
 

Expanding in-service mathematics teachers’ horizons 

 in creative work using technology 

                                        CHARALAMPOS TOUMASIS 

 

       This article describes the experiences from a seminar in the teaching of 

mathematical reasoning and problem solving designed to prepare in-service high 

school mathematics teachers to teach genuine mathematical activity in a computer-

based environment. Presented with a set of unfamiliar tasks and activities, the 

participants were encouraged to investigate each of them, using the Geometer’s 

Sketchpad software, and then to justify their assertions accordingly. In the 

exploratory process the student teachers make the major mathematical contributions 

while the teacher plays the role of facilitator. The mathematics teachers began to 

realize the power of technology in teaching mathematics and were pleased to return 

to their classrooms with a great number of experiences and ideas for immediate use. 

 

 

1. Introduction 

     In mathematics education the contribution of great mathematicians and educators 

as Polya [1,2] or philosophers of mathematics as Lakatos [3] promoted discovery 

approaches in mathematics teaching. As a consequence, it is increasingly emphasized 

that, in all grades, pupils should be given more opportunity to experience typical 

processes of mathematical activity, like looking for patterns, making generalizations 

or specializations or analogies, conjecturing or guessing, proving, etc. In this way, 

students might develop a stronger feeling that mathematics is a living, ever-growing, 

open subject and that mathematical activity is a dynamic, powerful and worthwhile 

endeavor as opposed to the long tradition according to which mathematics has been 

presented as a ready-made prefabricated body of knowledge. 

      The reasoning skills that all secondary students should know include making and 

testing conjectures, formulating counterexamples, following logical arguments, 

judging the validity of arguments, and constructing simple valid arguments [4,5]. 

Making and testing conjectures are at the heart of proof in mathematics. Mathematical 

proofs and conjectures are central to mathematics and mathematics education. The 

most significant potential contribution of proof in mathematics education is the 

contribution proofs might make to students’ mathematical understanding [6]. 
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      Therefore, it is reasonable to argue that students should be exposed to, and 

preferably experience for themselves, the search for patterns, the tentative 

generalizing, the further search for confirming or counter-examples and the 

hypothesizing of a result, which in actual fact comprises a large part of the 

professional mathematicians’ work. Ideally, they should then continue and confirm 

the result by proving it, or seeing it proved deductively as the mathematical culture 

and mathematical tradition calls for. 

      Technology can play a powerful role in this process of making, evaluating, and 

refining conjectures as well as in other aspects of learning mathematical reasoning. 

Computer construction programs, such as the Geometers’ Sketchpad [7], and Cabri 

Geometry [8], allow students to experiment; to investigate algebraic and geometric 

properties; to make, test and refine conjectures; and to find counter-examples. 

      However, the density of any such efforts to improve as well as to cultivate 

students’ mathematical reasoning by means of technology lies in the hands of the 

classroom teacher; in fact, the success of any curricular reforms in mathematics 

ultimately depends on classroom teachers [9]. Hence, genuine mathematical activity 

as, for example, problem solving or problem posing will become the central focus 

only if the teacher recognizes its importance and fosters a classroom environment, 

which is conductive to exploration, inquiry, reasoning, and communication. “Teachers 

play an important role in the development of students’ problem-solving dispositions 

by creating and maintaining classroom environments, from pre-kindergarten on, in 

which students are encouraged to explore, take risks, share failures, and question one 

another” ([5], p.36). 

      George Polya [10] expressed the point of view that the teaching of teachers of 

mathematics should offer experience in independent, creative work, at an appropriate 

level, through a problem- solving seminar or through any other suitable medium. 

2. Purpose and methodology 

      The purpose of this article is to describe some snapshots of a two-month seminar 

in the teaching of mathematical reasoning and problem-solving designed to prepare 

in-service high school teachers of mathematics to teach mathematical activity as a 

process rather than a product of learning in a technology environment.    

      As specific objectives I put some of the advantages that discovery approaches 

offer to the teaching of mathematics in a technology environment:  
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1. Facilitate students’ development of an attitude towards learning and inquiry, 

towards guessing and hunches, towards the possibility of solving problems on 

their own. 

2. Allow students to experience the exciting process of developing mathematics. 

3. Promote independent thought and creativity and encourage the sharing of 

ideas. 

4. Alter students’ perspective from mathematics as a subject in which everything 

is right or wrong, to mathematics as a discipline of modifying and changing 

until a convincing justification has been found. 

5. Encourage students to work in small groups, to collect and organize data, to 

conjecture about the results, to listen to the thoughts of peers, to contribute to a 

collective effort, and to practice communication skills. 

       

      The seminar was organized and conducted by the author, who as a school advisor 

is charged with the responsibility of delivering continuing education to mathematics 

teachers to improve classroom instruction, and took place in the Center for In-service 

Education of Patras, Greece. The participants were twelve in-service high school 

mathematics teachers (two female and ten male) in grades 9-12. All of them had a 

thorough background in mathematics, but little direct experience with the use of 

technology to teach mathematics. For seminar participants, and for many other 

mathematics teachers, their own mathematics backgrounds are hardly associated with 

discovery learning. Rather, what comes to mind is didactic activity, e.g., required 

theorems often memorized without sufficient understanding, model problems 

reconstructed by rote, textbook exercises performed repetitiously. 

      The seminar offered the participants a totally new experience in creative work 

with opportunities to formulate, communicate and support original mathematical 

conjectures. The participants used a computer-based version of Sketchpad(4). It is 

also possible to do the same explorations on graphics calculators, such as the TI-92. 

Student teachers were given rudimentary explorations earlier in the semester to 

familiarize them with the mechanics of the software. 

      Presented with a set of ten tasks and activities dealing with the concepts of 

algebra, geometry and calculus, the participants were asked to investigate each of 

them and then to justify their assertions accordingly. The tasks were chosen to be 

unfamiliar in their specifics, not commonly seen in textbooks, yet based on traditional 
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mathematical concepts. What is most essential is that for many of the participants this 

was the first time they were being asked to investigate a mathematical statement 

without knowing in advance whether the statement is true or not. This was a truly new 

dimension in mathematical inquiry for these high school mathematics teachers. 

      The student teachers worked in pairs at computers during a 3-hour session weekly. 

Ideally they should come up with their conjectures and share with the whole group. 

Once the students’ conjectures were understood by the whole group, they could either 

find counter-examples or prove the conjectures. 

      When a student teacher had a conjecture about the question under consideration, it 

was presented to the rest of his/her colleagues. Next, the class tried to search for 

exceptions to the conjecture. If one such was found, the proposition was modified 

accordingly. If none was found, an attempt was made at its proof, which was mostly 

not completed in the class but was developed as a result of the contributions of a 

number of student teachers over a period of several days. 

      In such a process the instructor must play the principal role of a facilitator. He/she 

encourages the students to pursue the exploration even if they feel they are in the 

dark. The main task of the instructor as facilitator is to encourage students’ 

formulation of propositions, conjectures and proofs, creating a class atmosphere in 

which the students feel free to ask questions and seek help, and are allowed to 

speculate, hypothesize, and make errors without embarrassment. The instructor also 

promotes a climate in which he/she appears as a guide and counselor whose main task 

is to stimulate students’ activity and learning. 

 

3. The presentation of samples activities 

 
The experiences of the author and the findings from three such activities are presented      

in the following. 

Activity 1. 

In 1899, Frank Morley, came across a result so surprising that it entered 

mathematical folklore under the name of “Morley’s Miracle”. Start with 

an arbitrary triangle ABC. Trisect the angles in  and let D be the 

point of intersection of the two trisectors closest to side BC with E and F 

defined similarly. Morley’s marvelous theorem states that  is 

equilateral. Investigate further the Morley’s configuration. Especially 

ABC

DEF
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search for a relation between the six segments AF, AE, BF, BD, CD and 

CE (figure1). 

D

ΕF

Α

Β C

                                         Figure 1: The Morley’s configuration 

 

      It is well known that it is impossible to trisect an arbitrary angle using straightedge 

and compass. Instead the Geometer’s Sketchpad is able to trisect an arbitrary angle by 

computing the one third of its measure. 

      Having constructed a dynamic triangle with trisections, which can be dragged, the 

numerical dada on the measures of the straight segments, which connect the vertices 

of the initial triangle ABC with the equilateral triangle DEF, is displayed by the 

program. 

      The dynamic software allowed students to gather data from several different 

examples quickly and accurately, a task that would be daunting if attempted by 

pencil-and-paper methods. Patterns evident among all examples can then be explored. 

      After several trials, a conjecture was formulated that AE.BF.CD = AF.BD.CE. In 

this situation, two students used the calculator embedded in the geometry program to 

multiply the straight segments AE, BF, CD and the straight segments AF, BD and CE. 

Using the Tabulate function of the Geometer’s Sketchpad, the students recorded in a 

table the product of the three segments AE.BF.CD and the product of the other three 

segments AF.BD.CE as point A moves (figure 2). 
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                                                                    Figure 2 

      Soon they demonstrated that this relationship seemed to hold with every distortion 

of the initial triangle ABC, supplying strong evidence that the conjecture was true. 

This conjecture was thrown open to the class, and, before a proof was found, all the 

groups of student teachers found, by exploring the distortions of the initial triangle 

ABC on dynamic software, that the conjecture seemed to be true, without any doubt. 

When technology is used in this manner, the instructor has to be confident enough to 

let the students’ inquiry guide them to investigate if a proof exists for their 

conjectures. 

      At this point some teachers expressed the concern that high school students may 

believe proofs are unnecessary. As one participant stated, “Why would my students 

want to bother proving this proposition when they see that it is true, right in front of 

them?”. However, when asked explicitly if the above evidence constitutes a proof, all 

of them expressed the belief that a formal proof is different from proof by many 

examples. Although computer software provides compelling evidence of the truth of a 

theorem, it is certainly not a proof. Whether or not one studies mathematics with a 

computer, deductive proof is still crucial for several reasons. One important reason to 

prove theorems is that a proof can explain why a theorem is true [11]. 
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      The Geometer’s Sketchpad is an example of software that gives a wealth of 

opportunities to discover relationships, to show when statements are false, and to give 

intuitive understanding, although it is not competent for developing general proofs. At 

this stage the students set aside the computer and tried to develop a rigorous proof. In 

the next session several of them offered the following proof: 

      Let the angles at A equal α, the angles at B equal β and the angles at C equal γ 

(figure 3). Then, applying the low of sines to the triangle ABF yields 

                                      AF BF
sin sin

=
β α

   or   AF sin
BF sin

β
=

α
                                             

(1) 

In the same way, applying the low of sines to the triangles BDC and AEC we have 

BD sin
CD sin

γ
=

β
  (2) and CE sin

AE sin
α

=
γ

  (3)   respectively. 

Multiplying (1), (2) and (3) we get AF BD CE sin sin sin 1
BF CD AE sin sin sin

β γ α
⋅ ⋅ = ⋅ ⋅ =

α β γ
. 

Therefore,  AF BD CE BF CD AE⋅ ⋅ = ⋅ ⋅

α

β

α

β

α

γβ
γ

γD

ΕF

Α

Β C

                                                              Figure 3 

  

Activity 2 

In the Morley’s configuration investigate the relation between the area of the 

initial triangle ABC and the area of the equilateral triangle DEF. 

 

 
International Journal of Mathematical Education in Science and Technology 

7



      Using the dynamic software the students, first, calculated the areas of the two 

triangles and tried to explore how the ratio (ABC)
(DEF)

 of areas was changed with every 

distortion of the initial triangle ABC.  

      After several experiments they could not discover any such relation, so some of 

them proposed to explore the special case when the initial triangle ABC is equilateral. 

In this situation the software showed that (ABC)
(DEF)

= 28.615 and this value seemed to 

hold with every distortion of the equilateral triangle ABC (figure 4). 

                                                              

                                                                 Figure 4 

      But why does the above ratio remain constant? How is this fact the consequence 

of other familiar results? These questions establish a very good reason to pursue a 

proof. 

      The class spent the last thirty minutes of a session trying to prove this conjecture 

but could not come up with a proof. To nurture open mathematical investigative 

minds in the students, the instructor discussed their failures to prove the statement and 

giving some suggestions the proof was assigned as homework for the next session. 

      In the following lines we present two different approaches for the proof, which are 

based on ideas of several students. 

1st proof: 

      In this approach the law of sines is used as before. Since each of the trisected 

angles has a measure of 20o, we see that  and  (figure 4). oAFB 140∠ = oAEF 80∠ =
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Thus from the law of sines we obtain o o

AF AB
sin

=   and  
20 sin140 o o

EF AF
sin 80

=  

respectively. It follows that 

sin 20
o o

2 o

AB sin80 sin140
EF

=

ratio of corresponding sides,

sin 20
⋅ . 

      Since the ratio of areas of similar triangles ABC and DEF equals the square of the 

 the desired ratio is  
2 o 2 o

4 o

sin 80 sin 140 29.284
sin 20

⋅
≈ . 

 

2nd proof: 

    This proof is based on the fact that the side DF in the Morley’s equilateral triangle 

en by the expression DF = 8Rsinαsinβsinγ, where A = 3α, Β = 3β, C = 3γ 

  

DEF is giv

and  R is the radius of the circle circumscribed around ABC [12]. 

      In our case we have 3 oDF 8R sin 20= . Since in an equilateral triangle R= a 3 , 
3

where a is its side, we have that 

( )
( )

( ) ( )
( )

2 2 2

2 2 6(DEF) 64R sin 20DF
= = o 2 6 o6 o

AB AB 3 AB(ABC) 3 29.284
64sin 2064 AB sin 20

= = ≈  

 

Activity 3. 

Start by sketching the graph of the function 3 2f (x) x 3x x 3= − − + . Find 

os of f(x) and then sketch the graph of the tangent line through the 

s. 

      S nd the three zeros are x = -1,  

x = 1, and x = 3. They then computed the average of the two zeros –1 and 1 to be 0 

 

l 

drawn at the average of two zeros has 

an x-intercept equal to the third zero. 

the zer

average of two zeros. Make your observation

 

tudents easily found that f(x) = (x+1)(x-1)(x-3) a

and they found the equation of the tangent line at the point (0,f(0)) to be y = -x + 3. 

Using the graph menu of Sketchpad they drew the tangent line and the result, shown

in figure 5, was a surprise to everyone. The x-intercept of the tangent line that was 

created was x = 3, i.e. the third zero of f(x).    

      Students repeated the same process with two other zeros of the cubic polynomia

f(x) and they found again that the tangent line 
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ce the Geometer’s Sketchpad is a dynamic program, we created a cubic 

x-n), setting up sliders for k, m and 

tly 

t 

                                                                Figure 5 

   At first most of the students thought that this result might be simply a coincidence. 

Sin

polynomial of the general form f(x) = (x-k)(x-m)(

n. In this manner one can slide a point back and forth to control the values of three 

zeros k, m and n. At the same time, because the function is made into a direc

manipulable object that can be translated, squeezed and stretched, the student has a 

rich opportunity to develop intuitions about these objects and the effects of differen

procedures on them. 

      Students created the tangent lines at the points 

k m k m k n k n, f , , f
2 2

⎛ + + ⎞ ⎛ + + ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 and 
2 2⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

⎟
m n m n,f⎛ + + ⎞⎛ ⎞ , and they found out 

2 2⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

that these lines have an x-intercept equal to the third zero of the polynomial. 
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      Next they repeated the same process changing a

er screens, students soon formulated the 

The tangent line drawn to the cubic polynomial at the average of two zeros, p

ll three zeros, k, m, and n. On the 

basis of the pictures drawn on their comput

following conjecture: 

asses 

rough the third zero of the polynomial.   

ts expressed interesting ideas on how one could prove this 

he 

tudents had proved the above theorem. 

. Then 

 

k m 2km− + ,  

The equation of the tangent at the point 

th

      Students then were on a quest to determine why they obtained this result, and to 

explain why this result holds true for cubic polynomials. In the discussion that 

followed, some studen

result. Although they made a considerable effort, no one could give a full proof by t

end of the session. In the next session five s

The following proof is a combination of three of these proofs. 

      Let us take a cubic with the roots 2k, 2m, and 2n, f(x) = (x-2k)(x-2m)(x-2n)

f (x) (x 2m)(x 2n) (x 2k)(x 2n) (x 2k)(x 2m)′ = − − + − − + − −  and after some 

computation 2f (x) 3x 4(k m n)x 4(kn km mn).′ = − + + + + +  

The average of two zeros 2k and 2m is k+m. The slope of the cubic at x = k+m is  
2f (k m) 3(k m) 4(k m n)(k m) 4(kn km mn′ + = + − + + + + + + ),

2 2 2 2

f (k m)′ + = −

f (k m) 3k 3m 6km 4k 8km 4m 4kn 4mn 4kn 4km mn,′ + = + + − − − − − + + +  

2 2 ( )2f (k m) k m′ + = − − . 

Next we find f(k+m) = (m-k)(k-m)(k+m-2n), f(k+m) = -(k-m)2(k+m-2n). 

( )k m,f (k m)+ +  is 

y = .  Substituting, therefore, we have 

y = -(k - m)2(x - k - m) - (k - m 2(k + m - 2n). 

Setting y = 0 to find the x-intercept yields (k – m)2(x - k – m) = -(k - m)2(k + m – 2n) 

 by (k – m)2 

= 2n. 

ompletes the 

, computer-based activities, which 

 task the participants were asked to investigate. Maybe other colleagues would 

f (k m)(x k m) f (k m)′ + − − + +

)

or (k – m)2x = -(k - m)2(k + m - 2n) + (k + m)(k - m)2. Dividing both sides

we obtain x = - (k + m – 2n) + (k +m), x 

Therefore, the tangent line has its x-intercept at the third zero, which c

proof. 

 

4. The rest of activities 

      Next, we present the rest seven open-ended

were given to the participants in the seminar, to give the reader a clear sense of the 

type of
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like to use some of them in similar seminars for pre-service or in-service mathematics 

teachers. 

 if we join trisection points? b) Investigate further to present some 

res about the quadrilateral formed when the sides of a quadrilateral 

Act

s 

 we 

f the 

any other fractional part of the way from one end of their line 

se cases? 

Activity 3. 

 

Act

 triangle the Euler line includes the circumcenter, centroid, and the 

riangle? Investigate. 

 

 

graphs. How is 

sification determined by the expression b2 – 3ac? 

Activity 1. 

Every one who has studied geometry knows that the quadrilateral formed by 

joining the midpoints of the sides of a convex quadrilateral is a parallelogram, 

the area of which is half the area of the outer quadrilateral. a) What would 

happen

conjectu

are divided into 4,5,…,n congruent parts and the first division points are 

joined in order. How do the ratios of the areas compare in these cases?   

ivity 2. 

Start with an equilateral triangle, ABC. Construct a new triangle, 

KMN, such that its vertices are the midpoints of the sides of ABC. As it i

well known, the area of KMN  is one-fourth the area of ABC. What if

place each of the points K,M, and N one-third of the way, three-fourths o

way, or 

segments to the other? How do the ratios of the areas compare in the

The sides of a quadrilateral have lengths a, b, c, and d. The diagonals have 

lengths k and m. For what kind(s) of quadrilaterals does the following formula

work for: a2 + b2 + c2 + d2 = k2 + m2 ? 

ivity 4. 

In every

orthocenter of the triangle. Construct the Euler line for an equilateral, an 

isosceles, an obtuse and a scalene acute triangle. What do you observe? Can 

the Euler line be parallel to a side of a t

Activity5. 

Construct a cubic polynomial f(x) = ax3 + bx2 + cx +d using sliders to set up

the coefficients a, b, c, and d. After graphing several cubic polynomials by

changing the values of a, b, c, and d 

i) Try to classify the cubic polynomials by the shape of their 

this clas
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ii) Investigate the case where the cubic graph has a relative maximum, a 

relative minimum and an inflection point. Compare their coordinates. 

ivity 6. Act

 B(m,f(m)) and 

f 

eat 

riment sketching several graphs by controlling the values of a, b, 

Act

 

d 

. 

u find the equation of this curve? 

      ts 

to e pply 

thei chnology developed formally in the 

lassroom, to solve problems, test and prove results. It is possible to improve 

student’s experience of proble nd proof, and give them a 

 

ve 

merica  

h lower and upper levels stating that 

can 

he 

most important thing for prospective teachers is the spirit of creative work” [10].  

Construct the parabola f(x) = ax2 + bx + c setting up sliders for the 

coefficients a, b, and c. Next take two points A(k,f(k)) and

draw the secant AB as well as the tangent line of parabola at the average o

the x-coordinates of the two original points. What do you observe? Rep

the expe

and c. 

ivity 7. 

Construct the parabola f(x) = ax2 + bx + c where a, b, and c are controlled by

sliders and find its vertex. Investigate the loci of the vertex when b is allowe

to vary while a and c remain constant. Create a sketch that traces this curve

Can yo

 

5. Concluding remarks 

We believe that a principal concern of mathematics teaching is to enable studen

xperience the thrill and satisfaction of mathematics. They should be able to a

r own ideas and curiosity, together with te

c

m solving, understanding a

feel for what mathematics is really about. 
      To achieve this, requires a better mathematics teacher, a well prepared mathematics

teacher to implement the guidelines of professional organizations in order to impro

the teaching and learning of mathematics. The Mathematical Association of A

[13] strongly supports revisions in content and teaching methodology in traditional 

undergraduate mathematics courses, at bot

teachers “must have opportunities in their collegiate courses to do mathematics: 

explore, analyze, construct models, collect and represent data, present arguments, and 

solve problems”. 

      Polya was emphatic in describing the importance of discovery and creativity for 

the classroom teacher. “Nobody can give away what he has not got. No teacher 

impart to his students the experience of discovery if he was not got it himself …T
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      Unfortunately in contrast to the huge amount of problem-solving literature 

produced in the last 20 years, Polya’s ideas on teaching training are still far from 

 

her 

 life. 

rs is 

 

w 

use. 

es, “The 

olver 

 that inductive and 

 and we 

ppreciate the power and beauty of mathematical 

 

being realized on a broad basis. It will not do to expose prospective teachers only to 

theories on problem-oriented teaching (its conditions, its possibilities, its difficulties,

etc.). What must be done is to provide such training that problem orientation and 

“doing mathematics with children” will become fundamental to the role of the teac

– a part of the teacher’s personality and an essential element in his professional

That means that the teacher should do mathematics. “The best way to teach teache

to make them ask and do what they in turn will make their students ask and do” [10].

      The purpose of this paper was to present some components of a seminar for in-

service high school teachers of mathematics that offers the participants a totally ne

experience in creative work, with opportunities to formulate, communicate and 

support original mathematical conjectures using technology. The teaching of 

reasoning is enhanced by a multidimensional approach. For many students, a more 

hands-on, discovery approach is a necessary prerequisite to move abstract 

generalizations. Technology allows that concrete experience. 

      The mathematics teachers who participated in the seminar were pleased to return 

to their classrooms with a great number of experiences and ideas for immediate 

As one participant noted several months later in looking back at his experienc

seminar gave me valuable insights of how to use technology to explore and 

investigate new mathematical situations, how to become a better problem s

myself and thus a better teacher of problem-solving. I realized

deductive reasoning are used together as complementary processes to give the fullest 

understanding of a theorem”.  

      Another teacher said: “We worked on open-ended problems, we used technology 

to make and check conjectures, we worked in a cooperative-learning setting,

found results that were new for all of us. Needles to say, some important lessons 

learned were brought back to our classrooms”. 

      As has been said many times in the past, one of the major goals of mathematics 

teaching is to lead students to a

thought. The technology is available to implement it, and the time has come to change

our approaches to the teaching of mathematics.  
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