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Physical constants play important role in physics.  It is a fact that the accuracy of the physical constants 

grows year by year.  Special attention is paid to the dimensionless constants; the most familiar among them are 
the fine structure constant, the proton/electron mass-ratio, the cosmological constant of Einstein’s general rela-
tivity, the Weinberg angle in the electro-weak interaction theory, etc.  One of the most important questions has 
for a long time been: are there any physical and/or mathematical relations between the fundamental physical 
constants?  This paper gives a recently explored simple math relation between them.  The precise theoretical ex-
planation for this amazing finding needs more detailed investigation related to the physical background. 
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1.  Introduction 
In Nature, an exponential dependence between the observ-

able quantities frequently occurs, without causing any surprise 
for us.  Typical examples are the radioactive decay in physics, or 
the bacteria propagation in biology. The speed distribution of 
molecules shows exponential function in the Maxwell-Boltzmann 
kinetic theory of the gases.  Do there exist any exponential rela-
tions between the fundamental physical constants?  This was the 
question that motivated the present paper.  The statistical studies 
undertaken led to an amazing result: the fundamental physical 
constants are connecting to each other with a simple exponential 
form.  For example, here is an expression for the dimensionless 
fine structure constant: 

   α
2 / 2 ≅ Q7  (1.1) 

where the exponentiated number is: 

   Q ≡ 2 / 9 ≡ 0.222...  (1.2) 

A similar finding is: 

 
  
m e / M p ≅ Q5  (1.3) 

where 
  
m e  is the electron mass, 

  
M p  is the proton mass.  A third 

example shows exponential relation between the electron mass 
and muon mass: 

 
  
m e / 2m µ ≅ Q 4  (1.4) 

In this paper it will be clearly shown that the number 

  Q = 2 / 9  has a central significance in the mathematical connec-
tion between the fundamental physical constants.  The constants 
explored and results demonstrated lead us to believe that behind 
of these exponential connections of fundamental physical con-
stants there must lie an important physical background.  Never-
theless, the exact physical background is missing at present. 

2.  Exponential Forms for the  
     Fundamental Physical Constants 

The exponential form introduced above is approximately 
valid for many of the dimensioned fundamental physical con-
stants, which are expressed in the internationally accepted and 
applied SI units.  Generally, a physical constant X  can be writ-
ten into a simple mathematical expression: 

 λX ≅ QS ;    Q ≡ 2 / 9  (2.1) 

where S  is approximately an integer, and λ  is a ‘simple’ con-
stant like the ‘1/2’ in (1.1) or (1.4).   

 
Table 1.  Q -Forms of important physical constants 

 
Physical 

Constant (SI) 
Q -Form S(calc.) S(int.) 

 
Speed of light  c  -12.977125 -13 

Gravitational const.   G / 2  16.038625 16 
Coulomb const.  πκ  -15.999071 -16 

Elementary charge 2/e  29.004044 29 

Planck const.  52.015115 52 
Boltzmann const.  k  34.996134 35 

Rydberg const. 2 / 2 Be Rκ  27.038014 27 

Bohr radius BRπ  14.971007 15 
Electron mass 

  m e  45.988879 46 

Muon mass 
  
2m µ  41.983270 42 

Tau-particle mass m τ / 2  41.028418 41 

mass π0  30 /π  43.011789 43 
mass π±  3/π±  42.989518 43 

Proton mass 
  
M p  40.992176 41 

Neutron mass 
  M n  40.991249 41 
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Table 1 shows the results obtained regarding the most impor-
tant physical constants. The physical constants are expressed in 
SI units, with values obtained from the database of the National 
Institute of Standards and Technology [1].  

3.  Exponential Interpretation of the  
     Bode-Titius Law 

Bode's law, better called the Bode-Titius Rule, was first pub-
lished by Johann Daniel Titius, but did not become well known 
until it was republished by Johann Elert Bode in the 18th century.  
It is supposed to predict the distances of the planets from the Sun 
in astronomical units (Sun-Earth middle distance) by the formula 

  0.4 + 0.3 × 2n , but is usually represented by a Table, shown here 
as Table 2. 

Table 2. Demonstration of the Bode-Titius Rule. 
 

Planet Calculation Predicted Meas-
ured 

Mercury  0.4 + 0.3 × 0  0.4 0.39 
Venus  0.4 + 0.3 × 1  0.7 0.72 
Earth  0.4 + 0.3 × 2  1.0 1.00 
Mars  0.4 + 0.3 × 4  1.6 1.52 
Ceres  0.4 + 0.3 × 8  2.8 2.77 
Jupiter  0.4 + 0.3 × 16  5.2 5.20 
Saturn  0.4 + 0.3 × 32  10.0 9.54 
Uranus  0.4 + 0.3 × 64  19.6 19.19 
Neptune  0.4 + 0.3 × 128  38.8 30.07 

 
The second column in Table 2 gives the formula for the dis-

tance to each planet, and the third column gives the result of that 
calculation. The fourth column shows the actual average distance 
from the Sun for each planet.  Ceres was discovered by chance, 
not by application of the Bode-Titius rule.  Nevertheless, its orbit 
fit the rule so perfectly that there had been active search for a 
planet at that distance, and the discovery was considered to be 
another vindication. The Bode-Titius rule was used in the calcu-
lations that led to the discovery of Neptune.  It is remarkable that 
the physical background of this observed rule, which shows at 
least exponential behavior of the planet distances from the Sun, 
has remained unclear until this time. 

In the framework of present study, the Bode-Titius rule has 
been fitted to the recognized exponential relation involving the 
‘special number’  Q .  The simple expression of the Kepler’s third 
law is: 

      P
2 / a 3 = constant    , (3.1) 

where  P  is the orbital period and  a  is the semi-major axis of the 
orbit for the planets of Solar System.  When certain units are cho-
sen, namely  P  is measured in sidereal years and  a  in astro-

nomical units,   P
2 / a 3  has the value 1 for all planets in the Solar 

System.  For this reason Kepler’s third law for the planets can be 
written into simple form: 

 
  
Pn

2 / an
3 ≡ Qn / Qn ≅ 1;   (n = in teger )  (3.2) 

where for the Earth the selection   n = 0  is valid.   
This approximation defines the astronomical distance of each 

planet from the Sun in exponential form: 

 an ≅ Qn /3    ;   (n = in teger )  (3.3) 

Nevertheless, in this equation the number  Q  does not have a 
fixed value. Table 3 shows the calculated different Q -values for 
the actual distances of each planet from Eq. (3.3): 

 
Table 3.  Results of the  Q -calculations. 

 
Planet an n  Q (calc.) 

Mercury 0.39 2 0.243555 
Venus 0.72 1 0.373248 
Earth 1 0 -------- 
Mars 1.52 -1 0.284754 
Ceres 2.77 -2 0.216910 
Jupiter 5.20 -3 0.192308 
Saturn 9.54 -4 0.184220 
Uranus 19.19 -5 0.169885 
Neptune 30.07 -6 0.182362 

 
The average of the calculated  Q -values is near to its ‘nominal 
value’ 2/9:  
 〈Q 〉 = 0.230905... ≅ 2 / 9 ≡ 0.222...  (3.4) 

The standard deviation of the calculated  Q -values is: 

 σ(Q) ≅ 11%  (3.5) 

This interesting result strengthens the supposed physical signifi-
cance of the explored special number Q . 

4.  The Weak Mixing Angle 
The weak mixing angle or Weinberg angle is a 

parameter in the Weinberg-Salam theory of the electroweak force.  It 
gives a relationship between the W± and Z-masses.  The mixing 
angle weakly depends on the momentum transfer in the particle 
accelerators. If the momentum transfer corresponding to the 
mass creation of the Z0 boson (91.2 GeV/c), the experimentally 
best estimated value of the Weinberg parameter is: 

    sin 2 θW = 0.23120(15) ≅ Q    . (4.1) 

where θW  is the Weinberg parameter.  Its value 0.23120(15)  is 
practically equal to that average value of  Q  that was obtained 
from the above-described exponential model of the planet dis-
tances in the Solar System. Can this fact be only blind chance?  
Now, of course, the question is open. 

5.  The Q Number in the  
     Neutral-Atom Mass Formula 

In an earlier paper published in Galilean Electrodynamics [2], 
a new atomic mass formula was given for the neutral atoms.  The 
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background of this formula is a special application of Planck’s 
radiation law. Expressed in atomic units, the mass of a neutral 
atom having mass number  A , is approximately: 

  
M (A) ≅ AM0 1 − 1

2
me (A − 6) / M p η A−2 −1










   ;   (A ≥ 3)  (5.1) 

where 
  
m e  is the electron mass, 

 
M p  is the proton mass, and M 0  

and η  are fitting parameters.  The optimized fitting parameters 
are: 

 
   M 0 = 1.003304a .u .   ;    η = 1.220127 ≅ 1 + Q  (5.2) 

The relative standard deviation of this simple formula, calculated 
from a large amount of experimental data is: 

  σ = 3.216 × 10−4  (5.3) 

Taking account of the experience of (1.3) related to the special 
number  Q , the mass formula (5.1) can be rewritten into the ex-
pression 

  
M (A) ≅ AM0 1 − 1

2
Q5(A − 6) (1 +Q) A−2 −1
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   ;   (A ≥ 3)  (5.4) 

where the new fitting parameters are M 0  and  Q .  The fitting of 

the (5.4) modified mass formula has been updated with nearly 
2000 measured neutral atomic masses obtained from the publica-
tion of G. Audi and A.H. Wapstra [3]. The results of the new cal-
culation are: 

  
 M 0 = 1 .003393  a .u .  ;   Q = 0.226266   ;  σ = 3 .186 × 10−4 (5.5) 

Finally, here is the extended neutral-atom mass formula con-
taining the  Z -dependence of the atoms (in atomic unit): 

  

M(A, Z) ≅

M0 A − 1
2

Q5(A −1)(A − 3) 1 +Q( ) A−1
−1
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(A ≥ 3)

 (5.6) 

where 
 
M a  is called the asymmetric mass correction and M s  is 

called the symmetric mass correction: 

  
M a = Ca ( A / 2 − Z )2 ( A + 6)2   ;  M s = −Csδ(Z , N ) A  (5.7) 

The function δ(Z , N )  is well known from Weizsäcker's formula 
applied for the nuclei [4]: 

 δ(Z , N ) =
 1    (Z = even , N = even )
 0    (Z + N = odd )
−1  (Z = odd, N = odd )









 (5.8) 

It is important to mention that the given  Z -corrections were 
empirically determined in the fitting procedures aiming to reach 
the best accuracy.  The optimized fitting parameters and the rela-
tive standard deviation of the mass values are the next: 

 

            M 0 = 1 .003272  a .u .  ;  

  Q = 0 .224584   ;  σ = 1.313 × 10−4   ;

Ca = 1.375266   ;  C s = 7.627297 × 10−3   .

 (5.9) 

The Z -dependent formulation for the masses of neutral atoms 
gives remarkably better accuracy.  The obtained important pa-
rameter Q  is in good agreement with its ‘nominal value’ 2/9. 

6.  Conclusions 
This paper has introduced a special number, Q = 2 / 9 , which 

is suitable to express many important physical constants in simi-
lar exponential forms. From the illustrative examples one can 
safely conclude that the fundamental physical constants are very 
likely quantified by a special exponential rule.  It follows directly 
from this statement that there must exist among of all fundamen-
tal physical constants a simple exponential relationship. The next 
important question is whether this statement is an axiom, with-
out any possibility for a deeper physical explanation, or must it 
have an unknown physical background.  To answer this impor-
tant question, more detailed research is certainly needed in the 
future. 
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