
P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

Journal of Heuristics, 4: 141–160 (1998)
c© 1998 Kluwer Academic Publishers

Design and Evaluation of Tabu Search Algorithms
for Multiprocessor Scheduling

ARNE THESEN
Department of Industrial Engineering, University of Wisconsin—Madison, 1513 University Ave, Madison,
WI, USA, 53706

Abstract

Using a simple multiprocessor scheduling problem as a vehicle, we explore the behavior of tabu search algorithms
using different tabu, local search and list management strategies. We found that random blocking of the tail of
the tabu list always improved performance; but that the use of frequency-based penalties to discourage frequently
selected moves did not. Hash coding without conflict resolution was an effective way to represent solutions on the
tabu list. We also found that the most effective length of the tabu list depended on features of the algorithm being
used, but not on the size and complexity of the problem being solved. The best combination of features included
random blocking of the tabu list, tasks as tabus and a greedy local search. An algorithm using these features was
found to outperform a recently published algorithm solving a similar problem.

Key Words: tabu search, scheduling, performance evaluation

1. Introduction

Over the past 12 years, the tabu search has established its position as an effective meta-
algorithm guiding the design and implementation of algorithms for the solution of large
scale combinatorial optimization problems in a number of different areas (Glover (1986),
Glover and Laguna (1997)). A key reason for this success is the fact that the algorithm is
sufficiently flexible to allow designers to exploit prior domain knowledge in the selection of
parameters and sub-algorithms. Such prior knowledge is frequently obtained by repeatedly
solving a few representative test cases using a spectrum of different techniques, attributes
and/or parameters. Frequently referred to astarget analysis, an application of this learning
approach is described in Laguna and Glover (1993). In this paper we show that this approach
can be used to select and fine-tune sub-algorithms for a simple but still effective tabu search
algorithm.

The problem of interest in this research is the multiprocessor scheduling problem. Briefly,
this is the problem of assigningn independent tasks, each with a durationti (i = 1, . . . ,n),
to m identical processors such that the completion time for the latest processor (i.e., the
makespan) is minimized. The shortest schedule would be one where all processors com-
pleted their work at the same time. The makespan of this schedule will be referred to as the
ideal schedule duration(T∗). T∗ is readily computed asT∗ = ∑ ti /m. The multiprocessor
scheduling problem is a slight variation on the traditional bin packing problem where the
objective would be to find the number of processors needed to complete the project by a
given due date (Johnson et al. (1974), K¨ampke (1988)). The state-of-the-art of the use of



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

142 THESEN

meta-heuristics to solve this class of problems is rapidly evolving. For an overview of re-
cent contributions see Osman and Kelly (1996), and Glover and Laguna (1997). Overviews
of applications in the production scheduling area is given in Barness, Laguna, and Glover
(1995) and Blazewicz et al. (1996).

The remainder of this paper is organized as follows: In Section 2 we introduce a num-
ber of different sub-algorithms for managing and searching tabu lists. Among the topics
introduced here are the use of hash coded tabus and the use of randomly blocked tabu
list tails. In Section 3 we introduce and fine-tune eight different algorithms implementing
different combinations of the sub-algorithms introduced in Section 2. The performance
of the resulting algorithms is evaluated, and the best performer is identified. We will see
that, when task durations are expressed as three to four digit integers, a well-designed tabu
search algorithm can easily find the optimal solution to problems with up to 10,000 tasks
and 500 processors. In Section 4 we evaluate the performance of the winning algorithm
when solving more difficult problems. Results of a comparison with previously published
results for a related algorithm are also given. We will see that the best of the algorithms
developed here used an average of about 60% fewer iterations to solve similar problems.
Finally, a summary and conclusions are given in Section 5.

2. Elements of a tabu search

The tabu search algorithm combines a few simple ideas into a remarkably efficient frame-
work for heuristic optimization. Among the main elements of this framework are:

• A (usually) greedy localsearch; the next solution is usually the best not-yet visited
solution in the current neighborhood.
• A mechanism (the tabu list) discouraging returns to recently visited solutions.
• A mechanism that changes the solution path (perhaps by a random move) when no

progress has been made for a long time.

In addition, many tabu search algorithms incorporate other features such as flexible
memory structures and dynamic aspiration criteria (Glover (1995)). A rough overview of a
conceptual tabu search algorithm is given figure 1. For difficult searches, techniques such as
influential diversification (H¨ubscher and Glover (1994)) may be used to extend the duration
and scope of the search.

Although a tabu search is conceptually simple, any implementation of an efficient tabu
search algorithm is problem specific, and no generic tabu search software is available at
this time. Among the issues faced by designers of tabu search algorithms are:

• The nature of the information included in the tabu list.
• The way the tabu list is organized.
• The lengths of the tabu lists.
• The types of moves used to create new solutions.
• The implementation of the local greedy search algorithm.
• Strategies for diversifying the search when no progress has been made for a while.



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 143

Initialize
Identify initial Solution
Create emptyTabuList
SetBestSolution=Solution
DefineTerminationConditions
done=FALSE

Repeat
if value ofSolution> value ofBestSolutionthen

BestSolution=Solution
if noTerminationConditionshave been metthen begin

addSolutionto TabuList
if TabuListis full then

delete oldest entry fromTabuList
find NewSolutionby some transformation onSolution
if noNewSolutionwas foundor

if no improvedNewSolutionwas found for a long timethen
generate NewSolution at random

if NewSolutionnot onTabuListthen
Solution= NewSolution

end
else

done=TRUE
until done=TRUE

Figure 1. A rough overview of a conceptual tabu search algorithm.

In addition, many of the elements used in a tabu search are themselves heuristic algo-
rithms, most of which rely on some carefully selected parameter value for optimal perfor-
mance. Few generalizable guidelines are available for the choice of such parameters. These
concerns are discussed later in the paper. But first, let us review the main elements of the
tabu search algorithm.

2.1. Solutions, moves and neighborhoods

Our strategy is to make successive changes to an initial solution such that a sequence
of improved solutions is obtained. Applying a commonly used strategy for combinatorial
problems that also was used by Barnes and Laguna (1993) and H¨ubscher and Glover (1994),
we will use two types ofmovesto generate new solutions:

• Transfer: A task is assigned to another processor.
• Interchanges: Two tasks performed by different processors are swapped.

Algorithms using transfers are simpler, and easier to implement, than those using in-
terchanges. However, when a move is to be made between two processors performingn1

andn2 tasks respectively, the number of transfers available isn1+ n2, while the number of
interchanges available isn1× n2. Given this larger number of choices, it is more likely that
the interchange approach provides a better candidate for the next move. On the other hand,



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

144 THESEN

interchanges do not change the number of tasks assigned to different processors. Hence, a
pure interchange-based algorithm is unlikely to find the optimum allocation of tasks. We
will use a combined strategy that selects the best approach for each iteration. Barnes and
Laguna (1993) noted that the use of two types of moves markedly improved the performance
of the search procedure. Our evaluations confirm this finding.

The set of new solutions that can be developed by a move from a given solution is
referred to as that solution’sneighborhood. A neighborhood hasn× (m− 1)members when
transfers are used. Hence, the local neighborhood can be quite large, and an exhaustive
search of the entire neighborhood at every move is not feasible. Instead, we chose to
restrict our search to moves between the busiest and the least busy processor. Since any
move reducing the project duration must reduce amount of work assigned to the busiest
processor, this restriction does not reduce our ability to find a better solution (if one exists).

2.2. The local search

During the local search, the current neighborhood is explored, and a suitable move is
selected. Ideally, all promising moves should be evaluated. But, for large neighborhoods,
this may not be feasible. Instead, the search may be terminated as soon as a good move
is found. The criteria used in the local search may differ from the global criteria. For
example, when looking for a job to transfer between two processors, let us look for the job
that minimizes the difference in their total task durations. The search can be deterministic
or probabilistic. In the first case, the best move is always picked. In the second case, a set
of probabilities is computed from the values of all moves, and a move is selected at random
using these probabilities.

Evaluation of moves. As a simplification, we consider only the effect that a move has on
the completion times for the busiest and least busy processor. In this case, the best move
is one where identical completion times are reached for the two processors. We measure
the value of a move by how far away the resulting latest completion time is away from this
ideal time. Note that this completion time may not be the resulting project completion time
as another processor may take over the role as the busiest processor.

For an interchange, the value of a move is computed as the difference between the
resulting latest completion time and the ideal completion time:

Zi j = Max{(db − tb,i + tl , j ), (dl + tb,i − tl , j )} − (db − dl )/2, (1)

where

dk = sum of durations of tasks assigned to processork,
b = index of busiest processor (i.e.,db= max(dk), k= 1, . . . ,m),
l = index of least busy processor (i.e.,dl = min(dk), k= 1, . . . ,m),

tk,i = duration of thei th task assigned to processork,
Zi j = value of interchanging thei th task assigned to processorb with the j th

task assigned to processorl .
Note that we seek to find a move that minimizes the difference in durations between the



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 145

two processors. This was found to be more effective than related functions that would seek
to bring either processor closer to the ideal schedule duration.

Selection of moves. Under agreedy search, we are simply looking for the best available
non-tabu move leading to a non-solution. To find this solution we scan through each available
move, computing the resultingZ value, and capturing each improved solution as it is
encountered. By using a doubly linked data structure where tasks are linked in increasing
order of duration for each processor, and where processors are linked in increasing order
of assigned workload, this scanning is efficiently implemented, and the scan is terminated
well before all moves are evaluated.

Under aprobabilistic search, moves are assigned probabilities in inverse proportion to
their relative gain. A move is then selected at random using these probabilities. The following
procedure is used:

1. For each movek compute relative weights:

xk = 1

z− zbest+ 1
(2)

2. For each movek compute probabilities:

pk = xk∑
xi

3. Letu be a random number from a uniform distribution on (0, 1)
4. Select movem such that

m∑
i=0

pi ≤ u <
m+1∑
i=0

pi

The quantity 1 was added in Eq. (2) to avoid division by 0 for the case where the gain is 0.
A probabilistic search cannot be implemented as efficiently as deterministic search. This

is because (ideally) a complete list of all moves must be developed, and because two full
and one partial pass must be made through this list for each iteration. Efficiencies may be
gained by shortening the list, and by drawingu before all pk’s are computed. No such
improvements were explored in the research reported here.

Penalizing moves that may cause cycling.If a certain task has been moved a dispropor-
tionate number of times, it is unlikely that moving this task again will add significantly
to the value of a solution. Rather, such moves are likely to be a symptom of cycling. To
discourage such moves, and the resulting cycling, we may penalize moves that use this task.
This can be done by adding a penalty to the value of a proposed solution proportional to
the ratio between the number of times the tasks included in this move have been moved and



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

146 THESEN

the average number of times all parts have been moved:

Z∗i j = V + tb,i × nb,i

N
+ tl , j × nl j

N
(3)

where

Z∗i j = the modified value of the move,
nk,i = count of moves for thei th task assigned to processork,

N= count of moves for all tasks.

UsingZ∗i j , in place ofZi j will encourage the exploration of other, possibly more promis-
ing, areas of the solution space. One difficulty in using frequency-based penalties is that it is
unclear what weight should be assigned to these penalties. On the other hand, Taillard (1994)
reports on experiments where in every instance, it was possible to improve the efficiency
of a search by using frequency-based penalties. Our evaluations confirm this observation.
However, for the algorithms evaluated here, each iteration became more time consuming,
and no improvements in solution times were observed.

2.3. Tabus and tabu lists

A key premise of the tabu search is that usually it is better to visit new solutions than to
return to recently visited ones. Toward this end, lists of recently visited solutions and/or
recently used moves are maintained. Moves are disallowed if they, or the solution they lead
to, are found on these lists. Items placed on such atabu listremain there for a fixed number
of iterations (equal to the length of the list). For the present problem, let us explore the use
of both solutions and task moves as tabus. We will see that there is a significant difference
in performance between the two.

Tasks as tabus. The use of a task as a tabu has the advantage that a separate tabu list is not
required. Instead, each task is marked by the time of its most recent move. This simplifies
implementation. Reentry to a recently visited solution is now avoided by preventing tasks
from being moved back to their previously assigned processor. However, the task is also
prohibited from moving to other processors. This reduces the size of the neighborhood,
and, perhaps, the efficiency of the search. Also, after a while, we may have moved all of
the tasks assigned to a given processor to a different processor, potentially recreating a tabu
solution using different processors. To avoid these situations, it is important not to restrict
tasks from being moved for too long.

Solutions as tabus. When solutions are tabus, sufficient information about previous so-
lutions must be saved, such that entry into similar solutions can be recognized. A special
challenge for the present problem is the fact that solutions are not unique. Since the pro-
cessors are assumed to be identical, it does not matter which processor performs a given set
of tasks. All such similar solutions should therefore also be detected.



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 147

1. For each processork compute:

sumsqk=
nk∑

i=1

t2
ki

where

tki =The i th task assigned to processork
nk=Number of tasks assigned to processork

2. Sort processors such that:

sumsqi < sumsqj if i < j (i.e., processors are ordered by workload)

3. Compute the hash code:

h =
m∑

k=1

k× sumsqk

where

h = Hash code value assigned to this solution

4. Placeh in a sorted list of hash codes. Markh by the time of insertion.

Figure 2. Hash coding scheme for tabu solutions.

For a large problem involving perhaps 10,000 tasks, and 1,000 processors, it is pro-
hibitively expensive to store complete information about past solutions. Instead, let us use
hash coding (Knuth (1973), Glover and Laguna (1997)) to reduce the relevant aspects of
previous solutions to a single number. Now, an ordered list of hash codes, each representing
a different tabu solution, can be constructed, and a search can easily be conducted to deter-
mine if a proposed solution is on the list. Figure 2 presents the hash coding scheme used in
this study. Briefly, the hash code is computed as the biased sum of the sum-of-squares of
durations of tasks assigned to individual processors. Although step 2 calls for processors to
be sorted in increasing order of assigned workloads, this step is not needed in practice. This
is because processors already are ordered in this sequence to avoid having to deal with the
large number of solutions that differs only in the identity of processors performing specific
sets of tasks.

Note that no attempt is made to resolve conflicting hash codes (i.e., when different
solutions are hashed to the same code). This is not a cause for concern when new entries
are added to the list, as the new entry simply replaces the old one. However, it may cause a
problem when a proposed solution is hashed to the same value as one obtained for a different
solution currently on the list. In this case, the proposed new solution will erroneously be
rejected. However, the likelihood that two recent solutions have the same hash code is quite
small; and, in our tests, computer programs dealing correctly with hash code collisions were
significantly slower than those that did not. We will see that algorithms using hash-coded
solutions as tabus can be quite efficient, and that this efficiency is relatively insensitive to
the choice of tabu list length.

List length. The length of the tabu list(L), is a critical parameter in most tabu search
algorithms. We will see that the wrong choice ofL may lead to a very inefficient algorithm.



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

148 THESEN

Glover (1986) suggested that 7 would be a good value forL. Anderson et al. (1993) reported
that list lengths between 7 and 15 worked well for a path assignment problem. Løkketangen
(1995) cites a case where the most efficient algorithm included more than 200 items in the
list. Morton and Pentico (1993) suggest that keeping all solutions on the list works best for
scheduling problems. Taillard (1994) reports on the successful use of lists that randomly
change in length at certain points of time. It appears that the most efficient length of the
list depends on the problem being solved, and the algorithm being used. In Section 3 we
show that long lists worked well for the test problems used here when solutions were tabus,
while they were counter productive when tasks were tabus.

List tenure and blocking. Items usually stay on the tabu list for a number of iterations
equal to the length of the tabu list, and most algorithms consider an item to be a tabu
throughout its tenure on the tabu list. However, in some cases it is fruitful to make excep-
tions. For example, H¨ubscher and Glover (1994) use a scheme where different portions
of the tabu list are blocked out (i.e., made inaccessible) at different times to encourage
intensification and diversification. Here we will investigate a significantly simpler blocking
scheme. Specifically, we introduce the concept of anaccessible listwith a random length
(Ai ) that is established separately for each iteration. The accessible list is a subset of the
entire list, and the entire list is maintained and updated as before. An item is considered
a tabu for iterationi if it were given tabu status at iteration(i − Ai ) or later. At a later
iteration,Ai may have a smaller value, and an item previously considered to be a tabu, may
not be a tabu at this time. This approach differs from the periodically changing random list
lengths used by Taillard (1994) in that a list of fixed length is always maintained, and the
length of the accessible subset of this list is reevaluated for each iteration.

The length of the accessible list for iterationi (Ai ) is a random quantity computed as
follows:

Ai = Alow + u× (Ahigh− Alow) (4)

where

Ai = length of the list accessible for thei th iteration,
Alow= a constant giving the lower bound onAi ,
Ahigh= a constant giving the upper bound onAi ,

u= random variable uniformly distributed between zero and one.

Extensive experiments have shown that the best value forAlow is one, and that the best
value forAhigh is L (the length of the list). We will see that the use of an accessible list of
random length improves the performance of all tabu search algorithms studied in this study.

2.4. Diversification

Occasionally, if the present solution path does not appear to be promising, it may be efficient
to abandon the local search and to use a different mechanism to obtain the next solution.



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 149

Table 1. Common termination criteria for heuristic optimization algorithms.

Criteria Rule

Solution quality Stop when solution quality exceeds a lower bound by no
more than a given value

Gradient Stop when there has been no improvement forN iterations

Total iteration count Stop afterN iterations

Execution time Stop afterT minutes

The next move could be selected at random, or, the algorithm could be restarted from a
previously encountered good solution. In this case, measures must be taken to ensure that
the path that was taken from this solution last time is not taken again. This can be done by
altering the makeup of the old tabu list, or by making the next move at random. H¨ubscher
and Glover (1994) discuss how influential diversification can be used to extend the scope
of the search space for problems similar to the ones studied here.

2.5. Termination

A common difficulty with all heuristic optimization algorithms is the fact that it is usually
not possible to determine if the optimal solution has been reached. As a result, a number
of different termination criteria are commonly used together (Table 1).

3. The learning phase

Here we first describe eight different algorithms implementing different permutations of the
sub-algorithms described in the previous sections. We then present an empirical analysis
leading to the identification of recommended list lengths for each algorithm. Finally, an
evaluation of the resulting tuned algorithms leads to the identification of the most efficient
implementation. This algorithm is then further analyzed in the following section.

3.1. Eight algorithms

A broad outline of a tabu search algorithm for solving the multiprocessor scheduling problem
is given in figure 3. The key options to be implemented within this framework were discussed
in the previous section:

• Type of tabus (solutions or tasks),
• Selection of the next move (greedy or probabilistic search),
• Tabu list (use entire list or random subset).



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

150 THESEN

Initialize
Let i = 0

L = maximum length of tabu list
m= the number of processors
n= the number of tasks
Mi = − 99999 fori = l , . . . ,n (last time taski was moved)
W={W1,W2, . . . ,Wm}: the initial solution
dk= sum of duration of tasks assigned to processork
dbest= infinity
done= FALSE

Repeat
Let i = i + 1

m= index of processor finishing last. That is,dm=max(dk) for k= 1, . . . ,m
d= dm

If d < dbest then
dbest= d
Wbest=W

If no termination condition is metthen
Add W to tabu list
If length of list >L then

delete oldest entry from list
Let j = index of processor finishing first
Find non-tabu taskr in Pm., and non-tabu tasks in Pj that, when

interchanged minimizes abs(Pm.,−Pj )(s may be zero)
If no task (s) were foundthen

let r be the index of a non-tabu task selected at random
Move taskr to processorj
If s> 0 then

Move tasks to processorm
Let Mr = i

Ms= i
Let W= the current solution

else
done= TRUE

until done= TRUE
terminate

Figure 3. Outline of a tabu search algorithm for multiprocessor scheduling.

Since these options are independent, and, since two alternatives were offered for each, a total
of eight different algorithms can be constructed. These eight algorithms were implemented
in Microsoft Visual C++ and run under Windows 95 (Table 2). All eight algorithms use
a single parameter(L). Recommended values for this parameter are established in the
next section. A traditional greedy LPT algorithm (Graham (1969)) was used to develop
initial solutions. Briefly, the tasks were first sorted in decreasing order of their durations.
Then, they were sequentially assigned to the least busy processor until all tasks were
assigned. The resulting solutions were frequently within one percent of the ideal schedule
length. This is consistent with the bounds presented in Graham (1976).



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 151

Table 2. Eight different implementations of the tabu search algorithm given
in figure 2.

Algorithm Tabu Search Length of available tabu list

SGF Solutions Greedy Fixed= L

SGR Solutions Greedy Random=U(l, L)

SPF Solutions Probabilistic Fixed= L

SPR Solutions Probabilistic Random=U(l, L)

TGF Tasks Greedy Fixed= L

TGR Tasks Greedy Random=U(l, L)

TPF Tasks Probabilistic Fixed= L

TPR Tasks Probabilistic Random=U(l, L)

3.2. Searching for the best length of the tabu list

In order to explore the effect of the length of the tabu list(L) on performance, we measured
the effort required by algorithms to solve thousands of random problems using different
values ofL. The resulting data was then analyzed for the purpose of finding the best(L∗)
value of L for each algorithm. Particular attention was paid to the fact that the value of
L∗ might change with the size and complexity of the problem. Two types of analysis were
performed:

• Graphical analysis, plots of solution times versusL were inspected for trends.
• Nonlinear approximations, analytic functions were fitted and solved forL∗.

A random problem generator was used in all evaluations. This generator first produced
the requested number (between 500 and 10,000) of random task durations drawn from an
exponential distribution with a mean of 1,000. These durations were then rounded up to
the next integer value. Finally, all durations were proportionally adjusted such that the
average task duration was equal to the expected task duration. To ensure that a known
optimal solution existed, the number of processors for each problem was set such that at
least 20 tasks were expected for each processor. Under these conditions, the ideal schedule
length was always reached. (More difficult problems including problems with uniformly
distributed, noninteger durations are evaluated in Section 4.)

Since optimal solutions were reached for all problems used in these evaluations, we
were able to adopt as performance measures both the time (in seconds), and the number
of iterations required to reach the optimal solution. In the remainder of this section the
recommended list lengths for each algorithm are established. In the following section, we
evaluate the performance of the resulting algorithms.

Graphical analysis. We first collected data on the time required by each algorithm to solve
1,950 random problems, each with 5,000 tasks and 250 processors. All algorithms solved



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

152 THESEN

Table 3. Effect of the length of the tabu list (L) on the time in seconds to solve problems
with 5,000 tasks and 250 processors. Random, integer processing times drawn from an
exponential distribution were used. The optimal target solution was always found.

L TGR SGR SGF TGF TPR TPF SPR SPF

1 14.4 17.5 17.4 15.0 14.7 14.4 15.5 14.6

3 3.4 17.6 18.7 15.2 15.2 14.0 16.1 16.2

5 2.8 8.2 16.8 12.8 14.3 14.6 15.9 15.8

7 2.9 4.0 11.7 13.0 13.3 13.7 15.2 16.0

9 3.0 4.0 7.4 9.5 14.0 13.8 17.0 16.4

11 2.9 4.3 5.4 8.1 14.8 14.0 17.3 16.0

15 2.9 4.1 4.6 5.8 15.5 14.4 14.9 15.9

19 3.4 4.2 4.7 7.9 19.1 14.9 16.3 16.0

23 3.5 4.0 3.8 6.8 31.1 15.6 16.6 16.2

27 3.6 4.2 4.2 6.5 36.1 18.7 17.2 15.9

31 4.0 4.4 4.2 9.0 35.5 25.2 16.7 16.0

39 5.0 4.7 5.0 10.6 34.9 33.2 15.5 16.3

all problems. List lengths ranging from 1 to 39 were used. The results are summarized
in Table 3. We note that solution times for all greedy algorithms improved significantly
asL increased from one, while the solution times of the probabilistic algorithms improved
only slightly if at all. In fact, the performance of SPR and SPF was found to be almost
independent ofL, and the performance of TPF and TPR deteriorated significantly asL
increased beyond 15. Table 3 also reveals that it is always possible to choose a value
of L for which a greedy algorithm performs significantly faster than its corresponding
probabilistic algorithm. It is interesting to note that TGR performed better than TGF for
all values ofL. This was also true when runtimes were used as a performance measure.
More research is required to explain this phenomenon. However, one possible explanation
is that the random application of a shorter tabu list is sufficient to avoid cycling while at the
same time the (occasional) exploration of promising, but otherwise tabu, neighborhoods is
permitted.

We then extended the analysis to problems with different numbers of tasks, but with the
same number of tasks per processors. Again, a large number of problems were generated
and solved using different algorithms and list lengths, and the resulting data sets analyzed
in the same manner as in the previous section. A typical result for algorithm SGF with
from 3,000 to 9,000 processors is shown in figure 4. We note that observed solution times
exhibit more variability as the size of the problem increases.

The effort required to solve a problem with a fixed number of tasks may depend on
the number of processors available to perform these tasks. We ran a number of tests to
determine if different values ofL∗ should be used to solve problems with different numbers
of processors. Typical results for algorithm SGR is shown in figure 5. Each point in this
figure shows the average of 20 solution times for problems with 9,000 tasks and 150, 300
or 450 processors. We see that the optimal value ofL remains unchanged at about 9, but



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 153

Figure 4. Effect of length of the tabu list on the average time required by algorithm SGF to solve problems with
20 tasks per processor. Random, integer processing times drawn from an exponential distribution were used. The
optimal target solution was always found.

Figure 5. Effect of length of the tabu list on the average time required by algorithm SGR to solve problems with
9,000 tasks and 20 to 50 tasks per processor.

that the range of good values around the optimal value appears to decrease very slightly as
the difficulty of the problem increases.

Graphs such as those shown in figures 4 and 5 were developed for all algorithms. Based
on an analysis of these graphs, it was concluded that the value ofL∗ for a given algorithm
did not depend on the size and complexity of the problem being solved. However, the
resulting values ofL∗ differed significantly between different algorithms. Specific values
are listed later in this section.



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

154 THESEN

Least squares approximation of expected solution times.Table 3 suggests the existence
of a well-defined relationship between expected solution times(t), and list length(L) for all
algorithms. If such a relationship can be captured in analytic form, then it should be possible
to solve both for the optimal list lengthL∗ and the corresponding optimal expected solution
time t∗. In addition, we should be able to find range(Rp) of values forL(L lo,p–Lhi,p) for
which t is not more thanp percent greater thant∗.

To estimate the relationship betweent andL, we analyzed data sets from a large number
of experiments similar to the ones illustrated in figures 4 and 5. The data sets were first
sanitized by removing the iteration counts that were recorded when runs were truncated
before the optimal solution was found. This typically occurred when an algorithm was run
with extremely short list lengths. A least-squares fit was then made of the remaining data
to the following function:

τ = f (L , A,aA, bA, c, d, e, n, w) = aA

(L − bA)∗ ln(c× L)
+ d× L + e (5)

Where

τ = estimate of expected solution time,
L = list length,
A= algorithm being used,

aA= constant to be estimated, assumed to depend onA only,
bA= constant to be estimated, assumed to depend onA only,

c= constant to be estimated,
d= constant to be estimated,
e= constant to be estimated,
n= number of tasks for this problem,
w= number of processors for this problem.

Using Microsoft Excel’s Solver routine, we obtained the coefficient values that minimized
the sums of the squares of errors between observed and estimated solution times. Promising
fits were found for several data sets. However, only for algorithm TGR did the data have
sufficiently low variability to yield useful results. A typical result is shown in figure 6.

Excel was also used to findL∗ and Rp for problems of different sizes (Table 4). We
note thatL∗ does not appear to be affected by problem size. Table 4 also gives the range
of values ofL that leads to an expected solution time within 5% of the optimal. We note

Table 4. Estimated parameters and optimal lists lengths for problems with 20 tasks per processor.

Algorithm Tasks Processors a b c d e msq error L lo L∗ Lhi t∗

TGR 3,000 250 18.4 1.87 221661.0 0.04 0.63 0.03 5.4 7.5 11.1 1.1

TGR 5,000 250 18.4 1.87 3798.6 0.05 1.40 0.04 5.5 7.9 12.4 2.1

TGR 7,000 250 18.4 1.87 74.9 0.10 3.29 0.52 4.5 7.6 12.5 4.5

TGR 9,000 250 18.4 1.87 26.6 0.17 4.77 0.22 4.5 6.7 10.8 6.6



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 155

Figure 6. Effect of the length of the tabu list on the average time algorithm TGR needs to solve problems with
20 tasks per processor. Each point is the average for 50 different problems. Curves are least-squares estimates
using Eq. (5). All runs were terminated after 20,000 nonimproving moves.

that this range fluctuates with problem size, but no trend is observed. Similar results were
obtained for the other algorithms.

3.3. Recommendations

Based on the analysis described above, recommended values forL were established for
each algorithm. These are listed in Table 5. Note that the recommended values ofL are
independent of problem size and complexity. Algorithms using solutions as tabus were
less sensitive to the choice ofL than were those using tasks as tabus. The performance of
algorithms SPR and SPF did not depend on the value ofL. For the sake of simplicity, a
value ofL equal to zero is recommended for these two algorithms.

The eight recommended algorithms were used to solve 1,000 identical, randomly gen-
erated problems with 500 to 9,000 tasks and 25 to 450 processors. A summary of the

Table 5. Recommended values ofL for different algorithms.

Algorithm L∗ L lo–Lhi Remarks

SGF 15 14–40 Performs well with long lists.

SGR 10 7–40 Performs well with long lists.

SPF 0 0 SPF and SPR are identical whenL = 0.

SPR Slow, but optimal solution was always found.

TGF 17 ? Slow, highly variable solution times.

TGR 9 6–11 Best performer.

Predictable solution times.

Performs poorly with shorter lists.

TPF 7 1–15 Slow, but optimal solution was always found.

TPR 7 1–25 Slow, but optimal solution was always found.



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

156 THESEN

Table 6. Mean and standard deviations of solution times and iteration
counts for optimized algorithms solving problems with 9,000 tasks and
450 processors.

Iterations to optimum Seconds to optimum

Algorithm avg. stdv. avg. stdv.

TGR 2501 151.3 7.3 1.8

SGR 3150 584.2 10.1 2.5

SGF 3618 1101.8 11.1 3.5

TGF 15964 7724.1 25.5 12.0

TPF 5626 361.0 27.5 6.1

TPR 5447 396.3 29.1 6.2

SPF 4746 263.9 29.3 5.8

SPR 4745 275.9 29.7 6.2

resulting performance data for the case with 500 processors and 9,000 tasks is given in
Table 6. Observe that algorithm TGR performed significantly faster and with significantly
less variability than all other algorithms. Similar results were observed for all other combi-
nations of tasks and processors. We conclude that algorithm TGR with a list length equal
to 9 is the best of the algorithms evaluated here.

4. Evaluation

In Section 3 we used test problems for which an optimal solution could always be found.
This was done to simplify the process of fine-tuning sub-algorithms and identifying the best
combination of features. Here we will evaluate the performance of the winning algorithm
(TGR) when confronted with more complex problems. Since the value of the optimal
solution for these problems may not be equal to the ideal schedule duration(T∗), we will
adopt a performance measure first used by H¨ubscher and Glover (1994). Specifically,
the quality of the resulting solution will be measured as1T = (T − T∗)/T . First, we
will explore how the effort needed to solve a problem is affected by the precision of task
durations. Then we will present a benchmark comparison between the effort expended by
algorithm TGR to solve random problems with durations in the range 0.0–1.0 and similar
results reported by H¨ubscher and Glover (algorithm HG). We will see that algorithm TGR
deals efficiently with more complex problems and that it terminates in fewer iterations
than algorithm HG while reaching solutions of similar or higher quality. This performance
advantage is particularly apparent for larger test problems.

4.1. Problem complexity

The number of potentially different solutions to a multiprocessor scheduling problem de-
pends in part on the precision used to express task duration. A study was conducted to
determine how well the algorithm would perform when solving problems where task dura-
tions are expressed with a higher degree of precision than the three to six digits used in the



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 157

Table 7. The effect of task-time precision on solution effort and quality
when solving problems with 50 processors and 2,000 tasks with random
durations drawn from an (integer) uniform distribution. Ten replications
are used. Runs are terminated after 20,000 nonimproving moves.

Precision Average number of Average
(Max digits in task duration) iterations 1T × 108

2 1 0

3 27 0

4 314 0

5 2,649 0

6 24,943 1.0

7 75,115 1.9

8 103,110 1.6

9 135,043 1.2

10 106,285 1.3

11 79,027 0.7

Double precision 103,291 1.1

previous section. Typical results are shown in Table 7 for problems with 50 processors and
2,000 tasks with durations drawn from uniform distributions with a range from 1–102 to
1–1011. For each class of problems we report the average iteration count for 10 replications,
as well as the observed average values for1T . We note that optimal solutions were always
reached when a precision of 105 or less was used, and that a precision of 1.9× 10−8 or less
was obtained when a higher level of precision was used. We also note that the number of
iterations needed to reach the final solution increased substantially as the precision of task
durations is increased up to nine digits, and that further increases in precision did not lead
to further increase in the iteration counts or to higher quality solutions. Spot checks verified
the hypothesis that improved solutions would be attained for problems using high precision
durations if a stopping rule such as 100,000 nonimproving solutions were used. Needless to
say, this improvement will be at the cost of a significant increase in iteration counts. Almost
identical results were obtained when exponentially distributed task durations were used.

4.2. Pseudo-cycles

Inspections of solution paths revealed the frequent presence of “pseudo-cycles”. In this
context, we define a pseudo-cycle as a sequence of solutions where a few tasks cycle
between a small number of processors, while, at the same time one or two other task
assignments are permanently changed. Since all solutions in a pseudo-cycle are unique,
such cycles are not detected when solutions are used. However, our data suggests that
pseudo-cycles are effectively broken when an accessible tabu list of random length is used.
As suggested in Section 2, information accumulated in long-term memory may also be
exploited to discourage the frequent moves associated with pseudo-cycles. To explore this



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

158 THESEN

Table 8. Percent change in performance for using Eq. (3) in place of Eq. (1) to evaluate moves. Changes in
bold are statistically significant at the 5% level.

SGF SGR SPF SPR TGF TGR TPF TPR

Iterations − 21.5 − 7.5 − 4.6 − 5.2 − 70.1 − 2.2 − 6.4 − 3.7

Solution time 15.3 31.7 1.0 1.7 − 42.7 35.6 2.5 − 1.7

possibility, we modified the evaluation function used in the local search (Eq. (1)) to include
the penalty for frequently moved tasks suggested in Eq. (3). The changes in performance
due to this modification for problems with 9,000 tasks and 450 processors are shown in
Table 8.

The most significant change in solution time (−42.7%) is observed for algorithm TGF.
However, the resulting average solution time (14.6 s) is still the slowest time for all greedy
algorithms. Although no other improvements in solution times were observed, it is in-
teresting to note that all iteration counts were significantly reduced. Given the significant
overhead in execution times, and the resulting minor reduction in iteration count, we do
not recommend this approach for the problems studied here. Further research may lead to
implementations that better exploit this reduction in iteration counts.

4.3. Benchmarking

Hübscher and Glover (1994) give performance data for an algorithm solving 110 randomly
generated problems similar to the ones solved here. Ten problems were generated and solved
for eleven different combinations of processors and servers. Problem difficulty ranged from
relatively easy (2 processors and 20 tasks) to somewhat difficult (50 processors and 2,000
tasks). All task durations were drawn from a uniform distribution with a range from zero
to one. For each set of 10 problems the average number of iterations needed to reach the
final solution was reported, as was the average range and average value of the performance
measure1t . Their results and the corresponding values for algorithm TGR solving similar
problems are listed in Table 9.

It is seen that algorithm TGR in all but one case used fewer iterations to reach the final
solution. In fact, algorithm TGR needed on the average 34,786 iterations to reach the final
solution while, on the average 78,082 iterations were needed for algorithm HG. It should
be noted that the test problems solved by the two algorithms were different, although they
were generated in the same way. Hence, some of these differences are likely to be due
to differences in the two randomly generated problem sets. However, at-test confirmed
on the 95% level, the hypothesis that the mean iteration counts were drawn from different
populations.

The data in Table 9 also shows that this improvement in efficiency is accompanied by
a corresponding improvement in solution quality. The average value of1T for the solu-
tions obtained by algorithm TGR was 1.4× 10−8 while it was 2.1× 10−8 for the solutions
obtained by algorithm HG. In no case did algorithm HG yield a solution with a higher
quality than the one obtained by algorithm TGR. Again, it should be noted that the two



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

MULTIPROCESSOR SCHEDULING 159

Table 9. Performance of algorithm TGR when solving random problems similar to those solved by
Hübscher and Glover. Averages are based on 10 replications. Double precision is used. Runs were
terminated after 20,000 nonproductive moves. H&G results are from H¨ubscher and Glover (1994).

Average no. of iterations to final solution Average1T × 108

No. of
processors

No. of
tasks H&G TGR H&G TGR

2 50 17,607 10,232 1.1 0.7

2 100 19,157 18,888 0.1 0.1

3 100 16,384 21,248 0.8 0.4

3 200 39,293 17,814 0.1 0.1

5 100 36,392 21,979 4.4 3.3

5 200 51,982 20,367 1.4 0.3

10 200 101,801 37,556 5.0 4.8

10 500 84,816 32,740 1.1 0.3

20 500 153,526 46,149 3.2 3.2

20 1,000 124,540 52,381 1.8 0.5

50 2,000 224,408 103,291 4.5 1.1

algorithms solved different test problems, hence, some of this difference is likely to be due
to differences in the two randomly generated problem sets.

The performance differences between the two algorithms were most significant for
larger problems. For example, for problems with 10 or more bins and 200 and more
tasks, TGR needed an average of 54,423 iterations to reach the final solution while HG
needed an average of 137,818 iterations. The corresponding average solution qualities were
1T = 3.1× 10−8 for HG and1T = 2.0× 10−8 for TRG. Hence, for more difficult prob-
lems, a 61% reduction in average iteration count was accompanied by a 37% improvement
in solution quality. This is significant as it suggests that the effort needed to solve problems
of increasing size increases at a slower rate for algorithm TGR.

5. Conclusion

In this paper we introduced and evaluated eight different approaches to the design of a
tabu search algorithm for solving a multiprocessor scheduling problem. This algorithm
differs from many similar algorithms in their simplicity, and in their sparse use of heuristic
“weights” and “scale factors”. Among the design options used to implement these algo-
rithms were probabilistic and local search algorithms, the use of solutions and tasks as
tabus, and the use of accessible tabu lists of fixed and random length. It was found that a
probabilistic local search algorithm never performed as fast as a greedy search algorithm
with appropriate parameters. On the other hand, the performance of the probabilistic search
was relatively independent of the length of the tabu list. This suggests that a probabilistic
search without any tabu list at all may be the algorithm of choice for one-of-a-kind problems
where the time and expense of developing, debugging and fine-tuning a tabu list scheme
may not be cost effective. Also, there may be ways of improving run times by using more
advanced software design techniques that would make this approach more effective.



P1: SAD

Journal of Heuristics KL604-03-Thesen June 23, 1998 16:37

160 THESEN

The use of accessible tabu lists of random length improved the performance of all algo-
rithms. This improvement was particularly significant for algorithms using tasks as tabus.
Hash coding without conflict resolution proved to be an effective way to manage solutions
on the tabu list. The efficiency of this approach was evidenced by a barely noticeable
increase in solution times as the length of the list increased. Long tabu lists were effective
when solutions were used. Although hash-coded solutions were effective list entries, the
use of recently moved tasks proved to be even more effective when an accessible list of
random length was used. This increase in efficiency can at least in part be attributed to the
fact that no list management was needed when tasks were used.

All algorithms were sensitive to the choice of the list length parameter. Too short a
list resulted in exceptionally poor performance for algorithms using a greedy local search.
Longer lists quickly degraded performance when tasks were tabus. Performance was de-
graded much more slowly when solutions were used. In all cases, it would be better to
use a list length longer than the optimal one than one shorter than the optimal one. Large
and complex problems were more sensitive to the choice of list length than were smaller,
simpler problems.

References

Anderson, Charles A., Kathryn Fraughnaugh, Mark Parker, and Jennifer Ryan. (1993). “Path Assignment for Call
Routing: An Application of Tabu Search,”Annals of Operations Research41, 301–312.

Barnes, J.W. and M. Laguna. (1993). “A Tabu Search Experience in Production Scheduling,”Annals of Operations
Research41, 141–156.

Barnes, J.W., M. Laguna, and F. Glover. (1995). “An Overview of Tabu Search Approaches to Production Schedul-
ing Problems.” In D.E. Brown and W.T. Scherer (eds.),Intelligent Scheduling System. Kluwer Academic Pub-
lishers, pp. 101–127.

Blazewicz, J., K.E. Ecker E. Pesch, G. Schmidt, and J. Weglarz. (1995).Scheduling Computer and Manufacturing
Processes. Berlin: Springer-Verlag.

Glover, F. (1986). “Future Paths for Integer Programming and Links to Artificial Intelligence,”Computers and
Operations Research13, 533–549.

Glover, F. (1995). “Tabu Search Fundamentals and Uses, Revised and Expanded: April 1995.” Technical Report,
Graduate School of Business, University of Colorado, Bolder, CO.

Glover, F. and M. Laguna. (1997).Tabu Search. Boston: Kluwer Academic Publishers.
Graham, R.L. (1969). “Bounds for Certain Multiprocessing Anomalities,”SIAM J. Appl. Math. 17, 263–269.
Graham, R.L. (1976). “Bounds on Performance of Scheduling Algorithms.” In E.G. Coffman, Jr. (ed.),Scheduling

in Computer and Job Shop Systems. Chapt. 5, New York: John Wiley.
Johnson, D.S., A Demers, J.D. Ullman, M.R. Garey, and R.L. Graham. (1974). “Worst Case Performance Bounds

for Simple One-Dimensional Packing Algorithms,”SIAM Journal on Computing3, 299–326.
Hübscher, Roland and F. Glover. (1994). “Applying Tabu Search with Influential Diversification to Multiprocessor

Scheduling,”Computers in Operations Research21, 877–844.
Kämpke, Thomas. (1988). “Simulated Annealing: Use of a New Tool in Bin Packing,”Annals of Operations

Research16, 327–332.
Knuth, D. (1973).The Art of Computer Programming: Sorting and Searching. Reading, MA: Addison-Wesley.
Laguna, M. and F. Glover. (1993). “Integrating Target Analysis and Tabu Search for Improved Scheduling Systems,”

Expert Systems With Applications6, 287–297.
Løkketangen, A. (1995). “Tabu Search as a Metaheuristic Guide for Combinatorial Optimization Problems,” Dr.

Scient. Thesis, Institute for Informatics, University of Bergen, Bergen, Norway.
Morton, T.E. and David W. Pentico. (1993).Heuristic Scheduling Systems. New York, NY: John Wiley & Sons.
Osman, I. and J.P. Kelly (eds.). (1996).Meta-Heuristics. Theory and Applications. Boston: Kluwer Academic

Publishers.
Taillard, Eric D. (1994). “Parallel Taboo Search Techniques for the Job Shop Scheduling Problem,”ORSA Journal

on Computing6(2), 108–117.


