CALCULUS INTEGRALS
CALCULUS ELLIPSE CONE:
height
=
h with base (x/a)
2
+
(y/b)
2
=
1
From similar triangles:
x/a
=
(h
-
z)/h
y/b
=
(h
-
z)/h
x
=
a(h
-
z)/h
y
=
b(h
-
z)/h
Area
=
xy
=
ab(h
-
z)
2
/h
2
Volume
=
ab/h
2
(h
-
z)
2
dz
=
ab/h
2
(h
2
-
2hz
+
z
2
)dz
=
ab/h
2
(h
2
z
-
hz
2
+
z
3
/3)
=
abh/3
with a
=
b
=
r
Volume
=
r
2
h/3
ANOTHER METHOD FOR A REGULAR CONE:
using dz
r/R
=
(h
-
z)/h or r
=
R(h
-
z)/h
dr/dz
= -
R/h or dr
= -
(R/h)dz
Area
=
(r*dz
-
dr*dz/2)
=
R/h((h
-
z)*dz
+
dz
2
/2)
Volume
=
Area
*ds
=
Area
*r*d
Volume
=
Area
*ds
=
R/h
[(h
-
z)*dz]r*d
Volume
=
(R/h)
2
[(h
-
z)
2
*dz]d
Volume
=
(R/h)
2
(h
-
z)
2
*dz
Volume
=
(R/h)
2
[(h
-
z)
3
/3]
Volume
=
R
2
h/3
ANOTHER METHOD FOR A REGULAR CONE:
using dr
r/R
=
(h
-
z)/h or r
=
R(h
-
z)/h
dr/dz
= -
R/h or dr
= -
(R/h)dz or dz
= -
(h/R)dr
Area
=
(r*dz
-
dr*dz/2)
=
(r
-
dr/2)*dz
= -
(h/R)(r
-
dr/2)*dr
Volume
=
Area
*ds
=
(r*dz
-
dr*dz/2)*r*d
Volume
=
[(r
2
*dr
-
r*dr*dz/2)]d
Volume
=
2
(R/h)
[(R/h)(h - z)
2
-
(h - z)*dr/2]*dz
Volume
= -
(R/h)
[(R/h)(h - z)
3
/(-3)
-
(h*z - z
2
)*dr/2]
Volume
= -
(R/h)
2
*h
3
/(-3)
Volume
=
R
2
h/3
PARABOLOID:
f(p,0,z)
=
p
2
=
9
-
z
Triple integral for entire surface:
=
p
2
dV
=
p
2
(dz dp p*d
)
=
p
3
(9 - p
2
) dp d
=
[ (9/4)p
4
- (1/6)p
6
]
d
=
(1/12)
[ (27)p
4
- (2)p
6
]
d
=
(729/12)
d
=
243
/2
PARABOLOID:
x
2
+
4y
2
=
z
cylinders y
2
=
x & x
2
=
y
Comon volume of 3 cylinders above x0y plane:
Volume
=
z*dx*dy
=
(x
2
+
4y
2
)dx*dy
Volume
=
(x
2
y
+
4y
3
/3)*dx
Volume
=
[(x
2.5
+
4x
1.5
/3)
-
(x
4
+
4x
6
/3)]dx
Volume
=
[x
3.5
/3.5
+
4x
2.5
/7.5
-
x
5
/5
-
4x
7
/21]
Volume
=
[2/7
+
8/15
-
3/15
-
4/21]
=
2/21
+
5/15
Volume
=
135/315
=
27/63
=
3/7 cubic units
CALCULUS SPHERE:
4/3
R
3
Volume of a sphere:
Volume
=
dV
=
ds*ds
1
*ds
2
Volume
=
(p*d
)(psin
*d
)(dp)
Volume
=
p
2
sin
*dp*d
*d
Volume
=
(1/3)R
3
sin
*d
*d
Volume
=
(1
/3)R
3
sin
*d
Volume
=
(4
/3)R
3
(
-
cos
)
Volume
=
4
R
3
/3
HOME
|
TOP
|
BIOLOGY