
Genetic Programming of Minimal Neural Nets

Using Occam's Razor�

Byoung-Tak Zhang Heinz M�uhlenbein

Arti�cial Intelligence Research Division

German National Research Center for Computer Science (GMD)

Schloss Birlinghoven, D-5205 Sankt Augustin 1, Germany

e-mail: zhang@gmd.de, muehlen@gmd.de

Abstract

A genetic programming method is investigated

for optimizing both the architecture and the con-

nection weights of multilayer feedforward neural

networks. The genotype of each network is rep-

resented as a tree whose depth and width are dy-

namically adapted to the particular application

by speci�cally de�ned genetic operators. The

weights are trained by a next-ascent hillclimb-

ing search. A new �tness function is proposed

that quanti�es the principle of Occam's razor. It

makes an optimal trade-o� between the error �t-

ting ability and the parsimony of the network.

We discuss the results for two problems of di�er-

ing complexity and study the convergence and

scaling properties of the algorithm.

1 INTRODUCTION

Optimization of neural network architectures for par-

ticular applications is important because the speed and

accuracy of learning and performance are dependent

on the network complexity, i.e. the type and num-

ber of units and connections, and the connectivity of

units. For example, a network having a large number

of adjustable connections tends to converge fast, but

it usually leads to over�tting of the training data. On

the other hand, a small network will achieve a good

generalization if it converges, it needs, however, gen-

erally a large amount of training time (Abu-Mostafa

1989). Therefore, the size of the network should be as

small as possible, but su�ciently large to ensure a fast

convergence to the training set.

Genetic algorithms have been used to design network

architectures. The network design problem can be re-

�Proc. of the Fifth Int. Conf. on Genetic Algorithms

(ICGA-93), Morgan Kaufmann, 1993, pp. 342{349.

garded as a search for an architecture which �ts best

to the speci�ed task according to some explicit �t-

ness criteria. M�uhlenbein and Kindermann (1989) dis-

cuss general problems for evolving genetic neural net-

works. Harp et al. (1989) and Miller et al. (1989)

suggest representation schemes in which the anatomi-

cal properties of the network structure are encoded as

bit-strings. Similar representation has also been used

by Whitley et al. (1990) to prune unnecessary con-

nections. Kitano (1990) and Gruau (1992) describe

encoding schemes in which a network con�guration

is indirectly speci�ed by a graph generation grammar

which evolves by genetic algorithms. All these meth-

ods use the backpropagation algorithm (Rumelhart et

al. 1986) to train the weights of the network. Koza

(1990) provides an alternative approach to represent-

ing neural networks, under the framework of so-called

genetic programming, which enables modi�cation not

only of the weights but also of the architecture for a

neural network. However, this method does not �nd a

network of minimal complexity.

In this paper we describe a new genetic program-

ming method for constructing minimal neural net-

works. Using an Occam's razor in the �tness function,

the method prefers a simple network architecture to

a complex one. The weights are trained not by back-

propagation, but by a next-ascent hillclimbing search.

The breeder genetic algorithm BGA (M�uhlenbein et

al. 1993) is used for evolving optimal networks.

The paper is organized as follows. In Section 2, the

�tness function for the genetic search of minimal com-

plexity solutions is derived. The representation scheme

and genetic operators as well as the control algorithm

for adapting the architectures and the weights are de-

scribed in Section 3. Section 4 shows the experimental

results, which is followed by an analysis of �tness land-

scapes in Section 5, and discussions in Section 6.



2 QUANTIFYING OCCAM'S

RAZOR

Occam's razor states that unnecessarily complex mod-

els should not be preferred to simpler ones. This sec-

tion gives a quantitative Occam's razor for construct-

ing minimal complexity neural networks by genetic al-

gorithms.

In de�ning minimality, it is important that the net-

work be able to approximate at least the training set to

a speci�ed performance level. A small network should

be preferred to a large network only if both of them

achieve a comparable performance. Otherwise, the al-

gorithm would not reduce the approximation error,

preferring smaller networks which can not be powerful

enough to solve the task. So the �rst term of the �t-

ness function of an individual network should be the

error function. The error function commonly used for

the data set D = f(xi; yi) j i = 1; :::; Ng of N exam-

ples is the sum of squared errors between the desired

and actual outputs:

E(DjW;A) =

NX
i=1

E(yijxi;W;A) (1)

with

E(yijxi;W;A) =

mX
j=1

(yij � oj(xi;W;A))
2

: (2)

Here yij denotes the jth component of the ith desired

output vector yi, and oj(xi;W;A) denotes the j-th ac-

tual output of the network with the architecture A and

the set of weights W for the i-th training input vector

xi.

The complexity of a neural network architecture is de-

pendent on the task to be learned and can be de�ned in

various ways, depending on the application. In general

the number of free parameters (or adjustable weights)

of the network should be minimal, since this is one of

the most important factors determining the speed and

accuracy of the learning. Additionally, large weights

should in general be penalized (regularization), in the

hope of achieving a smoother or simpler mapping (Pog-

gio and Girosi 1990; MacKay 1992). We de�ne the

complexity, C, of a network as

C(W jA) =
KX
k=1

w2

k (3)

where K is the number of free parameters. Notice that

K can be arbitrarily large, because we �t the architec-

tures too. In the case of binary weights, C reduces to

the number of synaptic connections. This complexity

measure might be extended by additional cost terms,

such as the number of layers when the application re-

quires a fast execution of the trained network.

The combined �tness function which we try to mini-

mize is de�ned as

F (DjW;A) = �C(W jA) + �E(DjW;A) (4)

where � and � are constants for the trade-o� between

error �tting and complexity reduction. This �tness

function has an elegant probabilistic interpretation for

the learning process: according to the Bayesian frame-

work, minimizing F is identical to �nding the most

probable network with architecture A and weights W

(Sorkin 1983; Tishby et al. 1989).

To see this, let us de�ne the following. Let D be the
data set for the function 
 : X ! Y , i.e.

D = f(xi; yi) j xi 2 X; yi 2 Y; yi = 
(xi); i = 1:::Ng:

Then a modelM of the function 
 is an assignment to

each possible pair (x; y) of a number P (yjx) represent-
ing the hypothetical probability of y given x. That is,

a network with speci�ed architecture A and weights

W is viewed as a model M = fA;Wg predicting the

outputs yi as a function of input xi in accordance with

the probability distribution:

P (yijxi;W;A) =
exp(��E(yijxi;W;A))

Z(�)
(5)

where � is a positive constant which determines
the sensitivity of the probability to the error value.
Z(�) =

R
exp(��E(yijxi;W;A))dy is a normalizing

constant. Under the assumption of the Gaussian error
model, i.e. if the true output is expected to include
additive Gaussian noise with standard deviation �, we
have

P (yijxi;W;A) =
1p
2��

exp

�
�E(yijxi;W;A)

2�2

�
(6)

with � = 1

2�2
and Z(�) =

p
2��.

A prior probability is assigned to alternative network

model written in the form:

P (W jA) =
exp(��C(W jA))

Z(�)
(7)

where Z(�) =
R
exp(��C(W jA))dKW is a measure

of the characteristic network complexty. The posterior

probability of the network model is then:

P (W jD;A) = exp(��C(W jA)� �E(DjW;A))

Z(�; �)
(8)

with Z(�;�) =
R
exp(��C(W jA)� �E(DjW;A))dKW:



Now let �I(M) be the log of the prior probability of

the modelM, i.e.

I(M) = logP (W jA)�1: (9)

Let �I(DjM) be the log probability of D according

to M:

I(DjM) =

NX
i=1

logP (yijxi;W;A)�1: (10)

Then the probability that bothM is true andD occurs

is

p(M) = exp(�I(D;M)) (11)

where

I(D;M) = I(M) + I(DjM): (12)

As is well known this p results as the posterior prob-

ability of M and the model which maximizes p(M)

would be the best �t. For most real applications,

I(D;M ) can not be computed exactly because the in-

volved probabilities are not known. But it is easily

seen that minimization of the �tness function (4) ap-

proximates maximization of p(M) under the assump-

tion (6).

3 GENETIC BREEDING OF

MINIMAL NEURAL NETS

3.1 BREEDER GENETIC ALGORITHM

For the evolution of minimal neural networks we use

the breeder genetic algorithm BGA of M�uhlenbein et

al. (1993). In contrast to the usual GA's model of

natural evolution, the BGA models rational selection

performed by human breeders. The BGA maintains

a population P consisting of M individuals of neu-

ral networks. Each network of the initial population,

P(0), is generated with a random number of layers.

The receptive �eld of each neural unit and its width

are also chosen randomly.

The t-th population, P(t), is created from P(t� 1) in

three steps: selection, hillclimbing, and recombination.

In the selection step, �% of the most �t individuals in

P(t� 1) are accepted into the mate set S. Then each

individual in S undergoes a hillclimbing search where

the weights of the network are adapted by mutation.

This results in the revised mate set S0. The recom-

bination phase repeatedly selects two random parent

individuals in S0 to mate and generate two o�spring,

until the population size amounts to M .

A new population is generated repeatedly until an ac-

ceptable solution is found or the variance falls below a

speci�ed limit value Vmin, i.e.

1

M

MX
i=1

�
F (i)� �F

�
2 � Vmin (13)

where �F is the average �tness of the individuals in

P(t). If a solution is found, the algorithm stops. If a

solution is not found but the population has converged

to a local minimum, then the algorithm starts again

by initializing a new population.

3.2 REPRESENTATION

For the experiments we have used McCulloch-Pitts

neurons. The McCulloch-Pitts neuron is a binary de-

vice, i.e. it can be in only one of two possible states.

Each neuron has a threshold. The neuron can re-

ceive inputs from excitatory and/or from inhibitory

synapses. The neuron becomes active if the sum of

weighted inputs exceeds its threshold. If it does not,

the neuron is inactive. Formally, the neurons used in

this work has the threshold activation function:

yj =

�
1 if

P
iwjixi > �j

0 otherwise
(14)

where wji is the connection weight from unit i to

unit j and �j denotes the threshold value for unit j.

Despite their simplicity, McCulloch-Pitts neurons are

very powerful. In fact, it can be shown that any �nite

logical expression can be realized by them (McCulloch

and Pitts 1943).

Figure 1 describes the grammar for generating a feed-

forward network of n inputs andm outputs. A network

is represented as a set of m trees, each corresponding

to one output unit. In the grammar, the nonterminal

symbol Y is used to represent a neural unit having a

threshold of � and r weights. The integer r indicates

the receptive �eld width of the unit. Each connection

weight is represented as a nonterminal node W con-

sisting of a symbol `W', a weight value w, followed by

a nonterminal symbol indicating recursively another

neural unit Y or an external input unit X. An exter-

nal input is described by a symbol `X' followed by an

integer i denoting the index of the input unit.

In the �rst experiments we used binary thresholds.

McCulloch-Pitts neurons allow integer thresholds.

Networks with binary thresholds can realize networks

with integer thresholds by using additional neurons.

Similarly, integer weights can also be realized by neu-

rons using binary weights. The number of weights and

units is usually reduced if the genotype is transformed

into a network of integer values. This is illustrated in



Figure 3: Crossover operation

Unlike the mutation, the crossover operator adapts the

size and shape of the network architecture. A crossover

operation starts by choosing two parent individuals

which are chosen randomly from the mate set. Ac-

tual crossover of two individuals, i and j, is done on

their genotypical representations si and sj . The nodes

in the tree are numbered according to the depth-�rst

search order and crossover sites ci and cj are chosen

at random with the following conditions:

1 � ci � Size(si) and 1 � cj � Size(sj ):

Here, the length of an individual, Size(si), is de�ned

as the total number of units and weights.

Given the crossover points, the subtrees of two parent

individuals, si and sj , are exchanged to form two o�-

spring s0i and s0j (Figure 3). The label of the nodes

ci and cj must belong to the same class, i.e. either

both Y -type or both W -type nodes. The number of

arguments of each operator plays no role because the

syntactically correct subtree under the node ci and cj
is completely replaced by another syntactically correct

expression.

4 EXPERIMENTAL RESULTS

The convergence and scaling properties of the method

were studied on two classes of problems with di�erent

di�culty: majority and parity. The majority function

of n inputs (n odd) returns a 1 if more than half of



Figure 4: Solutions for 4-parity problem (a) minimal

(b) discovered

growth and pruning is repeated to �t errors on one

hand and to minimize the complexity of the network

on the other hand. The corresponding evolution of

the �tness values of the best individuals in each gen-

eration is depicted in Figure 6. It is interesting to

notice that the global behavior of this optimization

method is comparable with the group method of data

handling (GMDH) in which additional terms are in-

crementally added to the existing polynomial approx-

imator to achieve a minimal description length model

of a complex system (Ivakhnenko 1971).

In general, the results are encouraging. For large size

problems of some class, however, the convergence was

very slow. A simple optimization method does not ex-

ist which performs better than any other optimization

method for a reasonable large class of binary functions

of size n. To be powerful, every sophisticated opti-

mization method has to be tuned to the application

(M�uhlenbein 1993). In order to speed up the genetic

search, an analysis of the �tness landscape has to be

made.



5 10 15 20 25 30
g

25

50

75

100

125

150

C

#weights

#layers x 10

#units

Figure 5: The evolution of network complexity in terms of

the number of weights, layers, and units for the best indi-

vidual in each generation. Growth and pruning is repeated

to �nd an optimal complexity which is parsimonious but

large enough to solve the problem.

5 ANALYSIS OF FITNESS

LANDSCAPES

The number of local optima, their distribution and the

basins of attraction are some of the variables necessary

to describe a �tness landscape. For the evaluation of

search strategies more speci�c questions have to be

answered:

� How do local optima vary with the �tness?

� How many local optima are there with respect to

1-mutant moves?

These questions have been studied on two problems:

XOR and OR function of two inputs. For each problem

we analysed two search spaces of di�erent dimension.

One was a feedforward network of 2-2-1 architecture

which has 9 free parameters (6 binary weights plus 3

binary thresholds). The other search space was a 2-

3-1 architecture having 13 free parameters (9 binary

weights plus 4 binary thresholds). The 2-2-1 architec-

ture is known as minimal for solving the XOR problem,

while the minimal architecture for the OR problem is a

2-1 architecture (no hidden units). So the OR network

has an excessive degree of freedom. In describing the

landscapes, we should focus on the statistical charac-

teristics of them because the spaces are too large to

list all the details. For the analysis, the �tness func-

tion consisted of the error term only; the coe�cient �

in (4) was set to zero.

The �tness distributions are shown in Table 2. Notice

that each of the XOR and OR networks has two binary

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30 35

generation

fit
ne

ss

combined fitness (F)
error (E’)
complexity (C’)

Figure 6: The evolution of the network �tness F decom-

posed into the normalized error E0 and the extended com-

plexity C 0. In spite of a �xed Occam factor, the relative

importance of the complexity term increases as evolution

proceeds.

inputs, resulting in four input-output pairs. Hence a

speci�c network can have only one of �ve �tness values

(0.0 in case of all four examples are classi�ed correctly,

0.25 if one example is classi�ed incorrectly, and so on.),

ignoring the complexity term. The analysis shows that

the XOR-9 network has only two (0.4%) isolated global

optima, while the OR-9 net has �fteen (2.9%) optima.

Growth of the dimension from 9 to 13 increases the

proportion of optima of XOR by 0.2%, but reduced

that of OR by 0.2%. The table shows also that the

�tness of OR-9 is more uniformly distributed than that

of XOR-9, suggesting that a search step in the OR

network space would get more information than a step

in the XOR space.

Table 2: Fitness distribution

XOR OR

d = 9 d = 13 d = 9 d = 13

F (i) = 0:00 0.004 0.006 0.029 0.027

F (i) = 0:25 0.125 0.121 0.301 0.281

F (i) = 0:50 0.805 0.767 0.140 0.165

F (i) = 0:75 0.002 0.097 0.512 0.501

F (i) = 1:00 0.004 0.009 0.018 0.026

To see how the local optima vary, we computed the

probability of an individual i �nding a better, same,

and worse �t neighbor n by a single mutation, respec-

tively (Table 3). Here, a better �t neighbor n of i

means F (n) is smaller than F (i), since we attempt to

minimize the �tness function. The table shows, for

instance, that for XOR-9 the probability of �nding a



Table 3: Fitness distribution of neighbors

XOR OR

d = 9 d = 13 d = 9 d = 13

P [F (n) < 0:00] 0.000 0.000 0.000 0.000

P [F (n) = 0:00] 0.000 0.192 0.296 0.380

P [F (n) > 0:00] 1.000 0.808 0.704 0.620

P [F (n) < 0:25] 0.024 0.028 0.035 0.034

P [F (n) = 0:25] 0.431 0.488 0.290 0.718

P [F (n) > 0:25] 0.545 0.484 0.350 0.248

P [F (n) < 0:50] 0.084 0.075 0.360 0.282

P [F (n) = 0:50] 0.860 0.853 0.290 0.402

P [F (n) > 0:50] 0.056 0.072 0.350 0.316

P [F (n) < 0:75] 0.708 0.559 0.170 0.155

P [F (n) = 0:75] 0.264 0.397 0.812 0.822

P [F (n) > 0:75] 0.028 0.044 0.018 0.023

P [F (n) < 1:00] 1.000 0.820 0.802 0.650

P [F (n) = 1:00] 0.000 0.180 0.198 0.350

P [F (n) > 1:00] 0.000 0.000 0.000 0.000

better neighbor is only 8.4% if the �tness of the indi-

vidual is 0.5. For OR, the corresponding probability

is 36.0%. It can also be seen in both tables that the

increase of the dimensionality of the search space from

9 to 13 leads to a change in the �tness distributions

and landscapes, meaning the modi�cation of network

architecture can make it easier to train the weights.

We also computed the probability of a con�guration

�nding a better �t neighbor by steepest-descent hill-

climbing, i.e. by looking at all its neighbors at Ham-

ming distance 1. Not surprisingly for this kind of land-

scape, one has for XOR a less than 50% chance of �nd-

ing a better con�guration. For OR, the probability is

about 70%. This means steepest-descent hillclimbing

would be e�ective for OR, but not for XOR. This ex-

plains in part why our experiments showed a good scal-

ing property for the majority function (a kind of OR)

in comparison to the parity problem (whose smallest

size is XOR).

6 FUTURE WORK

We have presented an evolutionary method for opti-

mizing both the network architecture and the weights

at the same time. The method uses trees to repre-

sent a feedforward network whose size and topology

are dynamically adapted by genetic operators. A new

�tness function has been proposed which proved to

work well in combination with the breeder genetic al-

gorithm. Experimental results have shown that, given

enough resources, the method �nds minimal complex-

ity networks with respect to the representation scheme

used. As opposed to conventional learning algorithms

for neural networks, the genetic programming method

makes relative few assumptions on the structure of

the search space. Thus, the same method described

above can also be used to breed networks of radial basis

functions, sigma-pi units, or any mixture of them, in-

stead of the threshold or sigmoid units. The potential

for evolving neural architectures that are customized

for speci�c applications is one of the most interesting

properties of genetic algorithms. The present work can

be extended in three directions.

First, the information about the �tness landscape can

be used to speed up convergence. As was shown, the

�tness landscapes are characterized by large plateaus.

The basin of attraction of the global optimum is fairly

small. We have also seen that the �tness landscapes

are changed by modifying the architectures. It is ex-

pected that �tness landscapes will generally have large

plateaus as the network complexity approaches to a

minimum, which makes it di�cult for a hillclimber to

reach the minimum. A possible method of accelerat-

ing the convergence speed would be to start with larger

networks (than are supposed to be minimal) and to let

the network be pruned by the Occam factor.

A second improvement involves the encoding of neu-

ral nets in chromosomes. Although the current strong

or direct representation scheme worked well for many

problems, a scaling problem was observed in cases that

the problem requires a large network or the magnitude

of weights grows large. An alternative representation

scheme might be a weak or indirect mapping. For ex-

ample, Gruau (1992) describes a method that uses a

graph grammar for generating connection matrices of

networks. This reduces the chromosome size and so

it can �nd more regular connectivity patterns relative

e�ciently. However, they necessarily involve severe

constraints on the network search space and cannot be

useful for �nding a minimal complexity network of ar-

bitrary topology. In addition, in the weak speci�cation

scheme the genotype must be converted to the pheno-

type every time the weights are trained and/or the �t-

ness of an individual is evaluated, what is not needed

in the strong speci�cation scheme. We are looking for

a more compact representation scheme which exploits

the advantages of both the direct and the indirect en-

coding.

A third future work concerns the study of other fac-



tors, for instance the e�ect of training set, on con-

vergence speed and generalization performance of the

algorithm. The genetic programming involves a time-

consuming process of evaluating training examples.

Although we have used in the experiments all possible

examples to ensure a 100% accuracy, usual applica-

tions of neural networks do not require a perfect gen-

eralization, but a reasonable performance (e.g. 95%).

In this case, the �tness evaluation time can be saved

enormously, if we have an e�cient method for selecting

examples critical to speci�c tasks (Zhang and Veenker

1991a; Zhang 1992). The integration of active data

selection to the genetic programming should improve

the e�ciency and scaling property of the method de-

scribed above.

Although we have focused in this paper on the appli-

cation aspect of genetic algorithms, neural net opti-

mization provides a very interesting problem worthy

of theoretical study from the genetic algorithm point

of view. For example, the problem we discussed had to

handle variable length of chromosomes by which the

�tness landscape is modi�ed during evolution. This

kind of problem is contrasted with usual applications

of genetic algorithms in which the search space is �xed.

Acknowledgements

The authors thank J�org Kindermann, Frank �Smieja,

Dirk Schlierkamp-Voosen, and the other members of

the learning systems research group of the GMD for

useful comments on the draft versions of this paper.

This work was supported by the Real World Comput-

ing Programme under the project SIFOGA.

References

Y. S. Abu-Mostafa (1989). The Vapnik-Chervonenkis di-

mension: information versus complexity in learning. Neu-

ral Computation, 1(3):312{317.

F. Gruau (1992). Genetic synthesis of boolean neural net-

works with a cell rewriting developmental process. Tech.

Rep., Laboratoire de l'Informatique du Parall�elisme.

S. A. Harp, T. Samad, and A. Guha (1989). Towards the

genetic synthesis of neural networks, Proc. ICGA-89, 360{

369. Morgan Kaufmann.

A. G. Ivakhnenko (1971). Polynomial theory of complex

systems. IEEE Trans. Sys. Man and Cybern., SMC-

1(4):364{378.

H. Kitano (1990). Designing neural networks using genetic

algorithms with graph generation system. Complex Sys-

tems, 4:461{476.

J. R. Koza (1990). Genetic Programming: A paradigm for

genetically breeding populations of computer programs to

solve problems. Tech. Rep. STAN-CS-90-1314, Dept. of

Computer Science, Stanford Univ., CA.

D. J. C. MacKay (1992). Bayesian methods for adaptive

models. Ph.D. thesis, Caltech, Pasadena, CA.

W. S. McCulloch, and W. Pitts (1943). A logical calculus

of the ideas immanent in nervous activity. Bull. Math.

Biophysics, 5:115{133.

G. F. Miller, P. M. Todd, and S. U. Hegde (1989). De-

signing neural networks using genetic algorithms. Proc.

ICGA-89, 379{384. Morgan Kaufmann.

H. M�uhlenbein (1993). Evolutionary algorithms: the-

ory and applications. To appear in E. H. L. Aarts, and

J. K. Lenstra (eds.), Local Search in Combinatorial Opti-

mization, Wiley.

H. M�uhlenbein, and J. Kindermann (1989). The dynam-

ics of evolution and learning|Towards genetic neural net-

works. In R. Pfeifer et al. (eds.), Connectionism in Per-

spective, 173{197, North-Holland.

H. M�uhlenbein, and D. Schlierkamp-Voosen (1993). Pre-

dictive models for the breeder genetic algorithm I: contin-

uous parameter optimization. Evolutionary Computation,

1(1).

T. Poggio, and F. Girosi (1990). Networks for approxima-

tion and learning. Proc. IEEE, 78(9):1481{1497.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1986).

Learning internal representations by error-propagation. In

D. E. Rumelhart, and J. L. McClelland (eds.), Parallel

Distributed Processing, Vol. I, 318{362. MIT Press.

R. Sorkin (1983). A quantitative Occam's razor. Int. J.

Theor. Phys., 22(12):1091{1104.

N. Tishby, E. Levin, and S. A. Solla (1989). Consistent

inference of probabilities in layered networks: predictions

and generalization. Proc. Int. Joint Conf. Neural Net-

works, Vol. II, 403{409. IEEE.

D. Whitley, T. Starkweather, and C. Bogart (1990). Ge-

netic algorithms and neural networks: optimizing connec-

tions and connectivity. Parallel Computing, 14:347{361.

B. T. Zhang (1992). Learning by Genetic Neural Evolution.

(in German), Sankt Augustin, In�x-Verlag. Also available

as Informatik Berichte No. 93, Institut f�ur Informatik, Uni-

versit�at Bonn.

B. T. Zhang, and G. Veenker (1991a). Focused incremental

learning for improved generalization with reduced training

sets. In T. Kohonen et al. (eds.), Arti�cial Neural Net-

works: Proc. ICANN-91, Vol. I, 227{232. Elsevier.

B. T. Zhang, and G. Veenker (1991b). Neural networks

that teach themselves through genetic discovery of novel

examples. In Proc. IJCNN-91, Vol. I, 690{695. IEEE.


