
Heuristics for cardinality constrained portfolio optimisation

T.-J. Chang1

N. Meade1

J.E. Beasley1

Y.M. Sharaiha2

May 1998

Revised February 1999

{t.j.chang, n.meade, j.beasley}@ic.ac.uk

yazid@ms.com

1The Management School 2Morgan Stanley Dean Witter

Imperial College Quantitative Strategies

London SW7 2AZ 25 Cabot Square, Canary Wharf

England London E14 4QA, England



ABSTRACT

In this paper we consider the problem of finding the efficient frontier associated

with the standard mean-variance portfolio optimisation model. We extend the standard

model to include cardinality constraints that limit a portfolio to have a specified number of

assets, and to impose limits on the proportion of the portfolio held in a given asset (if any

of the asset is held). We illustrate the differences that arise in the shape of this efficient

frontier when such constraints are present.

We present three heuristic algorithms based upon genetic algorithms, tabu search

and simulated annealing for finding the cardinality constrained efficient frontier.

Computational results are presented for five data sets involving up to 225 assets.

Keywords: portfolio optimisation, efficient frontier
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1. INTRODUCTION

Each of the larger fund management companies in the UK/US are responsible for

the investment of several billion pounds/dollars. This money is invested on behalf of

pension funds, unit trusts (mutual funds) and other institutions. The selection of an

appropriate portfolio of assets in which to invest is an essential component of fund

management. Although a large proportion of portfolio selection decisions are taken on a

qualitative basis, quantitative approaches to selection are becoming more widely adopted.

Markowitz [34,35] set up a quantitative framework for the selection of a portfolio.

In this framework it is assumed that asset returns follow a multivariate normal distribution.

This means that the return on a portfolio of assets can be completely described by the

expected return and the variance (risk). For a particular universe of assets, the set of

portfolios of assets that offer the minimum risk for a given level of return form the

efficient frontier. The portfolios on the efficient frontier can be found by quadratic

programming (QP). The strengths of this approach are that QP solvers are available and

efficient in terms of computing time. The solutions are optimal and the selection process

can be constrained by practical considerations which can be written as linear constraints.

The weaknesses are of two kinds:

(1) the underlying assumption of multivariate normality is not sustainable (see, for

example, Mills [37]). The distribution of individual asset returns tends to exhibit a

higher probability of extreme values than is consistent with normality (statistically

this is known as leptokurtosis). This departure from multivariate normality means

that distribution moments higher than the first two moments (expected return and

variance) need to be considered to fully describe portfolio behaviour.

(2) integer constraints that limit a portfolio to have a specified number of assets, or to

impose limits on the proportion of the portfolio held in a given asset (if any of the

asset is held) cannot easily be applied. Constraints of this type are of practical

significance.

This paper examines the use of three standard heuristic methods in portfolio selection. The
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methods considered are genetic algorithms, tabu search and simulated annealing. The

attraction of these approaches is that they are effectively independent of the objective

function adopted. This means that the Markowitz quadratic objective function can

potentially be replaced in the light of the first set of weaknesses identified above. In

addition, the imposition of integer constraints is straightforward.

In this paper the heuristics that we have developed are described and their

performance compared with that of QP for the construction of the unconstrained efficient

frontier (UEF). This approach allows the closeness of the heuristic solutions to optimality

to be measured. The performance of the heuristic methods in constructing the efficient

frontier in the presence of a constraint fixing the number of assets in the selected portfolio

is demonstrated. This frontier is called the cardinality constrained efficient frontier

(CCEF).
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2. FORMULATION

In this section we formulate the cardinality constrained mean-variance portfolio

optimisation problem. We first formulate the unconstrained portfolio optimisation problem

and illustrate how to calculate the efficient frontier. We then comment on the approaches

presented in the literature that have used a different objective function. Finally we

formulate the cardinality constrained problem.

2.1 Unconstrained problem

Let:

N be the number of assets available

µi be the expected return of asset i (i=1,...,N)

σij be the covariance between assets i and j (i=1,...,N; j=1,...,N)

R* be the desired expected return

Then the decision variables are:

wi the proportion (0≤wi≤1) held of asset i (i=1,...,N)

and using the standard Markowitz mean-variance approach [14,15,34,35,42] we have that

the unconstrained portfolio optimisation problem is:

minimise wiwjσij (1)

subject to

wiµi = R* (2)

wi = 1 (3)

0 ≤ wi ≤ 1 i=1,...,N (4)

Equation (1) minimises the total variance (risk) associated with the portfolio whilst

equation (2) ensures that the portfolio has an expected return of R*. Equation (3) ensures

that the proportions add to one.

This formulation (equations (1)-(4)) is a simple nonlinear (quadratic) programming

problem for which computationally effective algorithms exist so there is (in practice) little

difficulty in calculating the optimal solution for any particular data set.
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Note here that the above formulation (equations (1)-(4)) can be expressed in terms

of the correlation ρij between assets i and j (-1≤ρij≤+1) and the standard deviations si, sj in

returns for these assets since σij=ρijsisj.

2.2 Efficient frontier

By resolving the above QP (equations (1)-(4)) for varying values of R* we can

trace out the efficient frontier, a smooth non-decreasing curve that gives the best possible

tradeoff of risk against return, i.e. the curve represents the set of Pareto-optimal

(non-dominated) portfolios. Throughout this paper we refer this curve as the unconstrained

efficient frontier (UEF). One such UEF is shown in Figure 1 for assets drawn from the

UK FTSE market index.

For the unconstrained case it is standard practice to trace out the efficient frontier

by introducing a weighting parameter λ (0≤λ≤1) and considering:

minimise λ[ wiwjσij] - (1-λ)[ wiµi] (5)

subject to

wi = 1 (6)

0 ≤ wi ≤ 1 i=1,...,N (7)

In equation (5) the case λ=0 represents maximise expected return (irrespective of the risk

involved) and the optimal solution will involve just the single asset with the highest

return. In equation (5) the case λ=1 represents minimise risk (irrespective of the return

involved) and the optimal solution will typically involve a number of assets. Values of λ

satisfying 0<λ<1 represent an explicit tradeoff between risk and return, generating

solutions between the two extremes λ=0 and λ=1.

As before, by resolving this QP (equations (5)-(7)) for varying values of λ, we can

trace out the efficient frontier. To see that this is so consider a particular value of λ, e.g.

λ=0.25. Then the objective (equation (5)), which we wish to minimise, becomes

0.25[risk]-0.75[return]. Considering Figure 1, which shows the efficient frontier as plotted

by considering varying values of R*, we could plot a series of "iso-profit" lines
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0.25[risk]-0.75[return]=Z and choose the minimum value of Z. Rearranging, these

iso-profit lines are [return]=(1/3)[risk]-(4/3)Z, i.e. lines of slope (1/3) and intercept on the

y-axis of -(4/3)Z. Minimising Z therefore corresponds to choosing amongst these iso-profit

lines of fixed slope so as to maximise the intercept on the y-axis. It is clear that this can

be achieved at the (unique) point where the iso-profit line of slope (1/3) is a tangent to the

efficient frontier.

Hence, by varying λ (varying the slope of the iso-profit lines) and solving

equations (5)-(7) we can trace out exactly the same efficient frontier curve as we would

obtain by solving equations (1)-(4) for varying values of R*.

2.3 Other objectives

Departures from the standard Markowitz mean-variance approach presented above

include the following considerations:

(a) whether variance is considered to be an adequate measure of the risk associated

with the portfolio or not; and

(b) including transaction costs associated with changing from a current portfolio to a

new portfolio.

Konno and Yamazaki [30] proposed that the mean absolute deviation (MAD) of portfolio

returns from average (measured over a specified time period) be taken as the risk measure.

This allows the portfolio selection problem to be formulated and solved via linear

programming (see also [27]). Simaan [44] contends that the computational savings from

the use of MAD objective functions are outweighed by the loss of information from the

(unused) covariance matrix.

The possible asymmetry of returns is taken into account by Konno, Shirakawa and

Yamazaki [28] who extended the MAD approach to include skewness in the objective

function. Konno and Suzuki [29] considered a mean-variance objective function extended

to include skewness. Negative semi-variance, discussed by Markowitz [35], is one of

several objective functions that consider downside risk only. Feiring, Wong, Poon and
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Chan [16] use lower partial moments (a generalisation of negative semi-variance) as an

objective function.

With regard to transaction costs:

(a) for a single period optimisation, Adcock and Meade [2] suggested a mixed

quadratic and modulus objective function, soluble by QP;

(b) for multi-period optimisation, Mulvey and Vladimirou [39] used stochastic network

programming and Yoshimoto [47] used nonlinear programming.

2.4 Constrained problem

In order to extend our formulation to the cardinality constrained case let:

K be the desired number of assets in the portfolio

εi be the minimum proportion that must be held of asset i (i=1,...,N) if any of asset i

is held

δi be the maximum proportion that can be held of asset i (i=1,...,N) if any of asset i is

held

where we must have 0≤εi≤δi≤1 (i=1,...,N). In practice εi represents a "min-buy" or

"minimum transaction level" for asset i and δi limits the exposure of the portfolio to asset

i. Introducing zero-one decision variables:

zi = 1 if any of asset i (i=1,...,N) is held

= 0 otherwise

the cardinality constrained portfolio optimisation problem is

minimise wiwjσij (8)

subject to

wiµi = R* (9)

wi = 1 (10)

zi = K (11)

εizi ≤ wi ≤ δizi i=1,...,N (12)

zi∈ [0,1] i=1,...,N (13)
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Equation (8) minimises the total variance (risk) associated with the portfolio whilst

equation (9) ensures that the portfolio has an expected return of R*. Equation (10) ensures

that the proportions add to one whilst equation (11) ensures that exactly K assets are held.

Equation (12) ensures that if any of asset i is held (zi=1) its proportion wi must lie

between εi and δi, whilst if none of asset is held (zi=0) its proportion wi is zero. Equation

(13) is the integrality constraint.

The objective function (equation (8)), involving as it does the covariance matrix, is

positive semi-definite [8,9,18,43,46] and hence we are minimising a convex function.

Note here that we have explicitly chosen to formulate this problem with an equality

(rather than an inequality ≤) with respect to the number of assets in the portfolio (equation

(11)). This is because if we can solve the equality constrained case then any situation

involving inequalities (lower or upper limits on the number of assets in the portfolio) can

be easily dealt with. For example if we require:

KL ≤ zi ≤ KU (14)

so that the number of assets in the portfolio lies between KL and KU (KL≠KU) then this

can be dealt with in our formulation of the problem (equations (8)-(13)) by examining all

values of K (equation (11)) between KL and KU, i.e. K=KL,KL+1,...,KU.

Whilst this might seem a cumbersome approach (why be forced to explicitly

examine all values of K between KL and KU, why not simply consider all such values

implicitly in some algorithm?) we feel that this approach has merit. Our reasoning is that,

in practice, the decision as to the number of assets (K) to have in the chosen portfolio is

one that can only be decided by the decision-maker in the light of the tradeoffs between

the three factors (risk, return, K) involved. This involves considering factors that are not

captured in the model, e.g. the decision-makers attitude to risk and the ease of

constructing and maintaining a portfolio involving K assets. Under our approach the

decision-maker will be faced with a different CCEF for each value of K and must

explicitly consider the tradeoffs involved in deciding which portfolio to adopt. An

illustration of this is given in Section 5.5 below.
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2.5 Previous work

There has been relatively little work presented in the literature that relates to the

cardinality constrained portfolio optimisation problem.

Note first that the formulation (equations (8)-(13)) presented above is a

mixed-integer nonlinear (quadratic) programming problem for which, in contrast to the

unconstrained case (equations (1)-(4)), computationally effective algorithms do not exist.

Broadly there are two general approaches that can be followed in tacking this problem:

(a) to solve the problem using the algorithms available for solving mixed-integer

nonlinear programs (e.g.see [10,11,17,23]);

(b) to replace the quadratic Markowitz measure of risk (equation (8)) by a measure of

risk that is a linear function (or equivalently a linearisable function) enabling the

array of algorithms available for mixed-integer linear programming to be used.

2.5.1 Quadratic risk

With regard to the first of these approaches work has been presented by Bienstock

[8,9] and Lee and Mitchell [31].

Bienstock [8,9] considered a similar cardinality constrained portfolio optimisation

problem to that formulated above. He presented a number of valid inequalities (cuts) for

the problem and presented a branch and cut algorithm based on disjunctive cuts.

Computational results were presented for both sequential and parallel implementations of

his algorithm involving up to 3897 assets.

Lee and Mitchell [31] considered a similar cardinality constrained portfolio

optimisation problem to that formulated above. Their approach is based upon an interior

point nonlinear solver using a network of loosely coupled workstations in a distributed

(parallel) environment. They presented computational results for problems involving up to

150 assets. See also Borchers and Mitchell [11].
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2.5.1 Linear risk

With regard to the second of these approaches work has been presented by

Speranza [45], Mansini and Speranza [33], Kellerer, Mansini and Speranza [25], and

Young [48].

Speranza [45] considered a cardinality constrained portfolio optimisation problem,

but with the risk associated with the portfolio being measured by the mean absolute

deviation of the return below average (negative semi-MAD), rather than by variance. She

gave a mixed-integer linear programming formulation together with a heuristic algorithm.

Computational results were presented for problems involving up to 20 assets.

Mansini and Speranza [33] used the same risk measure as in [45] and considered

the problem where the assets must be bought in integer multiples of a certain specified

amount (the "minimum lot"). Three heuristics for the problem, based upon first solving the

linear programming relaxation, were presented and computational results given for two

data sets involving 244 and 277 assets.

Kellerer, Mansini and Speranza [25] used the same risk measure as in [45] and

considered the problem where a fixed cost is incurred if investment in an asset exceeds a

certain limit. They also considered minimum lots (see [33]). Two heuristics for the

problem, based upon first solving the linear programming relaxation, were presented and

computational results given for one data set involving 244 assets.

Young [48] indicated how minimum transaction levels could be incorporated into a

formulation where the risk (as modelled by the minimum historical return on the portfolio)

is limited. No computational results for such problems were presented however.
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2.6 Practical constraints

There are a number of constraints that can be added to our constrained formulation

(equations (8)-(13)) to better reflect practical portfolio optimisation.

(a) Class constraints

Let Γm, m=1,...,M be M sets of assets that are mutually exclusive, i.e. Γi∩Γ j=∅

∀ i≠j. Class constraints limit the proportion of the portfolio that can be invested in assets

in each class. Let Lm be the lower proportion limit and Um be the upper proportion limit

for class m then the class constraints are:

Lm ≤ wi ≤ Um m=1,...,M (15)

Such constraints typically limit the "exposure" of the portfolio to assets with a common

characteristic. For example typical classes might be oil stocks, utility stocks,

telecommunication stocks, etc. The heuristics presented in this paper do not deal with

constraints of this type.

(b) Assets in the portfolio

Assets which must be in the portfolio (at some proportion between εi and δi yet to

be determined) can be accommodated in our formulation simply by setting zi to one for

any such asset i. Although we do not present it below the changes required to our

heuristics to deal with this are trivial.
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3. CONSTRAINED EFFICIENT FRONTIER

One aspect of constrained portfolio optimisation that appears to have received no

attention in the literature is the fact that in the presence of constraints of the type we have

considered above the efficient frontier is markedly different from the UEF. In this section

we illustrate this.

3.1 Cardinality constraints

In order to illustrate the effect of cardinality constraints we consider the small four

asset example problem shown in Table 1 (drawn from the FTSE data set we consider

later). Consider the cardinality constrained problem (equations (8)-(13)) for this data

involving exactly two assets (K=2), where εi=0, δi=1, i=1,2,3,4. By simply enumerating (to

an appropriate number of decimal places) all possible values for the proportions wi we can

construct all feasible combinations of two assets. Figure 2 shows these feasible

combinations, six line segments are shown there (one segment for each pair of assets). For

example the line segment between asset 3 and asset 1 (the top line segment in Figure 2)

represents portfolios composed of these two assets in varying proportions.

Figure 2 represents the universe of possible portfolios composed of some

combination of two assets. Now it is plain that certain of the portfolios shown in Figure 2

are dominated. For example all portfolios on the line segment between asset 4 and asset 1

are dominated (since for any portfolio on that line segment there exists another portfolio

with less risk but greater return). If we eliminate from Figure 2 all portfolios which are

dominated we will be left with the set of efficient portfolios, in other words the efficient

frontier for this cardinality constrained example.

This cardinality constrained efficient frontier is shown in Figure 3. Note that it is a

discontinuous curve, unlike the continuous curve we saw before for the UEF. In other

words, in the presence of cardinality constraints the efficient frontier may become

discontinuous, where the discontinuities imply that there are certain returns which no

rational investor would consider (since there exist portfolios with less risk and greater
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return). Throughout this paper we refer to the cardinality constrained efficient frontier as

the CCEF.

3.2 Weighting

As for the unconstrained case in Section 2.2 above introduce a weighting parameter

λ (0≤λ≤1) and consider:

minimise λ[ wiwjσij] - (1-λ)[ wiµi] (16)

subject to

wi = 1 (17)

zi = K (18)

εizi ≤ wi ≤ δizi i=1,...,N (19)

zi∈ [0,1] i=1,...,N (20)

It would be natural to believe that by varying λ we could use this program (equations

(16)-(20)) to trace out the CCEF in an exactly analogous way as can be done in the

unconstrained case for the UEF. In fact this is not so.

To see why recall that the argument presented in Section 2.2 above relied upon

straight lines tangential to the efficient frontier which maximised their intercept on the

y-axis. Consider the upper part of the middle segment of the discontinuous CCEF shown

in Figure 3. Any straight line tangential to this can obtain a greater intercept on the y-axis

by moving to be tangential to the top segment of the discontinuous CCEF shown in Figure

3.

In other words, even if we were able to solve equations (16)-(20) exactly for as

many values of λ as we wished there will always be portions of the CCEF shown in

Figure 3 that can never be found by such an approach, i.e. they are effectively

(mathematically) invisible to an exact approach based upon weighting.

Figure 4 shows those portions of the CCEF that are invisible to an exact approach

based upon weighting whilst Figure 5 shows those portions of the CCEF that are visible to

an exact approach based upon weighting.
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3.3 Minimum proportion constraints

To illustrate the effect of imposing a nonzero minimum proportion the efficient

frontier for the case where εi=0.24 and δi=1, (i=1,2,3,4) is shown in Figure 6, where that

figure has been plotted explicitly disregarding the cardinality constraint (equation (11)). It

is clear from that figure that again the efficient frontier is discontinuous and has portions

that are invisible to an exact approach based upon weighting. Note here that the εi values

chosen do not implicitly induce a cardinality constraint, so the effects shown in Figure 6

are a direct consequence of the minimum proportion constraints.

3.4 Summary

To summarise this section then we have shown through a small numeric example

that if cardinality constraints and/or minimum proportion constraints are present:

(a) the efficient frontier may be discontinuous;

(b) the efficient frontier may contain portions that are invisible to an exact approach

based upon weighting.
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4. HEURISTIC ALGORITHMS

In this section we outline the three heuristic algorithms based upon genetic

algorithms, tabu search and simulated annealing that we have developed for finding the

CCEF. We also discuss here any application of these techniques to portfolio optimisation

previously reported in the literature.

Note here that all of our heuristics use the weighted formulation (equations (16)-

(20)) presented in Section 3.2 above. We had two reasons for using this weighted

formulation:

(a) even though solving the weighted formulation exactly has the implication that some

portions of the CCEF are invisible (Section 3 above), in a heuristic approach

involving investigating many different solutions it is possible to gain information

about such portions; and

(b) attempting to design a computationally effective heuristic that directly addresses the

non-weighted formulation (equations (8)-(13)) is difficult because of the

requirement that the portfolio expected return is exactly R* (equation (9)).

With respect to the first of these two reasons Figure 7 shows the CCEF, as found by the

heuristics presented below, for the four asset example (K=2) considered previously.

Comparing this figure with Figure 3, which was the exact CCEF as calculated by

enumerating all possible combinations, it is clear that the two curves are effectively

identical. Hence, for this example, our heuristics have found all portions (visible or

invisible) of the CCEF.

With respect to the second of these reasons it might appear that we would be in a

better position to design a heuristic algorithm if the equality constraint relating to return

(equation (9)) were changed to an inequality, i.e. to

wiµi ≥ R* (21)

If this were done then the CCEF (found by parametrically varying R* and eliminating

dominated portfolios) would be precisely as before.

However, our view is that it is the explicit presence of this constraint in the
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problem that is the root cause of algorithmic design problems. Whether the constraint is

present as an equality, or as an inequality, is a secondary issue. Hence we believe that

subsuming the expected return constraint into the objective function via a weighting

approach (as is done in the weighted formulation given in equations (16)-(20)) is a

profitable algorithmic approach.

We note in passing that our heuristics, because they use this weighted formulation,

are equally applicable to the problem when formulated with equation (21) in place of

equation (9).

4.1 Genetic algorithms

A genetic algorithm (GA) can be described as an "intelligent" probabilistic search

algorithm. The theoretical foundations of GAs were originally developed by Holland [24].

GAs are based on the evolutionary process of biological organisms in nature. During the

course of evolution, natural populations evolve according to the principles of natural

selection and "survival of the fittest". Individuals which are more successful in adapting to

their environment will have a better chance of surviving and reproducing, whilst

individuals which are less fit will be eliminated. This means that the genes from the

highly fit individuals will spread to an increasing number of individuals in each successive

generation. The combination of good characteristics from highly adapted parents may

produce even more fit offspring. In this way, species evolve to become increasingly better

adapted to their environment.

A GA simulates these processes by taking an initial population of individuals and

applying genetic operators in each reproduction. In optimisation terms, each individual in

the population is encoded into a string or chromosome which represents a possible solution

to a given problem. The fitness of an individual is evaluated with respect to a given

objective function. Highly fit individuals or solutions are given opportunities to reproduce

by exchanging pieces of their genetic information, in a crossover procedure, with other

highly fit individuals. This produces new "offspring" solutions (i.e. children), which share



16

some characteristics taken from both parents. Mutation is often applied after crossover by

altering some genes in the strings. The offspring can either replace the whole population

(generational approach) or replace less fit individuals (steady-state approach). This

evaluation-selection-reproduction cycle is repeated until a satisfactory solution is found.

The basic steps of a simple GA are shown below.

Generate an initial population
Evaluate fitness of individuals in the population
repeat:

Select parents from the population
Recombine (mate) parents to produce children
Evaluate fitness of the children
Replace some or all of the population by the children

until a satisfactory solution has been found.

A more comprehensive overview of GAs can be found in [4,38,40,41].

Arnone, Loraschi and Tettamanzi [3] presented a GA for the unconstrained

portfolio optimisation problem, but with the risk associated with the portfolio being

measured by downside risk rather than by variance. Computational results were presented

for one problem involving 15 assets.

Loraschi, Tettamanzi, Tomassini and Verda [32] presented a distributed GA for the

unconstrained portfolio optimisation problem based on an island model where a GA is

used with multiple independent subpopulations (each run on a different processor) and

highly-fit individuals occasionally migrate between the subpopulations. Computational

results were presented for one problem involving 53 assets comparing their distributed GA

with the GA presented in [3].

4.2 Genetic algorithm heuristic

In our GA heuristic the chromosome representation of a solution has two distinct

parts, a set Q of K distinct assets and K real numbers si (0≤si≤1) i∈ Q. Now given a set Q

of K assets a fraction εj of the total portfolio is already accounted for and so we

interpret si as relating to the share of the free portfolio proportion (1- εj) associated

with asset i∈ Q.
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Not all possible chromosomes correspond to feasible solutions (because of the

constraint (equation (19)) relating to the limits on the proportion of an asset that can be

held). However, when evaluating each solution the simple procedure shown in pseudocode

in Algorithm 1 was used in order to try and ensure that the evaluated solution was

feasible.

To explain our representation and Algorithm 1 further suppose that we have N=10,

K=2 and εi=0.1 ∀ i. One GA solution might therefore be Q={3,7} and {s3=0.9,s7=0.5}.

This means that assets 3 and 7 are in the portfolio. The free portfolio proportion (1-

εj)=0.8, since we know that each of the two assets must have a proportion in the

portfolio of at least 0.1. Hence we interpret this GA representation of {s3=0.9,s7=0.5} to

mean that the share of the free portfolio proportion devoted to asset 3 is

s3/(s3+s7)=0.9/1.4=0.6429. Hence the proportion w3 associated with asset 3 in the portfolio

is given by 0.1+0.6429(0.8), i.e. the minimum proportion plus the appropriate share of the

free portfolio proportion, hence w3=0.6143. Similarly the proportion w7 associated with

asset 7 is w7=0.1+(s7/(s3+s7))0.8 = 0.1+(0.5/1.4)0.8 = 0.3857. Note that these values for w3

and w7 both satisfy the lower proportion limits and sum to one.

In Algorithm 1 we can automatically ensure that the constraints relating to the

lower limits εi are satisfied in a single algorithmic step. However we need an iterative

procedure to ensure that the constraints relating to the upper limits δi are satisfied. Note

here that Algorithm 1 can be viewed as a heuristic for solving the QP (equations (16)-

(20)) with a given set of K assets. Whilst, obviously, this QP could be solved optimally

this would not lead to a computationally efficient heuristic (examining as we do a large

number of possible solutions).

Note here that the strategy adopted in Algorithm 1, namely to change (if possible)

the GA solution into a feasible solution for the original problem, is a strategy that we have

used, with success, in our previous GA work [7,13].

We used a population size of 100. Parents were chosen by binary tournament

selection which works by forming two pools of individuals, each consisting of two
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individuals drawn from the population randomly. The individuals with the best fitness, one

taken from each of the two tournament pools, are chosen to be parents.

Children in our GA heuristic are generated by uniform crossover. In uniform

crossover two parents have a single child. If an asset i is present in both parents it is

present in the child (with an associated value si randomly chosen from one or other

parent). If an asset i is present in just one parent it has probability 0.5 of being present in

the child. Children are also subject to mutation, multiplying by 0.9 or 1.1 (chosen with

equal probability) the value (εi+si) of a randomly selected asset i. This mutation

corresponds to decreasing or increasing this value by 10%.

We used a steady-state population replacement strategy. With this strategy each

new child is placed in the population as soon as it is generated (replacing a suitably

chosen member of the population). In our GA we choose to replace the member of the

population with the worst objective function value.

Our complete GA heuristic is shown in pseudocode in Algorithm 2.

4.3 Tabu search

Tabu search (TS) is a local search heuristic due to Glover [19] and Hansen [22]. In

TS the fundamental concept is that of a "move", a systematic operator that, given a single

starting solution, generates a number of other possible solutions. In local search terms

these other solutions are the "neighbourhood" of the single starting solution. Note here that

these solutions may, or may not, be feasible. From the neighbourhood the "best" solution

is chosen to become the new starting solution for the next iteration and the process

repeats. This "best" solution may either be the first improving solution encountered as the

move operator enumerates the neighbourhood, or it may be based upon complete

enumeration of the neighbourhood.

In order to prevent cycling a list of "tabu moves" is employed. Typically this list

prohibits certain moves which would lead to the revisiting of a previously encountered

starting solution. This list of tabu moves is updated as the algorithm proceeds so that a
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move just added to the tabu list is removed from the tabu list after a certain number of

iterations (the "tabu tenure") have passed. It is common to allow tabu moves to be made

however if they lead to an improved feasible solution (an "aspiration criteria"). A more

comprehensive overview of TS can be found in [1,20,40].

Glover, Mulvey and Hoyland [21] applied TS to a portfolio optimisation problem

involving rebalancing a portfolio to maintain (over time) a fixed proportion in each asset

category. They used a scenario approach to model possible future asset returns.

Computational results were presented for one example problem.

4.4 Tabu search heuristic

In our TS heuristic we used the same solution representation as in our GA

heuristic, as well as Algorithm 1 in order to try and ensure that the evaluated solution was

feasible.

The procedure first randomly generates 1000 solutions. Each of these solutions

consisted of a set Q of K randomly generated distinct assets. Associated with each asset

i∈ Q was a value si randomly generated from (0,1). Algorithm 1 was then used to evaluate

each of these solutions. The best solution found was used as a starting point.

The move operator corresponds to taking all assets present in the portfolio of K

assets and multiplying their values by 0.9 and 1.1. This means that the number of

neighbours which we need to evaluate is 2K. The tabu list is a matrix of 2N integer values

which indicates for each of the N assets whether a particular move (multiplying by 0.9 or

1.1) is currently tabu or not.

Our complete TS heuristic is shown in pseudocode in Algorithm 3.

4.5 Simulated annealing

Simulated annealing (SA) originated in an algorithm to simulate the cooling of

material in a heat bath [36] but its use for optimisation problems originated with

Kirkpatrick, Gelatt and Vecchi [26] and Cerny [12].
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SA has much in common with TS in that they both examine potential moves from

a single starting solution. SA incorporates a statistical component in that moves to worse

solutions are accepted with a specified probability that decreases over the course of the

algorithm.

This probability is related to what is known as the "temperature". More precisely, a

move that worsens the objective value by ∆ is accepted with a probability proportional to

e-∆/T, where T is the current temperature. The higher the temperature T, the higher the

probability of accepting the move. Hence this probability decreases as the temperature

decreases.

In SA the temperature is reduced over the course of the algorithm according to a

"cooling schedule" which specifies the initial temperature and the rate at which

temperature decreases. A common cooling schedule is to reduce the temperature T by a

constant factor α (0<α<1) using T=αT at regular intervals. A more comprehensive

overview of SA can be found in [1,40].

Note here that, as far as we are aware, there have been no applications of SA to

portfolio optimisation reported in the literature.

4.6 Simulated annealing heuristic

Our SA heuristic is similar to our TS heuristic and can be seen in pseudocode in

Algorithm 4. The initial temperature is derived from the objective value of the initial

starting solution and α is set equal to 0.95. In the computational results reported later we

did 2N iterations at the same temperature.

4.7 Comparison

In order to better compare the GA, TS and SA heuristics presented above Table 2

compares these algorithms with respect to a number of features.
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5. COMPUTATIONAL RESULTS

In this section we present computational results for the three heuristic algorithms

we have presented above for finding the CCEF. Note here that all of the computational

results presented in this section are for our heuristics as coded in FORTRAN and run on a

Silicon Graphics Indigo workstation (R4000, 100MHz, 48MB main memory).

5.1 Test data sets

To test our heuristics we constructed five test data sets by considering the stocks

involved in five different capital market indices drawn from around the world. Specifically

we considered the Hang Seng (Hong Kong), DAX 100 (Germany), FTSE 100 (UK), S&P

100 (USA) and Nikkei 225 (Japan). We used DATASTREAM to obtain weekly price data

from March 1992 to September 1997 for the stocks in these indices. Stocks with missing

values were dropped. We had 291 values for each stock from which to calculate (weekly)

returns and covariances and the size of our five test problems ranged from N=31 (Hang

Seng) to N=225 (Nikkei).

All of the test problems solved in this paper, but with the identity of each stock

disguised, are publically available from OR-Library [5,6], email the message portinfo to

o.rlibrary@ic.ac.uk or see http://mscmga.ms.ic.ac.uk/jeb/orlib/portinfo.html.

5.2 Unconstrained efficient frontier

In order to initially test the effectiveness of our GA, TS and SA heuristics we first

used them to find the UEF. Adopting this approach has the advantage that (as mentioned

in Section 2 above) the UEF can be exactly calculated via QP so our heuristic results can

be compared with benchmark optimal solutions.

The reason for doing this comparison is simply that for the CCEF we have no way

of calculating the exact efficient frontier for problems of the size we are considering, and

hence no way of benchmarking our heuristics against the exact solution. We would

anticipate that, unless our heuristics are able to find the UEF to a reasonable degree of
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accuracy, they are unlikely to be able to find the CCEF.

Note here that no amendments are required to our heuristics to calculate the UEF

(simply set K=N, εi=0 and δi=1 (i=1,...,N)).

5.2.1 UEF calculation

In order to calculate, to a reasonable degree of accuracy, the exact UEF we used

the Numerical Algorithms Group (NAG) library routine E04NAF to solve the QP

(equations (1)-(4)) for a large number of different return (R*, equation (2)) values, taken

between the return value associated with the minimum risk and the return value associated

with the maximum return. In the computational results presented below we took 2000

return (R*) values, hence calculating 2000 distinct points on the continuous exact UEF.

For adjacent points we used linear interpolation to approximate the exact UEF. This use of

linear interpolation is simply a convenient computational device to approximate the

(continuous) UEF from a finite (but reasonably large) number of distinct points on the

UEF.

In order to compare our heuristic results against the exact frontier we:

(a) took the portfolios associated with the values V(λ) as given by our heuristics

(recall here that V(λ) is the best objective function value found for weighting

parameter λ, see Algorithm 1)

(b) computed the percentage deviation of each portfolio from the (linearly interpolated)

exact UEF.

This calculation of the percentage deviation of each portfolio from the (linearly

interpolated) exact UEF is not as trivial as it might at first sight appear and we consider

this below.

5.2.2 Percentage deviation calculation

There are two basic issues:

(a) how we measure the percentage deviation ("distance") of a portfolio from a
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continuous efficient frontier; and

(b) how we quantify this percentage deviation in the case of a linearly interpolated

efficient frontier.

To illustrate the first of these issues consider Figure 8 which shows a continuous efficient

frontier curve and a point (portfolio) located near it. Pictorially it appears that if we look

at the "distance" of this portfolio from the efficient frontier by considering the y value

(return) as fixed the portfolio is some distance from the frontier, as indicated by the

horizontal line connecting the portfolio to the frontier in Figure 8. However if we consider

the x value (risk) as fixed the portfolio is nearer the frontier, as indicated by the vertical

line connecting the portfolio to the frontier in Figure 8.

Given this issue of in which direction do we look "horizontally or vertically?" we

decided to resolve the issue by looking in both directions, calculating (as below) a

percentage deviation in each direction and taking the minimum of these two values as the

percentage deviation error measure associated with a portfolio.

With respect to second issue mentioned above, quantifying the percentage deviation

in the case of a linearly interpolated efficient frontier we, in order to work in

commensurate units, used the portfolio standard deviation (rather than variance) in

computing percentage deviation.

Hence let (xi,yi) be the discrete (x-coordinate:standard deviation,

y-coordinate:return) values on our UEF. For a portfolio with (x*,y*) let j correspond to

yj=min[yi yi≥y*] and k correspond to yk=max[yi yi≤y*] (i.e. yj and yk are the closest y-

coordinates bracketing y*). Simple geometry enables us to say that the value x** associated

with the x-direction linearly interpolated point on the UEF with y=y* (i.e. looking

horizontally) is x**=xk+(xj-xk)[(y
*-yk)/(yj-yk)]. A convenient percentage deviation error

measure for this direction is then 100(x*-x**)/x** (note here that no value is calculated

if either j or k do not exist).

To derive an expression for linear interpolation in the y-direction: let j correspond

to xj=min[xi xi≥x*] and k correspond to xk=may[xi xi≤x*] (i.e. xj and xk are the closest x-
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coordinates bracketing x*). Then y** associated with the y-direction linearly interpolated

point on the UEF with x=x* (i.e. looking vertically) is y**=yk+(yj-yk)[(x
*-xk)/(xj-xk)]. A

convenient percentage deviation error measure for this direction is then 100(y*-y**)/y**

(note here that no value is calculated if either j or k do not exist).

As mentioned above, in the computational results reported later we take as the

percentage deviation error measure for each (x*,y*) the minimum of the x-direction,

y-direction percentage deviations.

5.2.3 Results

With regard to all the computational results reported in this paper we examined 50

different λ values (E=50, Algorithms 2-4). With regard to the number of iterations T* (see

Algorithms 2-4) we used T*=1000N for the GA heuristic, T*=500(N/K) for the TS

heuristic and T*=500 for the SA heuristic. These values mean that (excluding initialisation)

each heuristic evaluates exactly 1000N solutions using Algorithm 1 for each value of λ.

The results for the unconstrained efficient frontier are shown in Table 3. In that

table we show, for each of our five data sets and each of our three heuristics:

(a) the median percentage error

(b) the mean percentage error

(c) the total computer time in seconds.

Note here that all the computer times presented in this paper exclude the time needed to

calculate the error measures.

It is clear from Table 3 that our GA heuristic is best able to approximate the UEF

with an average mean percentage error of 0.0114%, the SA heuristic next best with an

average mean percentage error of 0.4675%, whilst the TS heuristic has an average mean

percentage error of 5.6158%. For the SA heuristic the median error is noticeably smaller

than the mean error, indicating a skewed error distribution with a higher probability of

large errors. For the GA and TS heuristics the median and mean errors indicate a

reasonably symmetric error distribution.
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5.3 Cardinality constrained efficient frontier

With regard to finding the CCEF since, as discussed in Section 3 above, this

frontier has portions which are invisible to an exact algorithm based on the standard λ

weighting scheme we did not feel it appropriate to judge the effectiveness of our heuristics

solely using the portfolios associated with the best solution V(λ) found for each value of

the weighting parameter λ. This contrasts with Section 5.2 above where these portfolios

were appropriate as the UEF can be traced using the standard λ weighting scheme.

Instead we also judge the effectiveness of our heuristics by taking the set H, which

is all the (improved) solutions found during the course of each of our heuristics (see

Algorithms 2-4). In other words, by using the history of solutions found by each of our

heuristics we can gain useful information about those portions of the CCEF that are

invisible to an exact approach based upon the standard λ weighting scheme.

This set H will plainly contain a number (probably a large number) of dominated

solutions. However it is a simple matter to extract from H the subset of (undominated)

efficient solutions using:

(a) let (ri,vi) be the (return,risk) values for solution i∈ H

(b) ∀ i∈ H if there exists j∈ H (j≠i) such that rj≥ri and vj≤vi then delete i from H (i.e. set

H=H-[i]) as i is dominated by j (j has a better return for less risk)

(c) H is now the set of (undominated) efficient solutions.

This procedure can be efficiently implemented by sorting H appropriately.

Once the set H has been processed as above we can obtain an overestimate of the

error associated with our heuristic algorithms by comparing H against the (linearly

interpolated) UEF in exactly the same manner was done in Section 5.2 above.

Note here however that, as all of our algorithms are heuristics, we can provide no

guarantees as to the quality (deviation from the exact CCEF) of any particular portfolio in

the set H. In particular a portfolio in H could be on the exact CCEF or could be

dominated by another portfolio (not in H) which is on the exact CCEF.

The results for our heuristic algorithms with K=10 and εi=0.01, δi=1 (i=1,...,N) are
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shown in Table 4. In that table we show, for each of our five data sets and each of our

three heuristics:

(a) the median percentage error

(b) the mean percentage error

(c) the number of (undominated) efficient points

(d) the total computer time in seconds.

Note that for the column labelled V we did not eliminate from V(λ) any dominated

solutions.

It can be seen from Table 4 that over our five test data sets no one of our heuristic

algorithms is uniformly dominant. Although the GA heuristic performs better than the SA

heuristic, which in turn performs better than the TS heuristic, the differences are not

nearly as marked as they were for the UEF (Table 3). For some data sets there are

considerable differences in the percentage error measures, indicating that the algorithms

give significantly different results.

Hence we would envisage that a sensible approach to the cardinality constrained

portfolio optimisation problem in practice would be to run all three heuristics and to pool

their results in an obvious fashion (i.e. combine the three sets of undominated points given

by the three algorithms together into one set and eliminate from this new set those points

which are dominated). These pooled results are also shown in Table 4.

Note here that we stated before (Section 4) that using our heuristics it is possible to

gain information about those portions of the CCEF that would be invisible to an exact

approach based upon weighting. Figure 7, presented before for the four asset example

given in Table 1, has in fact been plotted using the pooled results from the sets H for each

of the three heuristics.

5.4 Discussion

There are a number of points which can be made with respect to Table 4 and these

are discussed in this section.
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In Table 4 we have shown results for five data sets, one particular value of K and

one set of values for εi and δi. Plainly for different data sets/values the results will be

different. However we believe that our key point, namely that it is important to use a

number of heuristics and to pool their results, is established.

As stated above, the percentage errors given in Table 4 are overestimates of the

errors associated with each heuristic as they are derived from the UEF, which dominates

the CCEF. One point that is important however is the distribution of these efficient points

along this frontier. At the extreme a heuristic could obtain a low percentage error by

finding just a few points on the CCEF near to the UEF. In order to decide which portfolio

of assets to buy however, a decision-maker examining the efficient frontier needs a good

distribution of points over this frontier in order to make an informed decision.

This distribution of points over the frontier is illustrated numerically in Table 5. In

that table we give, for each data set, for each of the three heuristics, the number of

efficient points that they individually contribute to the pooled set of efficient points. For

example, for the Hang Seng data it can be seen that of the 2491 pooled efficient points

953 (38.3%) are contributed by the GA heuristic, 860 (34.5%) are contributed by the TS

heuristic and 733 (29.4%) are contributed by the SA heuristic (note that some points are

duplicated across the heuristics). On average, across all five data sets, 39.5% are

contributed by the GA heuristic, 29.6% by the TS heuristic and 32.3% by the SA

heuristic. We feel that this is another argument in favour of pooling heuristic results.

Each of the undominated points found by our algorithms is a portfolio with K

assets with an associated return and an associated λ. Hence there are a number of possible

ways to improve our solutions by taking the assets in/out of the portfolio as fixed and:

(a) solving the weighted problem (equations (16)-(20)) with the given value of λ; or

(b) minimising the risk associated with the portfolio at its given level of return; or

(c) tracing the efficient frontier associated with the given set of K assets.

In the computational results reported here we did not however adopt any of these

approaches.



28

5.5 Tradeoff

As noted in Section 2.4 above we believe that one merit of the heuristics given in

this paper is that the decision-maker will be faced with a different CCEF for each value of

K and must explicitly consider the tradeoffs between risk, return, and number of assets in

the portfolio in deciding which portfolio to adopt. This is illustrated in Figure 9 for the

DAX data set (which has the highest mean (pooled) error in Table 4) using the pooled

results for all three heuristics. In that figure we have plotted the curves for K=2,3,4 and 5

(εi=0.01 and δi=1 as before), as well as the UEF. It will be seen that, as we would expect

(given the values of εi and δi), as K increases we approach the UEF.

A decision-maker presented with Figure 9 now has an explicit pictorial

representation of the possibilities open to them, and the tradeoffs involved. For example,

suppose their attitude to risk and return is such that they prefer a high return, say a return

corresponding to the point marked A in Figure 9. Graphically it is clear that such a return

(for the same risk) can effectively be obtained by a portfolio containing four or five assets.

If the decision-maker were to prefer a portfolio containing less assets then no such

portfolio containing three assets appears to exist with the same return (note the

discontinuity in the CCEF for K=3 at this return level). There is a portfolio giving the

same return containing exactly two assets but it requires a substantial increase in risk.

Wee would comment here that, as far as we are aware, this paper is the first in the

literature to present algorithms that allow the information shown in Figure 9 to be

produced in a computationally effective manner.
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6. CONCLUSIONS

In this paper we have considered the problem of calculating the efficient frontier

for the cardinality constrained portfolio optimisation problem. We highlighted the

differences that arise in the shape of this efficient frontier as compared with the

unconstrained efficient frontier.

Computational results were presented for three heuristic algorithms based upon

genetic algorithms, tabu search and simulated annealing for finding the cardinality

constrained efficient frontier. These indicated that a sensible approach was to pool their

results.
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Asset Return Standard Correlation matrix
(weekly) deviation 1 2 3 4

1 0.004798 0.046351 1 0.118368 0.143822 0.252213
2 0.000659 0.030586 1 0.164589 0.099763
3 0.003174 0.030474 1 0.083122
4 0.001377 0.035770 1

Table 1: Four asset example



Feature GA TS SA

λ values E λ values equally E λ values equally E λ values equally
spaced in [0,1] spaced in [0,1] spaced in [0,1]

Initial solution(s) Randomly generated Randomly generated Randomly generated

New solution generation Parent selection, Neighbour of Neighbour of
uniform crossover current solution current solution
and mutation

Action if new solution Delete smallest - -
has > K assets assets

Action if new solution Add assets from Add randomly Add randomly
has < K assets parents if possible, generated assets generated assets

else add randomly
generated assets

New solution evaluation Algorithm 1 Algorithm 1 Algorithm 1

Accept new solution Always If best non-tabu If improved solution
neighbour or satisfies probabilistic

criterion

Action with accepted Replaces member Replaces current Replaces current
solution of the population solution solution

Stopping criterion Number of Number of Number of
iterations iterations iterations

Table 2: Algorithmic features





evaluate(S,λ,f,V,improved,H)
S is the current solution and consists of:

Q the set of K distinct assets in the current solution
si the current value for asset i∈ Q

λ is the current weighting parameter
f is the returned objective function value for the current solution S
V(λ) is the best objective function value found for weighting parameter λ
improved is returned as .true. if S improves V(λ), else returned as .false.
H is all the improved solutions found during the course of the algorithm

wi is the proportion associated with each asset i∈ Q

begin

improved:=.false.

f:=∞
if εi > 1 or δi < 1 then return /* infeasible */

L:= si /* L is the current si sum */

F:=1 - εi /* F is the free proportion */

wi:=εi + siF/L ∀ i∈ Q /* calculate proportions to satisfy εi and sum to 1 */

/* iterative procedure to satisfy maximum proportions */

R:=∅ /* R is a set of i whose proportions are fixed at δi */

while there exists an i∈ Q-R with wi>δi do /* iterate until feasible */

for all i∈ Q-R if wi>δi then R:=R∪ [i] /* if wi exceeds δi add to R */

L:= si /* L is the current si sum */

F:=1 - ( εi + δi) /* F is the free proportion */

wi:=εi + siF/L ∀ i∈ Q-R /* proportions for i∈ Q-R */

wi:=δi ∀ i∈ R /* proportions for i∈ R */

end while

f:=λ[ wiwjσij] - (1-λ)[ wiµi] /* feasible solution */

si:=wi-εi ∀ i∈ Q /* reset si */

if f < V(λ) then /* improved solution */

improved:=.true. /* set improved */

V(λ):=f /* update V(λ) */

H:=H∪ S /* add S to H */

end if

end

Algorithm 1: Evaluation





E is the number of λ values we wish to examine
P is the population
S*, S** are two solutions (parents) selected from the population to mate
C is the offspring of S* and S** and consists of

R the set of K distinct assets in C
ci the value for asset i∈ R

A* is a set of assets that are in the parents, but are not in the child (together
with their associated values)

T* is the number of iterations

begin
H:=∅
for e:=1 to E do
λ:=(e-1)/(E-1) /* examine E λ values equally spaced in [0,1] */
V(λ):=∞
initialise P:={S1,...,S100} /* random initialisation, exactly K assets in each Sp */
evaluate(Sp,λ,f(Sp),V,improved,H) p=1,...,100 /* evaluate the solutions */
for t:=1 to T* do /* T* iterations in all */

select S*, S** ∈ P by binary tournament method
crossover C:=(S*,S**) by uniform method
A*:=S*∪ S**-C /* find assets in parents, not in child */
randomly choose i∈ R and m=1 or 2
if m=1 then ci:=0.9(εi+si)-εi else ci:=1.1(εi+si)-εi /* mutation */
if ci<0 then R:=R-[i] /* delete asset i if necessary */

/* ensure C has exactly K assets */
while R >K delete the asset j∈ R with the smallest cj from R
while R <K do /* add asset from parent if possible */
if A* ≠0 then

add to C a randomly chosen asset j from A* /* add asset */
A*:=A*-[j]

else
add to C a randomly chosen asset j∉ R and set cj:=0

end if
end while

/* C now has exactly K assets */
evaluate(C,λ,f(C),V,improved,H)
find j such that f(Sj)=max[f(Sp) p=1,...,100] /* find worse population member */
Sj:=C /* replace worse member with child */

end for
end for
end

Algorithm 2: GA heuristic



S* is the current solution and consists of:
Q the set of K distinct assets in S*

si the current value for asset i∈ Q
C is the current neighbour of S* and consists of

R the set of K distinct assets in C
ci the value for asset i∈ R

S** is the best neighbour of S* that does not involve a tabu move
V** the objective function value for S**

Lim the tabu value for asset i move m (m=1 multiply by 0.9, m=2 multiply by
1.1), where Lim=0 if the move is not tabu

L* is the tabu tenure value for a move that has just been made tabu
opp(m) is the opposite move to move m (so opp(1)=2 and opp(2)=1)

begin
H:=∅
for e:=1 to E do
λ:=(e-1)/(E-1) /* examine E λ values equally spaced in [0,1] */
V(λ):=∞
initialise P:={S1,.., S1000} /* random initialisation, exactly K assets in each Sp */
evaluate(Sp,λ,f(Sp),V,improved,H) p=1,...,1000 /* evaluate the solutions */
find j such that f(Sj)=V(λ) and set S*=Sj /* starting solution */
Lim:=0 ∀ i,m /* initialise tabu values */
L*:=7 /* set tabu tenure for new move to 7 */
for t:=1 to T* do /* T* iterations in all */
V**:=∞ /* initialise best neighbour value */

for i∈ Q and m:=1 to 2 do /* examine neighbours of S* */
C:=S*

/* C is neighbour of S* corresponding to move m for asset i */
if m=1 then ci:=0.9(εi+si)-εi else ci:=1.1(εi+si)-εi /* move */
if ci<0 then randomly select j∉ R and set R:=R∪ [j]-[i], cj:=0 /* add asset */

/* C now has exactly K assets */
evaluate(C,λ,f(C),V,improved,H)
if improved then Lim=0 /* aspiration - make the move non-tabu */
if Lim=0 and f(C)<V** then /* improved non-tabu neighbour */

V**:=f(C) /* update V** */
S**:=C /* update S** */
k:=i /* record move */
n:=m

end if
end for

if V**=∞ then
finished with current value of λ /* no non-tabu moves */

else
S*:=S** /* take the best neighbour found */
Lim:=max[0,Lim-1] ∀ i,m /* reduce all tabu tenures by one */
Lk,opp(n)=L* /* tabu opposite move */

end if
end for
end for
end

Algorithm 3: TS heuristic



begin
H:=∅
for e:=1 to E do
λ:=(e-1)/(E-1) /* examine E λ values equally spaced in [0,1] */
V(λ):=∞
initialise P:={S1,.., S1000} /* random initialisation, exactly K assets in each Sp */
evaluate(Sp,λ,f(Sp),V,improved,H) p=1,...,1000 /* evaluate the solutions */
find j such that f(Sj)=V(λ) and set S*=Sj /* starting solution */
T:= V(λ)/10 /* initialise SA parameters */
α:=0.95
for t:=1 to T* do /* T* iterations in all */
for a specified number of iterations at the same temperature do

randomly select an asset i∈ Q and a move m=1 or 2
C:=S*

/* C is neighbour of S* corresponding to move m for asset i */
if m=1 then ci:=0.9(εi+si)-εi else ci:=1.1(εi+si)-εi /* move */
if ci<0 then randomly select j∉ R and set R:=R∪ [j]-[i], cj:=0 /* add asset */

/* C now has exactly K assets */
evaluate(C,λ,f(C),V,improved,H)
if f(C) < f(S*) then /* C better than current solution S* */

S*:=C /* change S* */
else

r:=a random number drawn from [0,1]
if r < exp[-(f(C)-f(S*))/T] then /* check for accept worst solution */

S*:=C /* update S* */
end if

end if
end for
T:=αT /* reduce temperature */
end for
end for
end

Algorithm 4: SA heuristic





Index Number of assets (N) GA
heuristic

TS
heuristic

SA
heuristic

Hang
Seng

31 Median percentage error 0.0165 1.0718 0.0160

Mean percentage error 0.0202 0.8973 0.1129

Time (seconds) 621 469 476

DAX 85 Median percentage error 0.0123 2.7816 0.0033

Mean percentage error 0.0136 3.5645 0.0394

Time (seconds) 10332 9546 9412

FTSE 89 Median percentage error 0.0029 3.0238 0.0426

Mean percentage error 0.0063 3.2731 0.2012

Time (seconds) 11672 10698 10928

S&P 98 Median percentage error 0.0085 4.2780 0.0142

Mean percentage error 0.0084 4.4280 0.2158

Time (seconds) 15879 14517 14367

Nikkei 225 Median percentage error 0.0084 14.2668 0.8107

Mean percentage error 0.0085 15.9163 1.7681

Time (seconds) 227220 210929 281588

Average Mean percentage error 0.0114 5.6158 0.4675

Table 3: Results for the unconstrained efficient frontier







Index Number of assets (N) Pooled results
H

GA heuristic TS heuristic SA heuristic

Hang Seng 31 2491 953 (38.3%) 860 (34.5%) 733 (29.4%)

DAX 85 2703 1046 (38.7%) 858 (31.7%) 844 (31.2%)

FTSE 89 2538 1053 (41.5%) 616 (24.3%) 913 (36.0%)

S&P 98 2759 1202 (43.6%) 787 (28.5%) 795 (28.8%)

Nikkei 225 3648 1297 (35.6%) 1065 (29.2%) 1309 (35.9%)

Average 39.5% 29.6% 32.3%

Table 5: Contributions to the constrained efficient frontier





Index Number of assets (N) GA heuristic TS heuristic SA heuristic Pooled results
V H V H V H H

Hang
Seng

31 Median percentage error 1.2181 1.1819 1.2181 1.1992 1.2181 1.2082 1.1899
Mean percentage error 1.0974 0.9457 1.1217 0.9908 1.0957 0.9892 0.9332
Number of efficient points - 1317 - 1268 - 1003 2491
Time (seconds) 172 74 79 325

DAX 85 Median percentage error 2.5466 2.1262 2.6380 2.5383 2.5661 2.4675 2.4626
Mean percentage error 2.5424 1.9515 3.3049 3.0635 2.9297 2.4299 2.1927
Number of efficient points - 1270 - 1467 - 1135 2703
Time (seconds) 544 199 210 953

FTSE 89 Median percentage error 1.0841 0.5938 1.0841 0.6361 1.0841 0.7137 0.5960
Mean percentage error 1.1076 0.8784 1.6080 1.3908 1.4623 1.1341 0.7790
Number of efficient points - 1482 - 1301 - 1183 2538
Time (seconds) 573 246 215 1034

S&P 98 Median percentage error 1.2244 1.1447 1.2882 1.1487 1.1823 1.1288 1.0686
Mean percentage error 1.9328 1.7157 3.3092 3.1678 3.0696 2.6970 1.3106
Number of efficient points - 1560 - 1587 - 1284 2759
Time (seconds) 638 225 242 1105

Nikkei 225 Median percentage error 0.6133 0.6062 0.6093 0.5914 0.6066 0.6292 0.5844
Mean percentage error 0.7961 0.6431 0.8975 0.8981 0.6732 0.6370 0.5690
Number of efficient points - 1823 - 1701 - 1655 3648
Time (seconds) 1964 545 553 3062

Average Mean percentage error 1.4953 1.2269 2.0483 1.9022 1.8461 1.5774 1.1569

Table 4: Results for the cardinality constrained efficient frontier

Note: (a) number of assets in the portfolio K=10, minimum proportion of any asset that must be held (if any is held) is 0.01; maximum
proportion that can be held of any asset (if any is held) is 1

(b) V represents the portfolios associated with the best objective function value found for each of the 50 values of the weighting
parameter λ examined

(c) H represents the set of portfolios encountered over the course of the algorithm (dominated portfolios having been removed
from H)

(d) Pooled results are the combination of the three H sets for GA, TS and SA (again with dominated portfolios being removed)


