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ABSTRACT

Probe-level data from Affymetrix GeneChips can be summarized in

many ways to produce probe-set level gene expression measures

(GEMs). Disturbingly, the different approaches not only generate quite

different measures but they could also yield very different analysis

results. Here, we explore the question of how much the analysis

results really do differ, first at the gene level, then at the biological

process level. We demonstrate that, even though the gene level

results may not necessarily match each other particularly well, as long

as there is reasonably strong differentiation between the groups in the

data, the various GEMs do in fact produce results that are similar to

one another at the biological process level. Not only that the results

are biologically relevant. As the extent of differentiation drops, the

degree of concurrence weakens, although the biological relevance of

findings at the biological process level may yet remain.

Contact: damaratu@prdus.jnj.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Complex biological processes are driven by the actions of series

of interacting genes. Therefore, characterizing the roles of

individual genes or gene combinations in a biological process

requires an ability to elucidate genome-wide gene expression

patterns. This has been made possible by the evolution of whole

genome microarrays that are capable of simultaneously

measuring the transcription levels of all genes in a cell. Of

these, Affymetrix’s GeneChips are one of the most popular.

Affymetrix GeneChips consist of 25mer oligonucleotide

probes. Each probe is designed to interrogate how much of

the transcript sequence complementary to its DNA sequence is

present in a sample. A gene is represented by a set of 11–20 such

probe pairs called a probe set. Each probe pair consists of

a perfect match (PM) probe for its target sequence and a paired

mismatch (MM) probe with the same 25-base sequence as the

PM except for a single change in the middle nucleotide.

The presence of multiple probes in a probe set has perplexed

users of this technology as it is unclear as to how best to

summarize the set of probe-level values to produce a single

expression measure for the probe set. A number of methods

have been proposed, including Affymetrix’s own Average

Difference and MAS5 (Affymetrix, 2002), which are single

array methods, and a plethora of multi-array methods; the

most popular of which are dChip (Li and Wong, 2001), RMA

(Irizarry et al., 2003) and GC-RMA (Wu et al., 2004). The

Affycomp website (Cope et al., 2004; Irizarry et al., 2005) lists

several dozen more.

It is clearly disconcerting to researchers that the various

summarization techniques produce different gene expression

measures (GEMs) (Cope et al., 2004); and therefore different

analysis results at least as far as individual genes are concerned

(Shedden et al., 2005). That this would happen is not surprising

as the methods postulate different models and use different

methods for model fitting. Spike-in experiments, in which

known concentrations of mRNA have been added to the

hybridization cocktail, suggest that RMA and GC-RMA are

superior in terms of sensitivity to MAS5 and dChip while being

slightly inferior in terms of specificity (see the Affycomp

website and Supplementary Fig. 1 which is based on the

information there). In fact, these spike-in data have been the

focus of many assessments of the performance of summariza-

tion techniques at the individual gene level. Yet, these data and

assessments are very simplistic in terms of correlational

structure and number of genes affected, whereas the challenges

in actual applications are largely due to the correlational

complexity and the high dimensionality of the data. They miss

the point stated in the first sentence above: that biological

processes are driven by the actions of series of interacting genes.
Thus, it would be intriguing to ascertain whether the

different summarization schemes would, in fact, produce

high-level results that are similar to one another even though

the results at the probe-set level might differ. This article

explores this question in the context of an experiment involving

knockout mice.*To whom correspondence should be addressed.
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2 METHODS

2.1 Experiment

It is imperative, when studying a question such as this, to have at hand

an experiment for which there is available some knowledge as to the

biological processes affected. To this end, we used an experiment

involving knockout mice. As an added bonus, gene expression was

studied at two stages of development of these mice: a newborn stage,

when there is little differentiation between knockout and wild-type

mice, and a later stage when there is more. This enabled us to compare

the GEMs with differing amounts of differentiation in the data.

More on the experiment is described as follows. Defects in the

metabolism of sialic acid are known to be responsible for the so-called

sialic acid storage diseases. These are autosomal recessive neurodegen-

erative disorders that may present as a severe infantile form (ISSD or

infantile sialic acid storage disease) or a slowly progressive adult form

(Salla disease). Both forms of sialic acid storage disease are caused by

mutations in Slc17A5, which encodes the protein sialin, named such

because of its relation to sialic acid storage diseases. Mutant proteins

have been shown to be impaired in the natural function of sialin, which

acts as a transporter to export sialic acid out of the lysosome. Genetic

deletion of sialin function in a mouse was reported before to mimic

ISSD (Moechars et al., 2005; Verheijen et al., 1999), with excretion of

large amounts of free sialic acid in the urine, an accumulation of sialic

acid in lysosomes, hypo-myelination, growth and neuromotor retarda-

tion, coarse facial features, fast deterioration and early death. To gain

insight into the pathogenic mechanism resulting in this severe

phenotype, newborn mice were studied for their gene expression in

the brain at two time points: (1) a post-natal time point (day 0) that

preceded the occurrence of obvious phenotypic traits but impacts

organic acid transport on a molecular level and (2) a post-natal

time point (day 18) where impaired sialic acid transport led to

observable morphological alterations such as defects in myelination

(Moechars et al., 2005). The experiment was conducted using Slc17A5

knockout mice as a model for ISSD with the overall objective of

identifying the earliest genes and biological processes affected at

the transcript level in young knockout mice before the disease is

manifested.

To perform the experiment, RNA samples from total brain were

derived from newborn and 18-day-old mice for each of two groups:

Slc17A5 knockout (‘KO’) and wild type (‘WT’). There were six

biological samples in each group. Microarray experiments were

performed on the RNA samples using Affymetrix Mouse430_2

GeneChips. The PM and MM values were recorded and GEMs were

calculated using four different summarization procedures: MAS5,

RMA, GCRMA and dChip. The calculations were done in R

(R Development Core Team, 2006) using the BioConductor

(Gentleman et al., 2004) version 1.9 packages affy and gcrma with

the default settings. Each set of GEMs was quantile-normalized

(Amaratunga and Cabrera, 2004) and the MAS5 and dChip values

were also log-transformed.

2.2 Topset concurrence

The goal now is to measure agreement among the various GEMs with

respect to their ability to detect differential expression between the two

groups: WT and KO. One way to do this would be to compare t-test

P-values. However, the more common way to utilize microarray data is

to use them to rank the genes according to P-value and to flag for

further study the ‘topset’, the set of most significant genes. Therefore, it

seems more pertinent to judge similarity by generating topsets using the

various GEMs and then seeing how similar these topsets are to one

another. We do this using ‘Topset Concurrence’ as the basic construct

for assessing agreement.

Topset concurrence scores are computed as follows. In the following,

g indexes the probe sets (g¼ 1, . . .,G), j indexes the GEMs (the possible

values for j are MAS5, RMA, GCRMA, dChip) and k is a given integer

(such as k¼ 10 or k¼ 100).

(1) Calculate a P-value for each probe set (e.g. using the two-sample

t-test).

(2) For the jth GEM, determine its ‘topset’, the set Sj of probe sets

with the k smallest P-values; in other words, the topset Sj is

the list of probe sets deemed the k-most significant using the

jth GEM.

(3) For each probe-set i in Sj, count the number of other topsets

(Sl such that l 6¼ j) that also contains probe-set i. Call this number

Aij. Clearly Aij will be 0, 1, 2 or 3.

(4) The topset concurrence TC(k, j) for GEM j is defined as the mean

of the Aij over i.

A high topset concurrence (i.e. TC near 3) would imply that the four

GEMs give almost identical topsets. A low topset concurrence

(i.e. TC below 2) would imply that the different GEMs produce

different topsets. To see how the degree of agreement varies with k,

concurrence scores can be calculated for different values of k and the

resulting topset concurrence scores TC(k, j) can be plotted against k to

produce a ‘topset concurrence plot’ (or ‘TC plot’). Clearly, this plot will

asymptote towards 3 as k!G.

The analysis thus far is for individual genes. Next, it is pertinent to

assess the degree of agreement at the biological process level. In other

words, if the genes are categorized according to the biological process

they are involved in, do the gene categories called significant by the

different GEMs agree? To study this, the probe sets were categorized

according to their Gene Ontology (GO) Biological Process annotations

(Gene Ontology Consortium, 2000). The format of this data is such that

genes are assigned only to the most specific level of the branch they

belong to in the hierarchical GO tree; they are not assigned to nodes

higher up in the tree which are less specific. Because of the structure of

the GO hierarchy, if a gene belongs to a certain node, it also belongs to

its parent’s node as well as to all its ancestor’s nodes. This gene

propagation from a specific level to a more general level was performed

using a specially developed Java program. A total of 1335 GO terms

were ultimately represented in the data. When a gene is represented by

multiple probe sets on the array, the one with the smallest P-value was

used to represent the gene. After this, for each GO term, its MLP

statistic¼mean(�log P-value) was computed (Pavlidis et al., 2003,

2004; Raghavan et al., 2006) and its significance determined using the

permutation procedure described in Raghavan et al (2006). The

resulting P-values were ranked and a topset concurrence score was

evaluated for each method using the above-mentioned procedure.

These analyses were done on both the newborn and the 18-day

datasets. In addition, to establish a null baseline, an artificial dataset,

‘Scramb’ was created by permuting the samples of the newborn data.

2.3 Variations

Many choices are possible at every stage of a microarray data analysis

starting with the choice of summarization procedure and continuing on

to the choice of chip definition file (e.g. Affymetrix CDF or EntrezGene

CDF), gene-level test statistic (e.g. t-test or Limma), test statistic

for finding differences at the biological process level (e.g. MLP

or hypergeometric) and annotation database [e.g. GO or (KEGG)].

Our study incorporated several of these variations to determine whether

any of them would substantially affect the degree of concurrence.

Topset concurrence scores can be derived with any test. We

also generated them using P-values from Limma (Smyth et al., 2004),

a popular alternative to the t-test that employs a hierarchical model to
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borrow strength across genes to render the analysis more stable for

experiments with small sample sizes.

It has been argued that alternative probe-set annotations (CDFs),

e.g. the alternative probe mappings based on the genes contained in the

EntrezGene database, produced better and more interpretable results

(Dai et al., 2005; Sandberg and Larsson, 2007). Therefore, we repeated

the above-mentioned procedures with these alternative CDFs.

Over-representation analysis using a hypergeometric test (Hosack

et al., 2003) is a popular method for identifying significant GO terms.

We also repeated the above-mentioned procedures with this test.

In certain instances, it is more useful to categorize genes based on

which pathway they are involved in rather than by which GO term they

belong to. Therefore, we also repeated the above-mentioned procedures

with genes grouped according to their KEGG pathways (Ogata et al.,

1999).

3 RESULTS

Spectral maps (Wouters et al., 2003) of the data (Fig. 1) show

clear separation between the two groups (WT and KO) for

18-day mice, marginal separation for newborns and none for

the Scramb dataset, thus illustrating the differing amounts

of information regarding the differences between KO and WT

in the three datasets.
Next, individual gene t-tests and topset concurrences were

computed. The results are shown in Figure 2: the left column

shows the False Discovery Rate (FDR) (Benjamini and

Hochberg, 1995) for the top k genes versus k, the center

column shows the TC plots for the data at the individual gene

level and the right column shows the TC plots for the data at

the GO term level. For each dataset, all GO terms which are

in the top 15 for any of the GEMs with TC¼ 3 across the

GEMs are listed in Table 1.
With the 18-day data, where there is a strong separation

between the two groups, FDR50.001 for all methods for k558

(Fig. 2a), indicating, for instance, that the gene-level topset of

size 50 for any method will contain mostly genes for which

there is strong evidence of differential expression. Yet, topset

concurrence at the gene level is modest (Fig. 2b), meaning that,

for example, were one to select the top 50 genes, the different

GEMs would produce different topsets with only a little

overlap. On the other hand, the GO terms display remarkably

strong topset concurrence (Fig. 2c), meaning that, for example,

all the GEMs produce the same list of top 10 GO terms. The

maximum topset concurrence score of 3 is achieved in the range

of 7–13 GO terms. All 13 TC¼ 3 GO terms (i.e. those listed in

Table 1) correspond to processes expected to be affected

(Supplementary Table 1 shows a short list of independent

biological processes that were expected to be affected). Results

for the EntrezGene annotations (Supplementary Fig. S2) are

similar; in fact, topset concurrence there appears even slightly

stronger. Topset concurrences using Limma instead of a t-test

are also similarly strong (Supplementary Figs S3 and S4).
With the newborn data, where there is only weak separation

between the two groups, FDR is generally quite high (except

FDR50.1 for k515 for dChip) (Fig. 2d), indicating that gene-

level topsets will include many genes with only a little evidence

of differential expression. Thus, the genes show poor topset

concurrence (Fig. 2e). So do the GO terms (Fig. 2f); there is

only one TC¼ 3 GO term compared to 13 with the 18-day data.

Fig. 1. Spectral maps of the 18-day data (top), Newborn data (middle)

and Scramb data (bottom), with the WT mice denoted by circles, the

KO mice by triangles and the individual genes by dots. The number H

on each is the permutation-based P-value for a Hotelling’s test on the

top 100 genes selected via MAS5 t-tests; this number is a rough measure

of the separation between the two groups; the lower the value of H the

greater the separation.
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However, importantly, this GO term (monocarboxylic acid

transport which includes the knocked-out gene Slc17A5) and

many of the other GO terms appearing in the different GO

term topsets are associated with biological processes known

to be affected, indicating a certain degree of reliability in the

accumulated results at the biological process level even though

the separation between groups is small.
Not surprisingly, the Scramb dataset, which has no true

separation between the groups, shows extremely high

FDR levels (Fig. 2g), hardly any concurrence at either level

(Figs 2h and i) and neither the top genes nor the top GO terms

have any relevance to the situation at hand.
When the genes were categorized according to their KEGG

pathways (Fig. 3), the pattern of topset concurrence at 18 days

is similar to that with GO terms but weaker. However, this

was expected as KEGG pathways do not fit as well with the

known phenotype as GO’s biological processes in the context of

this experiment. Deletion of Slc17A5 was found to result in

dysmyelinization due to impaired oligodendrocyte functional-

ity, which translates well in GO terms such as ‘nerve

Fig. 2. Results of the comparisons across groups. The top row shows the results for the 18-day data, the middle row for the newborn data and the

bottom row for the scramb data. The left column shows FDR for the top k genes versus k, the middle column shows the TC plots for assessing the

concurrence of the GEMs at the individual gene level, and the right column shows the TC plots for assessing the concurrence of the GEMs at the GO

term level. For this display, annotations provided by Affymetrix and t-tests were used.

High-level similarity of some disparate gene expression measures

3035



ensheathment’, ‘myelination’, ‘cellular nerve ensheathment’,

‘ionic insulation of neurons by glial cells’ and ‘regulation of

action potential’ and GO terms that relate to lipid metabolism

such as ‘cholesterol biosynthesis’, ‘cholesterol metabolism’,

‘sterol biosynthesis’, ‘membrane lipid biosynthesis’ and ‘mem-

brane lipid metabolism’ as oligodendrocytes are the major

source of lipid biosynthesis in the brain (listed in

Supplementary Table 1). Deletion of Slc17A5, a transporter

of sialic acid would not immediately affect the biochemical

pathways that constitute the KEGG database; therefore it is

not unexpected that the concurrence with KEGG pathways is

weaker. There is hardly any topset concurrence with the

newborn data. However, again this was unsurprising as at birth

no phenotypic difference was observed between the mutant

mice and their wild-type littermates.

When the MLP approach is replaced by the hypergeometric

test (Fig. 4), the pattern of topset concurrence is somewhat

similar to that seen in Figure 2. In fact, of the 13 GO terms in

Table 1, 10 are also identified as being among the top 15 GO

terms with TC¼ 3 using the hypergeometric approach.

However, the concurrence is weaker. A notable example is

GO 6911, phagocytosis engulfment, a process that is expected

to be significant because the biologically observed phenotype of

defective myelination involves a degradation of the oligoden-

drocytes and subsequent debris clearance by phagocytosis.

It appears in Table 1, but is only picked up by MAS5 as being

among the top 15 GO terms when using the hypergeometric

approach. The concurrence is weaker because the hypergeo-

metric approach itself is weaker in the sense that it tends to

have less statistical power than the MLP approach (Raghavan

et al., 2006). This underscores the importance of employing

adequately powered statistical tests for data analysis.

Fig. 3. Topset concurrence plots for KEGG pathways with the 18-day

data (top), newborn data (middle) and scrambled data (bottom).

As there were only 144 KEGG pathways represented in the data, the

tendency of TC to trend towards its upper limit of 3 is clearly visible

in these plots.

Table 1. For each dataset, the top 15 GO terms with TC¼ 3

18-Day GO Term description

1508 Regulation of action potential

6694 Steroid biosynthesis

6695 Cholesterol biosynthesis

6911 Phagocytosis, engulfment

7272 Ionic insulation of neurons by glial cells

8203 Cholesterol metabolism

8366 Nerve ensheathment

16 125 Sterol metabolism

16 126 Sterol biosynthesis

42 551 Neuron maturation

42 552 Myelination

42 553 Cellular nerve ensheathment

48 469 Cell maturation

Newborn GO Term description

15 718 Monocarboxylic acid transport

Scramb GO Term description

6376 mRNA splice site selection

N.Raghavan et al.
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One final point worth noting is that the Slc17A5 gene that

was knocked out turns up with high ranks at the gene level on

both day 18 and newborn (Table 2).

4 DISCUSSION

The results demonstrate that, when there is strong differentia-

tion between the groups in the data, the various GEMs,

although quite disparate methodologically, produce results that

are reasonably similar at a high level, e.g. at the biological

process level, even though the gene level results may not

necessarily match very well. This concurrence holds even when

different methods are used to process the data (e.g. using

Limma instead of a t-test) as long as the overall procedure has

adequate statistical power (e.g. as evidenced by the fact that the

concurrence drops when the hypergeometric test is used to test

for differences at the biological process level rather than the

MLP approach). However, when the differentiation between

the groups in the data is subtle, the degree of agreement

is substantially reduced with no preference evident for any

one GEM.
Above all, one key fact highlighted by the results above is the

importance of, whenever possible, interpreting microarray

results at the biological process level rather than at the gene

level. This is exemplified by the 18-day results for GO 6911. All

GEMs identify GO 6911 within the top 15 GO terms (Table 3).

However, hardly any of the 31 probe sets associated with this

GO term lie within the top 100 probe sets of any GEM

(Table 3). In fact, the GO terms identified as being significant

and concurrent tend to consist of probe sets whose significance

levels are mixed (Supplementary Fig. S5 shows the P-value

distribution within each of these GO terms), which reflects the

fact that the significance of these GO terms and their

Fig. 4. Topset concurrence plots for the hypergeometric test for the GO

terms with the 18-day data (top), newborn data (middle) and scrambled

data (bottom).

Table 2. For each dataset, the ranks of the Slc17A5 gene

18 DAY Newborn Scramb

MAS5 9 3 38 492

RMA 109 1 43 537

GCRMA 3 1 34 811

DCHIP 6 2 42 962

Table 3. For the 18-day data, the ranks of GO 6911 (phagocytosis

engulfment) and the range of ranks for the probesets involved in

GO 6911

MAS5 RMA GCRMA DCHIP

GO 6911 ranks 13 13 14 15

Probeset rank ranges 152–45 038 63–44 637 85–41 241 116–42 871
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concurrence is being driven by the concerted action of a

combination of several affected genes, not just a few.

Results such as this and the fact that, despite the weakness of

the separation in the newborn data, several of the top GO terms

are associated with biological processes known to be affected,

suggest that, cumulatively, modest differential expression

among many genes involved in a process can still capture the

true underlying signal, an important point to consider when

interpreting microarray data.
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