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Abstract—Most methods of classification either ignore feature
analysis or do it in a separate phase, offline prior to the main clas-
sification task. This paper proposes a neuro-fuzzy scheme for de-
signing a classifier along with feature selection. It is a four-layered
feed-forward network for realizing a fuzzy rule-based classifier.
The network is trained by error backpropagation in three phases.
In the first phase, the network learns the important features and
the classification rules. In the subsequent phases, the network is
pruned to an “optimal” architecture that represents an “optimal”
set of rules. Pruning is found to drastically reduce the size of the
network without degrading the performance. The pruned network
is further tuned to improve performance. The rules learned by the
network can be easily read from the network. The system is tested
on both synthetic and real data sets and found to perform quite
well.

Index Terms—Classification, feature analysis, neuro-fuzzy sys-
tems, rule extraction.

I. INTRODUCTION

A classifier is a function where is a set
of label vectors defined as

In other words, a classifier is a function which takes as input an
object data, i.e., a feature vector in dimension and assigns a
class label to it. More specific types of label vectors can be used
for specific types of classifiers as

is called a crisp classifier if the classifier assigns the object to
one of the classes without any ambiguity, i.e., if ;
otherwise, the classifier is fuzzy, probabilistic, or possibilistic,
which together are sometimes called soft classifiers [3]. De-
signing a classifier means finding a good . may be an an-
alytical function (like the Bayes classifier) or it can be a com-
putational transform which does classification implicitly. Fuzzy
systems, neural networks, neuro-fuzzy systems or other hybrid
systems are examples of such computational transforms.

Fuzzy systems built on fuzzy rules have been successfully
applied to various classification tasks [3], [6], [11], [12], [34].
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Fuzzy systems depend on linguistic rules which are provided by
experts or the rules are extracted from a given training data set
by a variety of methods like exploratory data analysis, evolu-
tionary algorithms etc. [5], [41], [45]–[47], [51]. Fuzzy systems
can be efficiently implemented by neural networks and such sys-
tems are broadly named as neural fuzzy systems [14], [15], [17],
[20], [21], [29], [30], [36], [42], [43].

Owing to their specific implementation, neural networks are
capable of learning input-output mappings (for classification or
function approximation tasks) through minimization of a suit-
able error function, e.g., by means of backpropagation training
algorithm. Unfortunately, neural networks are not able to learn
or represent knowledge explicitly, which a fuzzy system can do
through fuzzy if-then rules. Here we are making a clear distinc-
tion between identifying a mapping and extraction of readable
or intelligible information or knowledge. Thus, an integration
of neural networks and fuzzy systems can yield systems, which
are capable of learning and decision making. In this paper we
present a neural fuzzy system for classification. The various
layers of the network perform different functions of a fuzzy
system, also the network learns the rules required for the classi-
fication task. The rules learned by the network can be easily read
from the network. Also the network has an inherent method-
ology to select the important features in the given data set, which
forms an important phase for any classification process. To the
best of our knowledge, no such neuro-fuzzy system exists till
date.

It is known that all features that characterize a data point
may not have the same impact with regard to its classification,
i.e., some features may be redundant and also some may have
derogatory influence on the classification task. Thus, selection
of a proper subset of features from the available set of features
is important for designing efficient classifiers. Methodologies
for selecting good features on the basis of feature ranking etc.
do exists [8], [37], [44], but most of these methods perform fea-
ture analysis in a separate phase, offline with the main classi-
fication process. Authors in [48] proposed an iterative scheme
for client preference modeling. This scheme incorporates fea-
ture analysis. Here a score function is computed for each feature
and in each iteration of the modeling, the feature which has the
highest score from among the set of unused features is selected
and used. In this method the feature selection is not done in an
on-line manner, and in spirit the method is like feature ranking.
Consequently, the set of features the model lands up with may
not be the best subset of features for the task, but the process
does generate a good solution to the problem. The goodness of
a feature depends on the problem being solved and also on the
tools being used to solve the problem [8]. Therefore, if a method
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can do feature selection simultaneously with designing the clas-
sifier, it would be able to select the most appropriate set of fea-
tures for the task and can result in a good classifier. In [39] Pal
and Chintalpudi developed an integrated feature selection and
classification scheme based on the multilayer perceptron archi-
tecture. The present paper is motivated by this work though the
formulation and philosophy of feature selection are completely
different. Krishnapuram and Lee in [27] also developed a neural
network for classification, which uses fuzzy aggregation func-
tions. Their network is capable of feature selection in certain
conditions though it is not primarily meant for the feature se-
lection task. Similar networks are also discussed in [19], [25],
[26], [28].

In [4] we discussed a methodology for simultaneous feature
analysis and system identification in a five-layered neuro-fuzzy
framework. The feature selection strategy which we use in the
current work is the same as in [4]. The network in [4] was meant
for system identification problems, which has been modified
here to solve a classification task. Unlike the network in [4], this
is a four-layered network. Also the methods used to optimize the
network have been modified to suite the classification process.
In this context a few new concepts have also been introduced for
pruning of the network and, hence, the rule-base.

Our network is trained in three phases. In phase I, starting
with some coarse definition of initial membership functions, the
network selects important features and learns the initial rules. In
phase II, the redundant nodes as detected by the feature attenua-
tors are pruned, and the network is retuned to gain performance
in its reduced architecture. In phase III, the architecture is fur-
ther reduced by pruning incompatible rules, zero rules and less
used rules. After pruning the network represents the final set of
rules. The membership functions which constitute the final rules
are now tuned to acheive better performance.

In the next section, we describe the structure of fuzzy rules
for classification and also the network architecture to realize
them. In Section III, we derive the rules for selecting the im-
portant features and the initial rules for classification. In Sec-
tion IV, we discuss a pruning algorithm to get rid of the redun-
dant nodes. Section V discusses two more pruning strategies
along with a scheme for tuning of the membership function pa-
rameters. Section VI gives the simulation results on a synthetic
data set and three real data sets. Finally, the paper is concluded
in Section VII.

II. THE NETWORK STRUCTURE

Let there be input features and classes
. Given a , the proposed neural-fuzzy

system deals with fuzzy rules of the form : If is and
is and is then belongs to class with a cer-

tainty , . Here, is the th fuzzy set defined on
the domain of .

From our notation one might think that for each rule we are
using a different set of antecedent linguistic values (fuzzy sets)
but that is not necessarily true; in fact, for every feature only a
few fuzzy sets are defined and, hence, some of the
for some and .

Fig. 1. The network structure.

Note that, the structure of the rules used here is quite different
from the structure of the rules used in [4]. The proposed neural-
fuzzy system is realized using a four layered network as shown
in Fig. 1. The first layer is the input layer, the second layer is the
membership function and feature selection layer, the third layer
is called the antecedent layer and the fourth layer is the output
layer. The activation function of each node with its inputs and
outputs, is discussed next layer by layer. We use suffixes , ,

, to denote, respectively, the suffixes of the nodes in layers 1
through 4. The output of each node is denoted by .

Layer 1: Each node in layer 1 represents an input linguistic
variable of the network and is used as a buffer to transmit the
input to the next layer, that is to the membership function nodes
of its linguistic values. Thus, the number of nodes in this layer
is equal to . Let be the input to the node in layer 1 then
the output of the node will be

(1)

Layer 2: This is the fuzzification and feature analysis layer,
which is similar to the layer 2 of the network described in [4].
Each node in this layer represents the membership function of a
linguistic value associated with an input linguistic variable. The
output of a layer 2 node represents the membership grade of the
input with respect to a linguistic value. We use bell shaped mem-
bership functions. All connection weights between the nodes in
layer 1 and layer 2 are unity. If there be fuzzy sets associ-
ated with the feature then the number of nodes in this layer
is . The output of a node in layer 2 is computed by

(2)

Here and are the center and spread, respectively, of the
bell shaped function representing a term of the linguistic vari-
able associated to node ( indicates the th term (fuzzy
set) of the linguistic variable ).
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As in [4], for feature selection, the output of this layer needs
to be modified. The activation function of any node in layer 2
is taken as

(3)

The justification behind (3) can be found in [4]. The tunable pa-
rameter associated with each input feature is called a fea-
ture modulator. s are learned by backpropagation. When
takes a large value then tends to and for small values of

, tends to 1, thereby making the feature indifferent. There-
fore, our objective would be to make take large values for
good features and small values for bad ones through the process
of learning. Up to this the functioning of the present network is
similar to that in [4].

In learning phase I, the parameters of the membership func-
tions are kept fixed and only the s are learned through error
backpropagation. In learning phase III, the s are kept fixed
and the membership function parameters are updated. Initially
we define the parameters of the membership functions in an
ad hoc manner. We choose an arbitrary number of fuzzy sets,
with considerable overlap between adjacent ones such that the
antecedents span the entire range of variability (bounding hy-
perbox) of the input features. This conservative initialization
strategy may require further optimization of the membership
function parameters, which is done in learning phase III.

Layer 3: This layer is called the antecedent layer. Each node
in this layer represents the IF part of a fuzzy rule. The number
of nodes in this layer is . There are many operators

for fuzzy intersection [22], [32] of which
and product are quite popular and have been widely used in
numerous applications. In [4] we used product as the operator
for intersection and got fairly good results. But we know that
for any , , . So use of product
as the intersection operator is counter-intuitive. To elaborate it,
consider two propositions with truth values and . It is not
natural to assume that they will produce a firing strength less
than . Let us consider a rule:

If is and is is then the class is .
Suppose, for an input each ,

, has a membership of 0.9 in the respective fuzzy set
, . Thus, for this input if product is used as the

operator for intersection then the firing strength of the rule will
be . So, the firing strength decreases exponentially with .
So, for a reasonably big , the firing strength reduces almost to
zero, though each of the input components has a high member-
ship of 0.9 in the corresponding fuzzy set. Therefore, the use of
product for intersection is not intuitively appealing. One might
wonder why did we (others also) get good results using product
in [4]. The answer lies in the defuzzification process. For ex-
ample, in the height method of defuzzification, the defuzzified
value is computed as a weighted sum of the peaks of the output
fuzzy sets, where the weights are the normalized values of the
firing strengths. The final output is, thus, computed as a convex
combination of the peaks of the output fuzzy sets. But in this
case such defuzzification methods cannot be applied. Conse-
quently, here we use as the operator for intersection. As

is not differentiable, for ease of computation many softer

versions of that are differentiable have been previously
used [2], [38]. We use the following soft version of which
we call :

As , tends to the minimum of all s,
. For our purpose we use in all results re-

ported. Note that, is not a as it does not
satisfy the criteria of associativity and identity. For our feature
selection task, the intersection operator must satisfy the prop-
erty of , which does possess for .
So, is compatible with our feature selection strategy
though it is not a . Thus, the output of the th node
in layer 3 is

(4)

where is the set of indexes of the nodes in layer 2 connected
to node of layer 3 and denotes the cardinality of .

Layer 4: This is the output layer and each node in this layer
represents a class. Thus, if there are classes then there will
be nodes in layer 4. The nodes in this layer perform an OR

operation, which combine the antecedents of layer 3 with the
consequents. According to the structure of the fuzzy rules that
we are concerned about, the consequent of a rule is a class with
a degree of certainty. Thus, the output of node in this layer
represents the certainty with which a data point belongs to class
. We classify a point to a class , if . The nodes

in layers 3 and 4 are fully connected. Let be the connection
weight between node of layer 3 and node of layer 4. The
weight represents the certainty factor of a fuzzy rule, which
comprises the antecedent node in layer 3 as the IF part and
the output node in layer 4 representing the THEN part. These
weights are adjustable while learning the fuzzy rules. The OR

operation is performed by some [22]. We use here the
operator. Thus the output of node in layer 4 is computed

by

(5)

where represents the set of indexes of the nodes in layer 3
connected to the node of layer 4. Since s are interpreted as
certainty factors, each should be nonnegative and it should
lie in [0, 1]. The error backpropagation algorithm or any other
gradient based search algorithm does not guarantee that
will remain nonnegative, even if we start the training with non-
negative weights. Hence, we model by . The is
unrestricted in sign but the effective weight will
always be nonnegative and lie in [0, 1]. Therefore, the output
(activation function) of the th node in layer 4 will be

(6)

Since it is enough to pick the node with the maximum value
of the product of firing strength and certainty factor, it is not
necessary to maintain in [0, 1]. The nonnegativity alone
would be enough. So we use .This also reduces
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the computational overhead on the network. Thus, (6) can be
modified to

(7)

Note that, in layer 4 we use the usual operator instead
of a differentiable soft version of . As is not differ-
entiable the update equations that we derive in the next section
have to be split for different conditions of the network. We could
have used a differentiable (soft) version of here too. But if
we use both soft version of and soft version of as ac-
tivation functions in two layers of the network, the update equa-
tions would become very complicated. Hence, we choose to use
the usual in this layer and a differentiable version of
in layer 3. The learnable weights are updated in all the three
learning phases.

III. LEARNING PHASE I: FEATURE SELECTION AND RULE

DETECTION

We now derive the learning rules for the neural-fuzzy classi-
fier with the activation or node functions described in the pre-
vious section. All the training phases use the concept of back-
propagation to minimize the error function

(8)

where is the number of nodes in layer 4 and and are the
target and actual outputs of node in layer 4 for input data ;

. In learning phase I the the learnable weights
between layer 3 and layer 4 and the parameters s in layer 2
are updated based on gradient descent search. We use online
update scheme and, hence, derive the learning rules using the
instantaneous error function . Without loss of generality we
drop the subscript in our subsequent discussions.

The delta value of a node in the network is defined as the
influence of the node output on . The derivation of the delta
values and the adjustment of the weights and s are presented
layer wise next.

Layer 4: The output of the nodes in this layer is given by (7)
and the value for this layer will be

Thus,

(9)

Layer 3: The delta for this layer is

Hence, the value of will be

if
otherwise.

(10)
Here is the set of indexes of the nodes in layer 4 connected
with node of layer 3.

Layer 2: Similarly, the for layer 2 is

Hence,

(11)

In (11) is the set of indexes of nodes in layer 3 connected
with node in layer 2.

With the calculated for each layer now we can write the
weight update equation and the equation for updating .

or

if
otherwise.

(12)
Similarly, we calculate

or

(13)

Here, is the set of indexes of nodes in layer 2 connected to
node of layer 1. Hence, the update equations for weights
and are

(14)

and

(15)

In (14) and (15), and are learning coefficients, which are
usually chosen by trial and error or one can use methods de-
scribed in [10], [30] for better choices.

The network learns the weights of the links connecting layers
3 and 4 and also the parameters associated with nodes in layer
2, which do the feature selection. The initial values of s can be
so selected that no feature gets into the network in the beginning
and the learning algorithm will pass the features, which are im-
portant, i.e., the features that can reduce the error rapidly.

A. Implicit Tuning of Membership Functions

The feature modulators not only help us to select good fea-
tures but also have an interesting side effect. They tune the mem-
bership functions to some extent. The output of a layer 2 node
is
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(a)

(b)

(c)
Fig. 2. Plot of ELONGATED. (a) Features 1–2 . (b) Features 2–3. (c) Features
1–3.

where

and .

Note that, is also a Gaussian function with mean and
spread because

(16)

where

(17)

The feature modulators, thus, tune the spread of the input mem-
bership functions and retain their Gaussian nature.

At this point a natural question may come: why are we not
tuning the parameters of the membership functions at this phase
of training? There are two reasons. First, tuning of spreads of
the membership functions although can reduce the misclassi-
fications, it cannot do the task of feature selection. Tuning of
membership function parameters refines each rule to reduce the
classification error, while for elimination of a feature the spreads
of all membership functions defined on that feature need to
be modified. Second, simultaneous tuning of modulator func-
tions and the parameters like mean and spread of membership
functions is not desirable. Because, tuning of modulator func-
tion looks at all membership functions defined on a feature as
a whole, while the tuning of membership function parameters
tries to improve the performance of a rule, i.e., tunes parame-
ters of the membership functions considering each rule sepa-
rately. As a result, if both modulator functions and membership
function parameters are tuned, the learning process may become
unstable. Therefore, tuning of parameters of membership func-
tions should be done after feature elimination (i.e., after tuning
of the modulator functions). Consequently, tuning of member-
ship function parameters are done in learning phase III which is
discussed later.

Next we discuss strategies to prune the network to make it
more readable.

IV. LEANING PHASE II: PRUNING OF REDUNDANT NODES AND

FURTHER TRAINING

We started with a network which represented all possible
rules. But all possible rules usually are never needed to represent
a system. Moreover, the modulator functions associated with the
second layer nodes, may decide that all features present are not
really important. Hence, some of the nodes present in the net-
work may be redundant. The presence of these redundant nodes
will decrease the readability/interpretability of the network and
add to its computational overhead. Also as per our formulation
each node in layer 3 is connected with all nodes in layer 4, and
this gives rise to incompatible rules that need to be removed.
Further, here we used fuzzy sets which covered the total domain
of each feature, thus the antecedents cover the entire hyperbox
that bounds the data. The training data may (usually will) not
be distributed even over the smallest hyperbox containing the
data. Consequently, there may be some rules which are never
fired by the training data. Such rules, which are not supported
by the training data could be harmful. The certainty factors of
such rules can be erratic and they can lead to bad generalization.
So, it is necessary to get rid of redundant nodes, incompatible
rules and less used rules.



CHAKRABORTY AND PAL: FUZZY RULE-BASED CLASSIFICATION 115

TABLE I
SUMMARY OF THE DATA SETS

TABLE II
FREE PARAMETERS OF THE NETWORK

A. Pruning Redundant Nodes

Let us consider a classification problem with input features.
So layer 1 of the network will have nodes. Let the indexes of
these nodes be denoted by . Let be the set
of indexes of the nodes in layer 2, which represents the fuzzy
sets on the feature represented by node of layer 1. We also
assume that of the features are indifferent/bad as
dictated by the training. Let be the set of indexes of the
nodes, representing the indifferent/bad features. Hence, any
node with index in layer 1 such that is redundant. Also
any node in layer 2, where and is redundant. In
[4] we provided a scheme to prune redundant nodes in layer 1
and layer 2. The same scheme is applicable here. After pruning
of the redundant nodes a few epochs of training is required in the
reduced architecture for the network to regain its performance.

The selection of a redundant feature depends on the value
of . A feature is considered redundant and
consequently a member of the set , if , where is
a threshold. It was shown in [4] that is a reasonable
value for the threshold. Please refer to [4] for the details.

After pruning the redundant nodes, the certainty factor of the
rules are further tuned using (14). Phase II training ends, once
the values of stabilize.

V. LEARNING PHASE III: PRUNING OF INCOMPATIBLE RULES,
LESS USED RULES, AND ZERO RULES AND FURTHER TRAINING

In phase III, the network is pruned further and the certainty
factors of the rules are again tuned. In this last phase of training

the parameters of the membership functions are also tuned. The
details are presented in the following subsections.

A. Pruning Incompatible Rules

As per construction of our network, the nodes in layer 3 and
layer 4 are fully connected and each link corresponds to a rule.
The weight associated with each link is treated as the certainty
factor of the corresponding rule. If there are classes then layer
4 will have nodes and there will be rules with the same an-
tecedent but different consequents, which are inherently incon-
sistent.

Suppose layer 3 has nodes (i.e., antecedents) and
layer 4 has nodes (thus, consequents or classes). Each
node in layer 3 is then connected to nodes in layer 4. The
link connecting node of layer 3 and node of layer 4 has a
weight associated with it, which is interpreted as the cer-
tainty factor of the rule represented by the link. For each node

in layer 3 we retain only one link with a node in layer 4 that
has the highest certainty factor associated with it.

B. Pruning Zero Rules and Less Used Rules

After removal of the incompatible rules each node in layer
3 is connected with only one node in layer 4. Suppose node

in layer 3, which is connected to a node in layer 4, has a
very low weight (we take ). Then,
the rule associated with the node pair and has a very low
certainty factor and it does not contribute significantly in the
classification process. We call such rules as Zero rules. These
rules can be removed from the network. In fact such rules should
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TABLE III
USER DEFINED PARAMETERS

be removed from the network as we do not like to make any
decision with a very low confidence. Removal of a zero rule
means removing a node in layer 3 along with its links.

Further, as discussed earlier, our network starts with all pos-
sible antecedents which cover a hyperbox bounding the data.
Hence, there may (usually will) be rules which are never fired
or fired by only a few data points. Such rules are not well sup-
ported by the training data and will result in bad generalization.
We call such rules as less used rules and they should also be
removed. As per the structure of our network, the class label
of a point is decided by only one rule. Thus, there may be rules
present in the network which never takes part in decision making
or makes decision for only a very few points. These rules repre-
sent parts of the input space which are not supported by training
data or they represent outliers. These rules are bad rules and
can lead to bad generalization. To remove these rules, for each
antecedent node (note that at this stage, an antecedent rep-
resents an unique rule) we count the number of data points ,
for which makes the decision. If is less than then we
consider node as well as the rule represented by it as inad-
equately supported by the training data. Every such node in
layer 3 along with its links can be removed. The choice of is
related to the definition of outliers. In this study unless a rule
represents at least three points, we take it as a less-used rule and
delete it.

C. Tuning Parameters of the Reduced Rule Base

The network (rule base) obtained after pruning of the redun-
dant nodes, less used rules and the zero rules is considerably
smaller than the initial network with which we began. The pa-
rameters of the membership functions of this reduced rule base
are now tuned to get a better classifier performance. The up-
date equations for the centers and the spreads of the member-
ship functions can be written as

(18)

TABLE IV
NUMBER OF FUZZY SETS FOR EACH FEATURE FOR ELONGATED

and

(19)

Here

(20)

and

(21)

where is the feature related to node of the second layer and
is a predefined learning constant.
The update equations (18) and (19) are applied iteratively

along with (14) till there is no further decrement in the error
defined by (8). We emphasize that in this phase of training the

values are not updated. As discussed earlier, tuning of the fea-
ture modulators along with the membership function parameters
may make the training unstable.

VI. SIMULATION RESULTS

A. The Data Sets

The methodology is tested on four data sets and the results
obtained on them are quite satisfactory. Of the four data sets,
one is a synthetic data set named ELONGATED and other three
are real data sets named IRIS, PHONEME, and RS-DATA.

ELONGATED [31] has three features and two classes, the
scatterplots of features 1–2, 2–3, and 1–3 are shown in Fig. 2.
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(a)

(b)

(c)

Fig. 3. Fuzzy sets used for ELONGATED. (a) Feature 1. (b) Feature 2. (c)
Feature 3.

These plots show that features 1 and 2 or features 2 and 3 are
enough for the classification task. Thus, any one of these two
combinations is adequate to solve the problem. IRIS [1] is a data
set with four features and three classes. It is well known that for
IRIS features 3 and 4 are enough for the classification task [3].
The PHONEME data set contains vowels coming from 1809
isolated syllables (for example: pa, ta, pan, ) in French and
Spanish language [24], [52]. Five different attributes are chosen
to characterize each vowel. These attributes are the amplitudes
of the five first harmonics AHi, normalized by the total energy
Ene (integrated on all frequencies), AHi/Ene. Each harmonic is
signed positive when it corresponds to a local maximum of the
spectrum and negative otherwise. The Phoneme data set has two
classes, nasal and oral.

The RS-DATA [23] is a satellite image of size 512 512
pixels captured by seven sensors operating in different spec-

TABLE V
INITIAL ARCHITECTURE OF THE NETWORK USED TO CLASSIFY ELONGATED

TABLE VI
VALUE OF 1� e FOR DIFFERENT INPUT FEATURES FOR ELONGATED

tral bands from Landsat-TM3. Each of the sensors generates
an image with pixel values varying from 0 to 255. The 512
512 ground truth data provide the actual distribution of classes
of objects captured in the image. From these images we pro-
duce the labeled data set with each pixel represented by a 7-D
feature vector and a class label. Each dimension of a feature
vector comes from one channel and the class label comes from
the ground truth data.

We divide each data set into training and test
sets, such that and . For
ELONGATED, IRIS and PHONEME the training and test divi-
sions were made randomly. For RS-DATA we created a training
sample containing exactly 200 points from each class. The sum-
mary of the data sets used is given in Table I.

B. The Implementation Details

Before we present the results we discuss a few implemen-
tational issues. The network contains the feature modulators
( s), the certainty factor of the rules ( s) and the mem-
bership function parameters ( and ) as free parameters.
The initial values of s are set to 0.001; so, initially the net-
work considers all features to be equally unimportant. The ini-
tial values of the certainty factor of the rules, i.e., the weights
of the links between layer 3 and layer 4 are all set to 1.0, which
signifies that initially all rules have the same certainty factor.
For the initial values of the membership function parameters, for
each feature we choose an arbitrary number of equidistant fuzzy
sets with considerable overlap between adjacent ones. These
fuzzy sets span the entire domain of the feature. The choice of
fuzzy sets may have considerable influence on the performance
of the classifier. For one data set with complex class structures
we use exploratory data analysis to get the initial network struc-
ture. It is possible to design more elaborate methods using clus-
tering and cluster validity indexes to decide the initial member-
ship functions. For some such methods, readers can refer to [35],
[40]. Since the thrust of this paper is to establish the utility of in-
tegrated feature selection and classifier design in a neuro-fuzzy
framework, we do not pursue the issue of network initialization
further. Table II depicts the list of the free parameters with their
meanings and initial values.

Other than the free parameters the network also contains
some user defined parameters. The learning parameters and
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Fig. 4. The rules for classifying ELONGATED.

TABLE VII
THE LINGUISTIC RULES FOR ELONGATED

and are differently chosen for different data sets. For all
the data sets, as explained earlier, is taken as 3, as 0.05,
and as 0.001. Table III gives the values of all user defined
parameters of the network. Other than the learning coefficients,
users can use the values suggested in Table III. For the learning
coefficient, as done in all gradient based learning schemes,
either one can use a trial and error method or schemes discussed
in [10], [13], [30], [49], [50]. A simple workable solution is to
keep a snap-shot of all learnable parameters before an epoch
starts and use a high value (say 1) of the learning coefficient. If
the average error after an epoch is found to increase, then the
learning constant is decreased by an amount, say 10% of the
present value and the learning is continued after resetting the
learnable parameters using the snap-shot.

C. Results

1) Results on ELONGATED: The number of fuzzy sets used
for each feature for this problem is shown in Table IV and the
actual fuzzy sets used are depicted in Fig. 3. The initial archi-
tecture is shown in Table V.

After only 100 iterations, the number of misclassifications on
the training set were reduced to 0. The values of after
100 iterations are depicted in Table VI. Table VI shows that
the network selects features 1 and 2 and rejects the third fea-
ture. Consequently the network is pruned for redundant nodes.
After pruning the network retains its performance, i.e., produces
a misclassification of 0 on .

Initially, the network had 36 antecedent nodes. Hence,
it had . After pruning of the redundant
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(a)

(b)

(c)

(d)

Fig. 5. Fuzzy sets used for IRIS. (a) Feature 1. (b) Feature 2. (c) Feature 3. (d)
Feature 4.

nodes the number of antecedent nodes becomes 12; hence,
at this stage the number of rules is . Next, the

incompatible rules are pruned to obtain 12 rules. Finally,
one rule is found to be less used and hence removed. Thus,
the final architecture represents 11 rules as shown in Fig. 4.
In Fig. 4 the 11 ellipses represent the 11 antecedent clauses.
The coordinates of the center of an ellipse correspond to
the centers of the two bell shaped fuzzy sets that form the
antecedent clause. The major and minor axes of the ellipses
are equal to twice the spreads of the respective fuzzy sets.
For antecedent clauses of rules representing a particular class
we use a particular type of line to draw the corresponding
ellipses. For example, in Fig. 4, the continuous line is used
to represent class 1 and the dotted line for class 2. The
linguistic rules read from the network are shown in Table VII.

The final network produces a misclassification of 0 on as
well as on .

2) Results on IRIS: Here we used three fuzzy sets for each of
the four features. The fuzzy sets are shown in Fig. 5. The initial
architecture for the network is shown in Table VIII.

After 300 epochs, the values stabilized and the number of
misclassifications produced on the training set was 3. The
values of after 300 iterations are shown in Table X,
which suggests that only features 3 and 4 are important. Hence,
we prune the redundant nodes. After pruning, the network still
produces three misclassifications on .

In this case the initial network had 81 antecedent nodes re-
sulting in . After pruning of the redundant
nodes the number of antecedent nodes becomes 9, hence, at this
stage the number of rules is . Next, the incompat-
ible rules are pruned to obtain nine rules. For IRIS we found
four less used rules and we removed them. The final architec-
ture represented only five rules that are depicted in Fig. 6 and
the corresponding linguistic rules are shown in Table XI. In Iris
data features 3 and 4 represent petal length and petal width of iris
flowers, respectively. In Table XI pl and pw represent the petal
length and petal width, respectively. The final network again
produces a misclassification of 3 on the training set and
1 on the test set . This clearly suggests that pruning neither
degrades the performance on the training data nor the general-
ization capability of the system.

We also trained our network with all the 150 points. In this
case too we obtained just the same results in terms of features
selected and misclassification, i.e., we obtained a misclassifica-
tion of 4 on the entire data set.

There are many results available on Iris data in the literature.
Table IX (adopted from [43])shows the best resubstitution ac-
curacy for some rule based classifiers. From Table IX it is clear
that FuGeNeSys and SuPFuNIS show the best results using five
rules. We obtain a resubstitution accuracy of 97.3% with five
rules which is better than all others in Table IX leaving out Fu-
GeNeSys and SuPFuNIS. Note that, all results in Table IX are
obtained by using all four features, but our classifier uses only
two features. In [7], Chiu uses only two features, i.e., features
3 and 4 to develop a classifier. The features considered by Chiu
are the same as those selected by our classifier. Chiu reports a
training error of 3 and a test error of 0 on a training test partition
of 120 30 using only three rules. This is of course better than
the result obtained by us, but we do not know the training test
partition used in [7].
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Fig. 6. The rules for classifying IRIS.

TABLE VIII
INITIAL ARCHITECTURE OF THE NETWORK USED FOR IRIS

TABLE IX
BEST RESUBSTITUTION ACCURACY FOR IRIS DATA FOR DIFFERENT

RULE BASED CLASSIFIERS

TABLE X
VALUE OF 1� e FOR DIFFERENT INPUT FEATURES FOR IRIS

3) Results on PHONEME: Like IRIS, here also we used
three fuzzy sets for each feature. Fig. 7 shows the membership
functions used. In this case for each feature we used the same

membership functions. The initial architecture of the network is
presented in Table XII.

On termination of phase I, the number of misclassifications
on was reduced to 85. The values of after phase
I training (Table XIII) reveal that the network rejects only the
fifth feature. The network is accordingly pruned for redundant
nodes. In this case too, the network can retain its performance
after pruning, i.e., produces the same misclassification of 85 on

.
Pruning of redundant nodes reduces the number of antecedent

clauses to 81. The removal of incompatible rules consequently
yields 81 rules. Among these 81 rules 32 rules were zero rules
and there were no less used rules. Therefore, the final network
represented 49 rules. After phase III training the number of mis-
classifications on was 75(15%). This shows that tuning of
membership function parameters enhances the performance of
the classifier in this case. The misclassifications produced on

by the final network was 898(18.3%).
This data set has been extensively studied in [24] and the

average misclassifications reported there on this data set using
MLP are 15.40% on the training data and 19.63% on the
test data. Using Radial Basis Function networks, the average
training and test error were 19.9% and 22.48%, respectively
[24]. Thus our results are quite comparable (in fact a little
better) than the previously reported results.

4) Results on RS-Data: In all previous results reported, we
selected the initial architecture of the network arbitrarily. Such
initial networks may not yield good results in case of complex
class structures. Also blind selection of initial networks may
make the network too large and learning on such networks may
become computationally very expensive. This problem becomes
more severe when the number of features and number of classes
are large. We demonstrate this problem in this example. We shall
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TABLE XI
LINGUISTIC RULES FOR IRIS DATA

Fig. 7. The fuzzy sets used for all the five features of PHONEME.

TABLE XII
INITIAL ARCHITECTURE OF THE NETWORK USED TO CLASSIFY PHONEME

TABLE XIII
VALUE OF 1� e FOR DIFFERENT INPUT FEATURES FOR PHONEME

TABLE XIV
VALUE OF 1� e FOR DIFFERENT INPUT FEATURES FOR RS-DATA

TABLE XV
NUMBER OF FUZZY SETS FOR REDUCED RS-DATA

also discuss a methodology for deciding on the initial network.
Most neuro-fuzzy techniques reported in literature do not pay
adequate attention on the setting up of the initial network. The
methodology that we discuss here is not a very general one, but
it worked well with the present data set. More investigations are
required in this area to evolve a general guideline for choosing
the initial network.

The data set in question has seven input features and eight
classes. With three fuzzy sets for each input feature, the number
of antecedent nodes becomes 2187. After 100 iterations the
values of the feature modulators almost stabilized and the
values (as shown in Table XIV) suggest that features 2 and 6
are not important.

So, we discard these two unimportant features. Note that, the
network is still quite big and also the use of only three fuzzy sets
for each feature may not be adequate. So we now try to exploit
some tools of exploratory data analysis to get a better initial
network. The rest of the analysis is done on the remaining five
features, we call this data set as REDUCED RS-DATA. For each
class of the data we run the fuzzy c means (FCM) algorithm [3]
with fuzzifier 2 and number of clusters 3. The number of clusters
were determined in an ad hoc manner, but one may use some
cluster validity index [3] to determine the “optimal” number of
clusters. Thus, we obtained 3 prototypes for each class (in total
24 prototypes) in . Let , where

to 24, be the prototypes. Let be the
set of data points represented by the prototype . Here is
obtained from the final partition matrix of the FCM algorithm.
Let ; to be the points in .
For each and to 5, we calculate

(22)

For each feature ( to 5), we take ( to 24), as the
center and as the spread of a bell shaped fuzzy membership
function. In this way, for each feature we obtain 24 fuzzy sets.
For each feature , if , and if ,
we discard the fuzzy set with center , otherwise we discard
the fuzzy set with center . This is quite a natural choice as
the peaks of two adjacent fuzzy sets should be at least two gray
levels apart. The final number of fuzzy sets for each feature that
we arrived at after this process is shown in Table XV.

Of all the rules represented by this network, we find only
132 antecedents producing a firing strength of more than 0.1 for
more than three points. We retain only these 132 antecedents
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TABLE XVI
PERFORMANCE AND RULE REDUCTION OF THE PROPOSED SYSTEM

which are supported by more than three data points. This drasti-
cally reduces the size of the network, yet there may be many
redundant antecedents as we still allowed some weakly sup-
ported rules. We took this conservative approach with the hope
that some of the weakly supported rules may become useful
after tuning. So, we train a network with 132 antecedents (i.e.,

) discarding all other antecedents at the
onset of training. After pruning of the incompatible rules we ar-
rive at a network representing 132 rules. Out of these 132 rules
we found 41 as less used. Thus, the final network represents 91
rules. This network gives a misclassification of 18.31% on the
training data and 17.39% on the test data. RS-DATA was used
by Kumar et al. [23] in a comparative study of different classifi-
cation methods. The best results obtained by them using a fuzzy
integral based scheme showed a misclassification of 21.85% on
the test set. Our results with a reduced set of features outperform
their results.

Table XVI summarizes the results on the various data sets
used. It clearly shows a good performance of the proposed
system.

VII. CONCLUSION

We proposed a new scheme for designing fuzzy rule based
classifier in a neuro-fuzzy framework. The novelty of the system
lies in in the fact that the network can select good features along
with the relevant rules in an integrated manner. The network
described here is also completely readable, i.e., one can easily
read the rules required for the classification task from the net-
work. The network starts with all possible rules and the training
process retains only the rules required for classification, thus re-
sulting in a smaller architecture of the final network. The final
network has a lower running time than the initial network. The
proposed method is tried on four data sets and in all four cases
the network could select the good features and extract a small
but adequate set of rules for the classification task. For one
data set (Elongated) we obtained zero misclassification on both
training and test sets and for all other data sets the results ob-
tained are comparable to the results reported in the literature.

For further development of the methodology, some special-
ized tools of exploratory data analysis may be used to decide
upon the number and definition of the input fuzzy sets. To some
extent we did it in case of RS-DATA. But the method suggested
to analyze RS-DATA needs further refinement and modifica-
tions to make it general in nature.

Another important problem of interest related to this may be
to find the sensitivity of the output of a neuro-fuzzy classifier

with respect to its internal parameters. The classifier described
here is sensitive to the changes in the parameters of the mem-
bership functions and the certainty factors of the rules. We are
currently working on this and hope to communicate our findings
soon.
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