or h3 ; the descent method is

much less efficient than Ro-TS.

Figure 4 gives these proportions for the problem Nug20 ; the situation is completely

different : the approximation of S-TS with h2 produces much better results than the

approximation with h3 which is not clearly better than Ro-TS (the descent method is still

worse than Ro-TS). This can be explained by the fact that the optimum of this problem

has a value of 2570 ; consequently, h3 can not take a large number of different values.

Therefore many unvisited solutions are forbidden in the approximation of S-TS with h3.

Figure 5 gives these proportions averaged for the problems Bur26a, …, Bur26h. For

these problems, the approximation of S-TS with h3 produces slightly better results than

Ro-TS and the approximation with h2 is worse than Ro-TS (once again, the descent

method is the worst). This can be explained by the fact that these problems have many

local optima with the same value. Consequently, when the search falls into a local

optimum, h3 prevents it from visiting all the other local optima with the same value while

h2 allows it to visit a large number of different local optima with the same value.

4.3. Comparison of Ro-TS, approximations of S-TS, Re-TS and GH on
various problems

In order to compare these methods, we have programmed Re-TS and GH. Therefore,

the computational results given in this paragraph also constitute a verification of the

performances announced by their authors. The first version of GH we consider is the one
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with a population of size 2n that stops when all the solutions of the population have the

same value or when a pseudo-optimal solution is found.

For the approximations of S-TS, we have considered a vector of length L = 200 000

that records the values computed by the hashing functions and we forbid during 10 000

iterations to visit a solution whose hashing value has already been computed. All the taboo

searches are stopped when they have performed the same number of iterations as the

average number of iterations performed by the Ro-TS procedure included in GH. The

speed difference between all the taboo searches is negligible. As the time spent by GH out

of the Ro-TS procedure is also negligible, the computation times for all methods may be

considered as identical.

In Tables 2 and 3, we compare Ro-TS, Re- TS, the approximations of S-TS with h2 and

h3 and GH. In these tables, we give :

a) the problem considered,

b) the proportion of GH searches that have found the pseudo-optimum,

c) the number of iterations performed by the taboo searches,

d) the mean number of Ro-TS iterations performed in the mutation operator of GH
when this algorithm does not find the pseudo-optimal solution,

e) the relative performances of these methods measured in per cent above the
pseudo-optimum value.

In Table 2, we compare these methods when applied to the randomly generated prob-

lems Nugnn, Sko42 and Tainna. In this table, we see that the GH method produces very

good solutions for the problems Nugnn and Skonn ; moreover, the number of successful

searches is very high. The approximations of S-TS are the worst methods for this type of

problems ; the approximation with h3 is very bad because of the low values of the solu-

tions. For uniform random problems, we see that the conclusions are reversed : the best

Problem
Number
 found
(GH)

Number
of

iterations

Nr. of iter.,
optimum
not found

Ro-TS
S-TS
(h2)

S-TS
(h3)

Re-TS GH

Nug20 50/50 2’512 — 0.037 0.037 2.604 0.003 0
Nug30 18/30 21’872 35’160 0.026 0.148 2.182 0.030 0.026
Sko42 28/30 45’271 78’120 0.013 0.180 1.719 0.018 0.005
Tai20a 8/30 13’043 16’124 0.235 0.265 0.343 0.312 0.350
Tai25a 4/30 28’913 30’562 0.304 0.222 0.245 0.247 0.428
Tai30a 9/30 46’864 51’691 0.326 0.187 0.184 0.186 0.265
Tai35a 5/30 82’264 85’814 0.546 0.259 0.227 0.310 0.431

Table 2 : Comparison of the methods on random problems.
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methods are the approximations of S-TS, followed by Re-TS ; Ro-TS and GH are the

worst methods for these problems (notice that the performances of Ro-TS can be notably

improved by increasing the value of parameter t from 3n2 (used in Tables 2, 3 and 4) to a

higher value).

Without taking into account the approximation of S-TS with h3, we can say that all the

problems of this table are very well solved, since all the solutions found are, on average,

less than 1% above the best known solution. It is interesting to observe that these results

are very similar to those observed in Figures 3 and 4. So, the method described in § 4.2

for fast tuning of the short term memory parameters seems to be valid.

In Table 3, we give the same statistics for real-life problems and we see that the situa-

tion is totally different : for this type of problems GH is the best method since it finds

pseudo-optimal solutions in most cases and the average solutions found are less than

0.05% above the best known solutions — so, real-life problems seem to be easier than

those of Table 2 — ; the second best method is Ro-TS (with two exceptions), followed by

Re-TS ; finally, the approximations of S-TS are clearly not adapted for this type of

problem (the approximation with h3 for grey problems excepted, since this approximation

prevents from performing useless modifications of the solutions). In this table, when

many problems of the same type and size exist, we give average values.

For real-life problems, we see that the diversification of the search is very important

because many poor local optima exist and the approximations of S-TS, that do not have

such a mechanism, are frequently trapped in these local optima. For the smallest problems

(Els19, Tai20b), the diversification mechanisms of Ro-TS and Re-TS did not have time

Problem
Number
 found
(GH)

Number
of

iterations

Nr. of iter.,
optimum
not found

Ro-TS
S-TS
(h2)

S-TS
(h3)

Re-TS GH

Bur26a-h 737/800 7734 23028 0.035 0.370 0.260 0.560 0.004
Ste36a-c 76/90 36626 76298 0.053 4.908 6.205 0.817 0.023

Grey8_8_13 30/30 3892 — 0.439 0.703 0 0.335 0
Els19 99/100 2166 7144 9.177 24.739 24.436 7.836 0.042

Tai20b 29/30 3675 9280 0.540 16.770 16.947 3.919 0.015
Tai25b 30/30 9473 — 0.011 17.008 17.509 1.021 0
Tai30b 30/30 22048 — 0.307 12.514 12.512 1.101 0
Tai40b 30/30 31595 — 0.744 10.268 10.377 1.330 0
Tai50b 20/30 124867 163080 0.228 6.213 6.221 0.409 0.026

Table 3 : Comparison of the methods on real-life problems and real-life like problems.
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enough to fully produce their effects. To our knowledge, the best method for solving the

problem Els19 is to repeat descent methods : with this algorithm an optimal solution is

found in about 1000 iterations on average (while GH needs more than two times this

number of iterations).

Our explanation of the performances of GH is that this method succeeds in finding out

and exploiting the structure (if there is any) of the problems. As purely random problems

have no structure, it works poorly on these problems, conversely, as real-life problems are

more structured, it works very well on these problems ; more precisely, GH works well

on problems for which the local optima entropy is low. If GH seems to be the most reliable

method, it cannot be recommended for all cases since its running time is very high (this

is the reason why we do not treat larger problems in Tables 2 and 3).

In Table 4, we compare the same methods on larger problems, but with another version

of GH : the size of the population is fixed to 100 and the number of calls of the mutation

operator (performing 4n steps of Ro-TS) is limited to 250. For the taboo searches, the

number of iterations is limited to 1000n. Again, the computation times of the various

methods can be considered as equivalent. In this table, we give the results in per cent

above the best known solution. Again, the results are averaged when several problems of

the same size and type are solved.

Problem Ro-TS
S-TS
(h2)

S-TS
(h3)

Re-TS GH
Best known

value

Tai50a 1.104 0.985 0.795 0.952 1.352 4941410
Tai60a 1.278 0.918 0.696 0.859 1.340 7208572
Tai80a 0.961 0.718 0.432 0.569 1.106 13557864

Tai100a 0.823 0.690 0.295 0.387 1.139 21125314
Sko49 0.096 0.063 1.394 0.068 0.120 23386
Sko56 0.090 0.408 1.614 0.145 0.181 34458
Sko64 0.063 1.548 1.548 0.125 0.174 48498
Sko72 0.181 0.248 1.459 0.110 0.200 66256
Sko81 0.088 0.247 1.446 0.110 0.250 90998
Sko90 0.179 0.216 1.552 0.164 0.314 115534

Sko100a-f 0.162 0.323 1.406 0.141 0.264 150252.7
Tai50b 0.439 7.567 7.689 0.731 0.224 458821517
Tai60b 0.899 9.297 9.298 0.366 0.115 608215054
Tai80b 1.004 5.192 5.205 1.800 0.597 818415043

Tai100b 0.968 6.042 6.045 1.490 0.241 1185996137
Tai150b 1.904 2.903 2.909 0.807 0.941 499348972

Table 4 : Comparison of the methods on larger problems.
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We see that the best method for uniform random problems (Tainna) is the approxima-

tion of S-TS with h3 (while this method is the worst for the remaining problems) and the

worst is GH ; for the problems of Skorin-Kapov (Skonn), the best method seems to be Re-

TS, followed by Ro-TS (in Table 3, we have seen that GH was the best method for this

type of problems ; this means that GH needs long computation times to be competitive) ;

for real-life like problems (Tainnb), the best method is GH and both approximations of S-

TS are very bad since they produce solutions from 3 to 9 per cent above the best known

solutions.

5.SYNTHESIS

In Section 4, we have seen that the efficiency of a method strongly depends on the type

of problem treated. No single method is better than all the others for all the problems.

Consequently, it is necessary to adapt the method, or to use the appropriate method for the

specific problem type that is to be solved. The approximation of S-TS seems to be the best

for uniform random problems ; GH seems to be very robust (especially for real-life prob-

lems) but is not competitive on uniform random problems ; moreover, GH requires a very

long computation time. Therefore, if good solutions are needed in a short amount of time,

we suggest to use Ro-TS, Re-TS or even multiple steepest descents that start from various

initial solutions. In this section, we will discuss some slight modifications that might

improve the methods studied in this paper. It is not our aim to discuss modifications that

would radically change the methods, such as the use of other intensification or diversifi-

cation mechanisms.

The first adaptation we have tried is to modify the GH algorithm in such a way that it

produces better results on random problems. The first idea consists in changing the muta-

tion operator that uses Ro-TS by another one, better adapted to this type of problems, for

example an approximation of S-TS. Unfortunately, S-TS provides better results than Ro-

TS after an extensive computational effort and the performance of GH may be only

slightly improved by using a better mutation operator. We think that the simplest way of

improving the methods studied is to tune their various parameters. As this is fastidious and

does not present a great interest for this paper, we do not give any results in this regard.

First, we show how it is possible to speed-up and to notably improve all these methods

for the problem of generating grey patterns by considering its specificities. We then

present a way to improve the approximations of S-TS by using multiple hashing

functions.
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5.1. An efficient taboo search for grey densities

The problems of grey densities are well solved with the approximation of S-TS with

h3 (cost of the solution) because this approximation does not allow the permutation of two

black or two white cases. So, for this problem, the neighbourhood must be restricted to

the exchange of one of the first m units (black) with one of the last n – m units (white).

Therefore, the neighbourhood size decreases from O(n2) time to O(m(n – m)) time. More-

over, the computation of the value of a solution in the neighbourhood can be done faster

because the flow matrix contains 0 and 1 entries only. The simplified formulæ giving the

value of exchanging two units (see equations (1) and (2), §2.1) become :

and

For this type of problems, we have adapted Ro-TS, making these simplifications. The

resulting method, for the problem Grey8_8_13, needs 13 times less iterations than the

original GH algorithm to find the best known solution ; moreover, one iteration, for this

problem, takes 23 times less computation time ; this means that the resulting speed-up has

a value of more than 300. This allows to treat much larger problems. In Figure 6, we give

four frames we have found to create greys of densities 11/256, 30/256, 43/256 and 98/256

as well as the frames usually used (see Ulichney (1987)) for the same densities. The

reader can judge the difference of quality of both frames.

The computation of a complete chart of 256 greys takes some hours on a personal

work-station. Nowadays, problems of this size cannot be treated by general methods for

QAP.

5.2. Improving the approximations of S-TS

A very easy way of implementing an approximation of S-TS is to use an integer vector

v, |v| = L, whose component i indicates the last iteration at which the value i of a hashing

function has been computed. Doing like this, it is possible to efficiently test the taboo

status of a solution (i. e. a solution with a hashing value i is forbidden if vi is larger than

the current iteration number minus u, a parameter). The solutions visited are not stored,

so, the memory used does not depend on the number of iterations performed and the

implementation of the method is very simple. Naturally, the search is not a true S-TS any

more, but an approximation of S-TS.

A good hashing function should uniformly distribute the solutions over the interval

[0, L[. A usual measure of the quality of a hashing function h is given by the probability

∆ π r s, ,( ) 2 bπkπs
bπkπr

–
k 1=

m

∑⋅= (3)

∆ µ u v, ,( ) ∆ π u v, ,( ) 2 bµsµu
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– bµrµv
bµrµu
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of collision, defined as P{h(x) = h(y)}, where x ≠ y. This probability must be as low as

possible, 1/L ideally. However, we think that this measure is not appropriate in the case of

the approximations of S-TS. Instead of this measure, we propose to consider the statistical

expectation of the number of solutions that have to be generated before having a solution

with a hashing value already computed. If one has a perfect hashing function, the proba-

bility p(i) of generating a solution whose value is identical to one of the i – 1 preceding

solutions is (each of the i – 1 preceding solutions is supposed to have a different hashing

value) :

The new measure EL we propose to introduce is given by : .

Figure 7 represents EL as a function of L and the empirical expectation of the number

of permutations that can be randomly generated before finding one having the same value

of h1 or h2. For h1, the random numbers zi were chosen between –106 and 106. We see

that both functions are almost ideal when n ≥ 30 ; for smaller n, it is better to choose h1.

EL can be roughly approximated by  (some theoretical values are : ,

, ). So, even if the probability of collision is 10–6 for L = 106,

(in practice this corresponds to a large vector), an approximation of S-TS applied to a

problem of size n = 100 forbids about 5 solutions in mean at the first iteration while the

exact S-TS forbids only one solution. Moreover, this proportion grows very fast with the

number of iterations performed. Consequently, the choice of a unique hashing function,

even an ideal one, leads to very rough approximations of S-TS.

The method we propose for improving the ratio of the expectation of the number of

solutions generated before generating a solution with the same hashing value over the

memory required is to use q different hashing functions h1, …, hq (therefore q vectors vk,

k = 1, …, q of size L) ; in the approximation of S-TS, a solution π is considered to be

visited if the q values of the vectors v1(h1(π)), …, vq(hq(π)) indicate that h1(π), …, hq(π)

have all been computed once already.

We give in Figure 8, as a function of q, the expected value EqL of the number of solu-

tions that have to be generated before finding q hashing values already computed ; we give

these expectations for various total memory sizes qL. We see that these curves grow very

fast with q, then they decrease slowly. In practice, 3 ≤ q ≤ 6 provides good results, consid-

ering the memory used and the computation times of the hashing functions. With n = 30
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and hashing functions of type h2, we have observed results in accordance with the theo-

retical curves of Figure 8.

Empirically, the best efficiency of Eq*L (q* being the best q for a total memory size qL)

grows in O((q*L)0.87) (the power has been evaluated by interpolation). This is to compare

with the O(L1/2) when q is set to 1. Consequently, this technique allows to render an

approximation of S-TS more precise in the sense that collisions are less frequent.

6.CONCLUSIONS

To conclude, we wish to make some remarks that might help the reader to design a

local search type method adapted for the special problem he wants to solve. Indeed, we

have seen that none of the methods studied here is better than all the others for every type

of problem. Even the most elementary TS may be better, for some specific problems, than

more sophisticated methods.

First, the designer must observe the data of the problem in order to discover its partic-

ularities, he has to see whether the local search method is likely to be trapped in bad local

optima. We have illustrated this with the (simple) example of designing grey patterns ; the

particularities of this problem are easy to find but without taking them into account, it is

not possible to create a good chart of 256 grey levels.

Second, if many approaches are possible for the short term direction of the search, we

have seen that it is possible to almost surely determine the best one by examining the

proportion of searches that succeed in refinding a good solution when this solution,

slightly modified, is provided as initial solution to the search. If, for the problem consid-

ered, it is not efficient to perform multiple steepest descents that start with randomly

generated solutions, then we have seen that a method like Ro-TS is extremely simple to

implement (moreover the code of this procedure is public) and reasonably reliable.

Then, if the quality of the results provided by Ro-TS is not good enough, we suggest

to implement a method like GH. Indeed, using a population of size 2n and a mutation

operator that performs 4n iterations of a Ro-TS, the mean solutions produced by GH have

a value less than 1% above the best known solution for all the problems considered in this

paper. However, the reader must be aware that GH requires a great computational effort

since its initialization takes a time proportional to n4. Therefore, its complete execution

may not be in accordance with a rapidity criterion.

Finally, let us say that an approximation of S-TS seems to be easy to implement and

efficient for problems that are not really structured. For such problems, Re-TS is also an

efficient method, but it is harder to implement. The approximation of S-TS can be

improved by using many hashing functions at the same time.
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In the future, we think that the designers of new local search methods should pay atten-

tion to the use of informations that may be gathered during the search. Indeed, one can

consider that the methods studied in this paper waste informations they could use : Ro-TS

does not exploit informations on the solutions visited and stores only one information for

each move performed ; although S-TS stores all the solutions visited, this method does not

exploit these informations : it even makes no use of their quality ; a similar remark might

be made for Re-TS ; only GH gathers informations, via a population of solutions, but it

stores only one solution every 4n iterations.
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Figure 1 :Distributions of the flows for various real-life problems.
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Figure 3 :Proportion of searches, regarding to Ro-TS, refinding a good solution to Tai50a.
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Figure 4 :Proportion of searches, regarding to Ro-TS, refinding a good solution to Nug20.
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Figure 5 :Proportion of searches, regarding to Ro-TS, refinding goods solutions to Bur26a-h.

Figure 6 :Greys frames of densities 11/256, 30/256, 43/256 and 98/256 obtained by solving quad-
ratic assignment problems (left) and usually used frames (right).
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Figure 7 :Empirical and theoretical expectation EL as a function of L.
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