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Chapter 1

Statement Calculus

1.1 Statement

Definition 1.1. A statement is a sentence of which it is meaningful to say whether it is true or
false.

Definition 1.2. An open sentence is a sentence which is NOT a statement.

Example 1.1.

1. “8 is not an integer.” is a statement. Actually, it is a false statement.

2. “Please keep quiet.” is an open sentence because it is meaningless to say whether it is true
or false.

Exercise 1.1.

Determine whether each of the following sentences is a statement or an open sentence.

1. 3 < 2

2. It is going to rain on the coming Sunday.

3. 2 is a prime number.

4. Ha! Ha!

5. Sum of any two even numbers is an even number.

6. There is a cup on my desk.

7. The sun is happy.

8. 1 + 1 6= 2.

9. You are very *@#!?.

10. 1 is a root of x2 + 2x− 3 = 0.
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1.2 Operations on statements

In this section, let p, q, r be statements.

Definition 1.3. ∼ p means the negation of p.

Example 1.2.

p = John is sitting on a chair.
∼ p = John is not sitting on a chair.

The effect of “∼” on a statement can be best illustrated by the truth table.

p ∼ p
T F
F T

Exercise 1.2.

Write down the negation of the statements in the previous exercise.

Definition 1.4. p ∧ q means the statement “p and q”.

Example 1.3.

p = John’s age is greater than 10.
q = John’s age is smaller than 30.
p ∧ q = John’s age is greater than 10 and smaller than 30.

Exercise 1.3.

Fill the following truth table.
p q p ∧ q
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Definition 1.5. p ∨ q means the statement “p or q”.

Example 1.4.

p = John’s age is smaller than 15.
q = John’s age is greater than 36.
p ∨ q = John’s age is smaller than 15 or greater than 36.

Exercise 1.4.

Fill the following truth table.
p q p ∨ q

Definition 1.6. p → q means the statement “If p, then q”. This is called the conditional of two
statement p and q. p is called the hypothesis and q is called the consequent.

Example 1.5.

p = Jack is a dog.
q = Jack has two legs.
p → q = If Jack is a dog, then Jack has two legs.

Exercise 1.5.

Fill the following truth table.
p q p → q

Remark 1.1.

1. Notice that if the hypothesis p is false, p → q is true whenever q is true or false (Why?).

2. If p → q is always true, we usually write p → q as p ⇒ q.

3. There are three other common ways to express p ⇒ q:

(a) “p implies q”.

(b) “p is a sufficient condition for q”.

(c) “q is a necessary condition for p”.

4. When proving p ⇒ q, it is enough to start with the assumption that p is true, and then show
that q must also be true.

5. It is not hard to see that if p ⇒ q and q ⇒ r, then p ⇒ r (Can you prove it?).

6. A statement which is always true is called a tautology. A statement which is always false
is called a contradition.



CHAPTER 1. STATEMENT CALCULUS 4

Example 1.6. Prove that n and m are even numbers implies n + m is also an even number.

Solution. n and m are even numbers
⇒ n = 2k, m = 2l for some integers k and l
⇒ n + m = 2k + 2l = 2(k + l)
⇒ n + m is divisible by 2
⇒ n + m is an even number.

Definition 1.7. p ↔ q means “If p, then q. And also if q, then p” i.e. (p → q) ∧ (q → p). This is
called the biconditional of two statements p and q.

Exercise 1.6.

Fill the following truth table.
p q p ↔ q

Remark 1.2.

1. If p ↔ q is always true, we usually write p → q as p ⇔ q.

2. There are four other common ways to express p ⇔ q:

(a) “p if and only if q”.

(b) “p iff q” (“iff” is the abbreviation for “if and only if”).

(c) “p is a necessary and sufficient condition for q”.

(d) “p is equivalent to q”.

3. When proving p ⇔ q, you need to show both p ⇒ q (“Only if” part) and q ⇒ p (“If” part).

Definition 1.8. p and q are equivalent if they have the same truth value under the same conditions
i.e. they have the same truth table. It is denoted by p ≡ q.

Example 1.7. Show that p → q ≡ (∼ p) ∨ q.

Solution. Consider the following truth tables:

p q p ↔ q

p q (∼ p) ∨ q

Since their truth tables are the same, p → q ≡ (∼ p) ∨ q.
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Exercise 1.7.

1. Let x, y, z be any real numbers. Show that x2 + y2 + z2 = 0 ⇔ x = 0, y = 0, z = 0.

2. Prove “De Morgan’s Laws”:

(a) ∼ (p ∧ q) ≡ (∼ p) ∨ (∼ q)

(b) ∼ (p ∨ q) ≡ (∼ p) ∧ (∼ q)

Hence write down the negation of the following statements:

(a) Susan passes her Math test and Bill passes his Chinese test.

(b) Peter goes to school by bus or by MTR.

3. (a) Show that p → q ≡ (∼ q) → (∼ p).

(b) Let m be a positive integer. Use (a) to prove that if m2 is odd, then m is also odd
(Note: This technique of proof is called the “method of contradition”).

1.3 Quantifiers

Definition 1.9. “∀” means “for all” and is called the Universal quantifier.

Definition 1.10. “∃” means “there exists” (or “for some”) and is called the Existential quan-
tifier.

Example 1.8. Usage of quantifiers:

1. ∀ real number x, x2 ≥ 0.

2. ∃ positive integers x, y, z such that x2 + y2 = z2.

Exercise 1.8.

Write down the negation of the above examples.

Remark 1.3.

In general, let p(x) be a statement about x. we have:

1. ∼ [∀x, p(x)] ⇔ ∃x,∼ p(x)

2. ∼ [∃x, p(x)] ⇔ ∀x,∼ p(x)

Example 1.9. Disprove the statement “∀ prime number p > 2, p + 26 is also a prime number”.

Solution. To disprove this statement, we need to show that its negation is true
i.e. ∃p > 2 such that p + 26 is NOT a prime number.

Consider p = 7, 7 + 26 = 33. Obviously, 33 is not a prime number.
∴ The given statement is disproved.
(Note: This method is called “disprove by counter-example”.)
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Mathematical Induction

2.1 First principle of mathematical induction

Let us recall the first principle of mathematical induction:

Theorem 2.1. Let P (n) be a statement about integer n. P (n) is true for all integer n ≥ n0 if
and only if the following two conditions are satisfied:

1. P (n0) is true,

2. If P (k) is true for k ≥ n0, then P (k + 1) is also true.

Example 2.1. (Proving identities) Prove that for any integer n ≥ 1,

1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · ·+ n(n + 1)(n + 2) =
1
4
n(n + 1)(n + 2)(n + 3).

Solution.

Exercise 2.1.

1. Prove that (1− 1
22

)(1− 1
32

)(1− 1
42

) · · · (1− 1
n2

) =
n + 1
2n

for any integer n ≥ 2.

2. Prove that
n∑

k=1

k(k!) = (k + 1)!− 1 for any integer n ≥ 1.

6
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Example 2.2. (Proving inequalities) Prove that 2n > n2 for any integer n ≥ 5.

Solution.

Exercise 2.2.

1. Prove that
1
22

+
1
32

+ · · ·+ 1
n2

<
n− 1

n
for any integer n > 1.

2. Prove that 2n > n3 for any integer n ≥ 10.

Example 2.3. (Proving divisibility) Prove that 34n+2 + 26n+3 is divisible by 17 for any integer
n ≥ 1.

Solution.

Exercise 2.3.

1. Prove that 6n + 4 is divisible by 5 for any n ≥ 1.

2. Prove that 25n − 2n is divisible by 10 for any n ≥ 1.
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Example 2.4. (Proving surd expression) Prove that for any positive integer n, there exists unique
positive integers an and bn such that

(1 +
√

5)n = an + bn

√
5

Solution.

Exercise 2.4.

1. For any integer n ≥ 1, prove that there exists unique positive integers pn, qn such that
(
√

5 +
√

2)2n = pn + qn

√
10 and (

√
5−

√
2)2n = pn − qn

√
10.

If we want to prove a statement holds for all positive odd (even) integers, we need to modify the
first principle of mathematical induction:

Theorem 2.2. Let P (n) be a statement about integer n. P (n) is true for all odd (even) integer
n ≥ n0 if and only if the following two conditions are satisfied:

1. P (n0) is true,

2. If P (k) is true for k ≥ n0, then P (k + 2) is also true.

Example 2.5. Prove, by mathematical induction, that 5n − 3n − 2n is divisible by 30 for all
positive odd integers n greater than 1.

Solution.
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2.2 Second principle of mathematical induction

In the first principle of mathematical induction, the second condition can be replaced by a weaker
one:

Theorem 2.3. Let P (n) be a statement about integer n. P (n) is true for all integer n ≥ n0 if
and only if the following two conditions are satisfied:

1. P (n0) is true,

2. If P (l) is true for all l such that k ≥ l ≥ n0, then P (k + 1) is also true.

This is called the second principle of mathematical induction.

The following is called the mathematical induction with double assumptions, which is a
special case of the second principle of mathematical induction.

Theorem 2.4. Let P (n) be a statement about integer n. P (n) is true for all integer n ≥ n0 if
and only if the following two conditions are satisfied:

1. P (n0) and P (n0 + 1) is true,

2. If P (k) and P (k + 1) is true for k ≥ n0, then P (k + 2) is also true.

Example 2.6. (Double assumptions) Let a1 = 1, a2 = 3 and an = an−2 + an−1 for all n ≥ 3.
Prove that

an = αn + βn

for n ≥ 1, where α, β are roots of the equation x2 − x− 1 = 0.

Solution.
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Example 2.7. (Double assumptions) Let n be a postive integer. Show, by induction, that

1√
5

(
(1 +

√
5)n − (1−

√
5)n
)

is divisible by 2n.

Solution.

Example 2.8. (Triple assumptions) Let {an} be a sequence of real numbers, where

a0 = 1, a1 = 6, a2 = 45 and an − an+1 +
1
3
an+2 −

1
27

an+3 = 0

for n = 0, 1, 2, . . .. Using mathematical induction, show that

an = 3n(n2 + 1) for n = 0, 1, 2, . . . .

Solution.
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Example 2.9. (More assumptions) Let {an} be a sequence of real numbers, where

a1 = 2 and a1 + a2 + · · ·+ an = n2 + n for all n = 1, 2, . . .

Show that for all postive integers n, an = 2n.

Solution.

Exercise 2.5.

1. Suppose a sequence {an} satisfies the condition: a0 = 0, a1 = −7 and an+2 +an+1−12an = 0
for n = 0, 1, 2. . . .. Prove that an = −3n + (−4)n for n = 0, 1, 2. . . ..

2. Suppose a sequence {an} satisfies the condition: a0 = 1, a1 =
1
2

and 2(n+2)an+2−3nan+1 +

(n− 1)an = 0. Prove that an =
1
2n

for all integer n ≥ 1.

3. Let {an} be a sequence of non-negative integers such that

n ≤
n∑

k=1

a2
k ≤ n + 1 + (−1)n

for n = 1, 2, 3, . . .. Prove that an = 1 for n ≥ 1.

4. Let {an} be a sequence of positive numbers such that

a1 + a2 + · · ·+ an =
(

1 + an

2

)2

for n = 1, 2, 3, . . .. Prove by induction that an = 2n− 1 for n = 1, 2, 3, . . ..
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Polynomials and Rational
Functions

3.1 Polynomials

3.1.1 Basic concepts

Definition 3.1. A polynomial in x is an algebraic expression of the following form:

anxn + an−1x
n−1 + · · ·+ a1x + a0

where a1, a2, . . . , an are constants and n is a non-negative integer.

1. a1, a2, . . . , an are called the coefficients of the polynomial.

2. If an 6= 0, an is the leading coefficient of the polynomial.

3. The polynomial is a zero polynomial if a0 = a1 = · · · = an = 0.

4. The polynomial is a constant polynomial if a1 = · · · = an = 0.

5. The polynomial is a monic polynomial if an = 1.

Definition 3.2. Let p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 and q(x) = bmxm + bm−1x

m−1 +
· · · + b1x + b0 be two polynomials in x. We say that they are equal if m = n and ai = bi for
i = 0, 1, . . . , n. In this case, we write p(x) ≡ q(x) (It means p(x) = q(x) for all x).

Example 3.1. Find the values of a, b, c and d such that

x3 ≡ a(x− 1)(x− 2)(x− 3) + b(x− 1)(x− 2) + c(x− 1) + d

Solution.

12
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Definition 3.3. Suppose p(x) = anxn + an−1x
n−1 + · · · + a1x + a0 is a polynomial and a0 6= 0.

Then n is the degree of p(x). We write deg p(x) = n.

Theorem 3.1. Suppose p(x), q(x) are two polynomials. Then we have

1. deg(p(x) + q(x)) ≤ max{deg p(x),deg q(x)}

2. deg(p(x)q(x)) = deg p(x) + deg q(x)

Remark 3.1.

1. deg p(x) = 0 if p(x) is any non-zero constant polynomial.

2. deg p(x) = −∞ if p(x) is a zero polynomial.

Example 3.2. Let p(x) = 2x2 − x + 1 and q(x) = x3 − x2 + 5x + 8. Find deg p(x), deg q(x),
deg(p(x) + q(x)) and deg(p(x)q(x)). Hence verify the above theorem.
Solution.

Example 3.3. Let f(x), g(x) and h(x) be three non-zero polynomials such that f(x) = h(x)g(x).
Show that deg f(x) > max{deg g(x),deg h(x)}.
Solution.

Exercise 3.1.

1. Find an example of p(x), q(x) such that deg(p(x) + q(x)) < max{deg p(x),deg q(x)}.

2. Suppose p(x) is a polynomial with degree = n. Find deg(p(x))3 and deg(p(p(p(x)))).
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Theorem 3.2. (Division algorithm) Given any two polynomials f(x), g(x) with g(x) 6= 0. There
exists unique q(x) and r(x) such that the following two conditions are satisfied:

1. f(x) = g(x)q(x) + r(x) and

2. deg r(x) < deg g(x).

r(x) and q(x) are called the remainder and the quotient respectively.
If r(x) = 0, p(x) is said to be divisible by q(x). In other words, q(x) is a factor of p(x).

Example 3.4. Find the quotient and remainder when x4−2x3−2x2 +x−3 is divided by 2x2−1.
Solution.

Example 3.5. (Synthetic division) Find the quotient and remainder when 4x4−3x3−2x2−5x−1
is divided by x− 3.
Solution.
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Theorem 3.3. (Remainder Theoerm) Suppose a is a real number and f(x) is a polynomial such
that f(a) = r. Then f(x) has the remainder r when divided by (x − a). In particular, if r = 0,
f(x) is divisible by (x− a).

Example 3.6. A polynomial f(x) is divisible by (x− 1). The remainders when f(x) is divided by
(x− 2) and (x− 3) are −7 and −20 respectively. When f(x) is divided by (x− 1)(x− 2)(x− 3),
the remainder is ax2 + bx + c, where a, b and c are constants. Find the values of a, b and c.

Solution.

Exercise 3.2.

1. A polynomial gives remainder 2x + 5 when divided by (x − 1)(x + 2). Find the remainders
when it is divided by x− 1 and x + 2 separately.

2. A polynomial gives remainder 2 and 1 when divided by x + 1 and x − 4 respectively. Find
the remainder when its is divided by (x + 1)(x− 4).

3. A cubic polynomial gives remainders 5x−7, 12x−1 when divided by x2−x+2 and x2 +x−1
respectively. Find the polynomial.

4. Let f(x) = x4 + px2 + qx + a2. If f(x) is divisible by x2 − 1, prove that f(x) is also divisible
by x2 − a2.

3.1.2 Euclidean Algorithm

Definition 3.4. Let f(x) and g(x) be two non-zero polynomials. If there exists a polynomial h(x)
such that

f(x) = g(x)h(x)

g(x) is called a factor of f(x).
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Theorem 3.4. If g(x) is a factor of a non-zero polynomial f(x), then

deg g(x) ≤ deg f(x)

Definition 3.5. Let f(x) and g(x) be two non-zero polynomials.

1. h(x) is a common factor(common divisor) of f(x) and g(x) iff h(x) is a factor of both
f(x) and g(x).

2. h(x) is the greatest common divisor gcd (highest common factor hcf ) of f(x) and
g(x) iff h(x) is the common factor of both f(x) and g(x) with the highest degree. We write
h(x) = gcd(f(x), h(x)).

3. f(x) and g(x) are relatively prime if their gcd is constant.

Remark 3.2.

1. Zero polynomial can never be a factor.

2. Every non-zero polynomial is a factor of zero polynomial.

3. Every common factor of f(x) and g(x) is a factor of gcd(f(x), g(x)).

4. gcd(f(x), g(x)) is unique up to constant multiplication i.e if both h(x) and k(x) are gcd,
h(x) = ck(x) for some constant c.

Example 3.7. (Euclidean Algorithm)

1. Find gcd(f(x), g(x)) where f(x) = 4x4 − 2x3 − 16x2 + 5x + 9 and g(x) = 2x3 − x2 − 5x + 4.

2. Find polynomials p(x) and q(x) such that

gcd(f(x), g(x)) = p(x)f(x) + q(x)g(x)

Solution.
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Exercise 3.3.

1. Let f(x) = x3+x2+x−3 and g(x) = x2−1. Find gcd(f(x), g(x)). Moreover, find polynomials
a(x), b(x) such that gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x).

2. (a) Show that x2 + 1 and x3 + x2 + 1 are relatively prime and find polynomials m(x) and
n(x) such that

(x3 + x2 + 1)m(x) + (x2 + 1)n(x) ≡ 1

(b) Find a polynomial h(x) such that h(x) is divisible by x2 + 1 and h(x) + 1 is divisible by
x3 + x2 + 1.

3.1.3 Roots of polynomials

Definition 3.6. Let f(x) be a polynomial. c is a root(zero) of f(x) if f(c) = 0.

Remark 3.3.

1. Root of a polynomial can be a complex number.

2. Any non-zero constant polynomial has no roots.

3. Every numbers is a root of a zero polynomial.

Theorem 3.5. (Factor Theorem) Let f(x) be a polynomial. Then

c is a root ⇔ (x− c) is a factor of f(x)

Proof.

The following is the most important theorem concerning roots of polynomials. It is called the
Fundamental Theorem of Algebra.

Theorem 3.6. (Fundamental Theorem of Algebra) For any polynomial of degree ≥ 1, there exists
at least one root.
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The direct consequence of the Fundamental Theorem of Algebra is as follows:

Theorem 3.7. For any polynomial of degree ≥ 1, there exists exactly n roots. Moreover, suppose
f(x) = anxn + an−1x

n−1 + · · ·+ a1x + a0 has roots r1, r2, . . . , rn. We have

f(x) = an(x− r1)(x− r2) · · · (x− rn)

Proof.

The following is an important application of the above theorem.

Theorem 3.8. Let f(x) be a polynomial with deg f(x) ≤ n, where n > 0. If there exists more
than n distinct roots of f(x), then f(x) is a zero polynomial.

Proof.
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Example 3.8.

(a) Prove the identity

a2(x− b)(x− c)
(a− b)(a− c)

+
b2(x− c)(x− a)
(b− c)(b− a)

+
c2(x− a)(x− b)
(c− a)(c− b)

≡ x2

where a, b, c are distinct real numbers.

(b) Using (a), show that

a

(a− b)(a− c)
+

b

(b− c)(b− a)
+

c

(c− a)(c− b)
= 0

for any distinct real numbers a, b, c.

Solution.

Exercise 3.4.

1. (a) Show that for any real numbers a, b and c,

a3(b− c) + b3(c− a) + c3(a− b) = −(a + b + c)(a− b)(b− c)(c− a)

(b) Hence, or otherwise, show that

(x + a)3

(a− b)(a− c)
+

(x + b)3

(b− a)(b− c)
+

(x + c)3

(c− a)(c− b)
≡ 3x + a + b + c

where a, b, c are distinct non-zero real numbers.

2. (a) Let f(x) be a quadratic polynomial such that f(a) = α, f(b) = β and f(c) = γ, where
a, b and c are distinct real numbers, show that

f(x) ≡ α(x− b)(x− c)
(a− b)(a− c)

+
β(x− a)(x− c)
(b− a)(b− c)

+
γ(x− a)(x− b)
(c− a)(c− b)

(b) Hence show that every quadratic polynomial can be written in the form

A(x− b)(x− c) + B(x− a)(x− c) + C(x− a)(x− b)

where A, B and C are real numbers.
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3.1.4 Mulitple roots

Definition 3.7. If a polynomial f(x) has root α such that f(x) is divisible by (x − α)k but not
(x−α)k+1, where k is a positive integer (in other words, f(x) = (x−α)kg(x) for some polynomial
g(x) such that g(α) 6= 0), then α is called a root of f(x) of multiplicity k .

Definition 3.8. Let f(x) be a non-zero polynomial.

1. α is a simple root of f(x) if α is a root of f(x) of multiplicity 1 .

2. If α is a root of f(x) whose multiplicity is greater than 1, then it is called a multiple
(repeated) root of f(x).

3. In particular, if α is a root of f(x) of multiplicity 2, then it is called a double root of f(x).

Theorem 3.9. Let f(x) be a polynomial. α is a root of f(x) of multplicity k (k > 1) iff α is a
root of f ′(x) of multiplicity k − 1 and f(α) = 0.

Proof.

In particular, we have the simple version of the above theorem:

Theorem 3.10. If α is a multiple root of f(x), then f(α) = f ′(α) = 0.

Example 3.9. Show that the equation 3x4 − 8x3 − 6x2 + 24x + 1 = 0 cannot have a double root.

Solution.
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Example 3.10. Suppose f(x) = x3 + px + q, where p and q are real numbers. Show that if
f(x) = 0 has a multiple root, then 27p2 + 4p3 = 0.

Solution.

Exercise 3.5.

1. If the equation x3 + ax2 + bx + c = 0 has a multiple root, show that this roots is
9c− ab

2(a2 − 3b)
where 3b 6= a2.

2. f(x) and g(x) are given polynomials which are relatively prime. Prove that the values of k
for which the equation

f(x)− kg(x) = 0

has a multiple root are given by
f(α)
g(α)

, where α is a root of the equation

f(x)g′(x)− f ′(x)g(x) = 0

Hence, or otherwise, find the values of k for which the equation x3 − 3x2 + 3kx− 1 = 0 has
a multiple root. Solve the equation for each case.

3. If α is a double root of the equation x5 + 5qx3 + 5rx2 + t = 0, prove that α is also a root of

3r2 − 6q2x− 4qr + t = 0.

4. Solve the equation x4 − 11x3 + 44x2 − 76x + 48 = 0, given that it has a multiple root.
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3.1.5 Rational roots

Definition 3.9. Let f(x) be a polynomial. If α is a root of f(x) and it is a rational number, then
α is called a rational root of f(x).

The following is the main theorem about rational roots:

Theorem 3.11. Let f(x) = anxn + an−1x
n−1 + · · · + a1x + a0 be a polynomial with integer

coefficents and r, s be two relatively prime integers i.e. gcd(r, s) = 1. If
s

r
is a root of f(x) = 0,

then s divides a0 and r divides an.

Proof.

Example 3.11. Show that it is impossible to factorize 2x4 + 5x + 1 into factors with rational
coefficients.

Solution.
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Example 3.12. Let p be a prime number and α be a real number. If α is a root of the equation
x3 − px + p = 0, prove that α is a irrational number.

Solution.

Exercise 3.6.

1. Show that
√

3−
√

2 satisfies the equation x4 − 10x + 1 = 0. Hence deduce that
√

3−
√

2 is
an irrational number.

2. Let a be an integer and p(x) be the polynomial

2xn+2 − 5xn+1 + 2xn − 2ax3 + (5a + 2)x2 − (2a + 5)x + 2

where n > 1. Show that p(2) = 0. Moreover, show that p(x) = 0 has exactly two rational
roots provided that a does not take one of values 0, 2,−2.

3.1.6 Relations between roots and coefficients

Given a quadratic polynomial f(x) = a2x
2 + a1x + a0. By the Fundamental Theorem of Algebra,

there exists α and β be roots of f(x) = 0 such that

f(x) = a2(x− α)(x− β)

By expansion, we get
a2x

2 + a1x + a0 = a2x
2 − a2(α + β)x + a2αβ

Therefore, we have the following results by comparing coefficients:

1. α + β = −a1

a2

2. αβ =
a0

a2
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Given a cubic polynomial f(x) = a3x
3 + a2x

2 + a1x + a0. Let α, β and γ be roots of f(x) = 0.
Similarly, we can write

f(x) = a3(x− α)(x− β)(x− γ)

By expansion, we get

a3x
3 + a2x

2 + a1x + a0 =

Therefore, we have the following results by comparing coefficients:

1.

2.

3.

In general, suppose f(x) = anxn + an−1x
n−1 + · · · + a0 and α1, α2, . . . , αn are roots of f(x) = 0.

We have the following relations between roots and coefficients:

Example 3.13.

1. Suppose the cubic equation x3 + px2 + qx + r = 0 where p, q and r are real numbers, has

three real roots. Prove that the three roots form an arithmetic sequence iff
−p

3
is a root of

the equation.

2. Find the two values of p such that the equation x3 + px2 + 21x + p = 0 has three real roots
that form an arithmetic sequence.

Solution.
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Example 3.14. Suppose the equation x3 + px2 + qx + 1 = 0 has three real roots.

1. If the roots of the equation can form a geometric sequence, show that p = q.

2. If p = q, show that −1 is a root of the equation and the three roots of the equation can form
a geometric sequence.

Solution.

Example 3.15. Let α, β and γ be roots of the equation x3 + px2 + qx + r = 0.

1. Express α2 + β2 + γ2, α2β2 + β2γ2 + α2γ2 and α2β2γ2 in terms of p, q and r.

2. Hence find a cubic equation whose roots are squares of the roots x3 − 4x + 1 = 0.

Solution.
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Here are some useful algebraic identities:

1. (α + β + γ)2 = α2 + β2 + γ2 + 2(αβ + βγ + αγ)

2. α3 + β3 + γ3 = 3αβγ + (α + β + γ)(α2 + β2 + γ2 − (αβ + βγ + αγ))

Exercise 3.7.

1. Suppose α, β, γ be three roots of 2x3 + x2 − x + 1 = 0.

(a) Find α2 + β2 + γ2.

(b) Find α2β2 + β2γ2 + α2γ2.

(c) Find a polynomial with roots α2, β2, γ2.

2. (a) Prove that the roots of x3+3ax2+3bx+c = 0 are in A.P. if and only if 2a3−3ab+c = 0.

(b) Let α1, α2, α3 be the roots of x3 +4x2 +2x+ k = 0, where k is a constant. Using (i), or
otherwise, show that there are exactly two values of k for which α2, β2, γ2 are in A.P..

3. (a) If α, β, γ are the roots of x3 +qx+r = 0, find the equation whose roots are (β−γ)2, (γ−
α)2, (α− β)2.

(b) If α, β, γ are the roots of x3 + px2 + qx + r = 0, express (α2 − βγ)(β2 − γα)(γ2 − αβ)
in terms of p, q, r.

3.1.7 Transformation of polynomials

By transformation of the variable, we may be able to simplify the polynomial equation and hence
find its roots.

Example 3.16. By using the transformation y = x + 1, solve the equation

x4 − 4x3 + x2 + 6x + 2 = 0

Solution.
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Example 3.17. By using the transformation t = x +
1
x

, find two real roots of the equation

6x4 − 25x3 + 37x2 − 25x + 6 = 0.

Solution.

Example 3.18. Suppose α, β and γ are roots of the equation x3 + 2x2 − 2 = 0.

(a) Show that α, β and γ cannot be equal to 0.

(b) By using the method of tansformation, find a equation whose roots are
1
α

,
1
β

and
1
γ

.

Solution.
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Example 3.19.

(a) Show that (a + b) is a root of the equation x3 − 3abx− (a3 + b3) = 0.

(b) By expressing f(x) = x3 − 6x − 6 = 0 into the form of the above equation, find a real root
of f(x) = 0.

(c) By putting x = y + k, transform the equation g(x) = x3 + 3x2 − 3x− 11 = 0 into the form
y3 + py + q = 0. Hence, find a real root of g(x) = 0.

Solution.

Exercise 3.8.

1. Given that α, β, γ are roots of x3 +x2 +3 = 0. By considering the transformation y =
1

1 + x
,

find a polynomial whose roots are
1

1 + α
,

1
1 + β

,
1

1 + γ
.

2. (a) Let y = x+
1
x

and vr = xr +
1
xr

. Prove that vr+1 = yvr− vr−1. Hence express x2 +
1
x2

,

x3 +
1
x3

, x4 +
1
x4

in terms of y.

(b) By using the transformation y = x +
1
x

or any other method, solve the equation x10 −
3x8 + 5x6 − 5x4 + 3x2 − 1 = 0.

3. Let α and β be the roots of the quadratic equation x2 +2px− q3 = 0, where p and q are real
constants and q > 0.

(a) Show that α and β are distinct real numbers.

(b) Express α + β and αβ in terms of p and q.

(c) Show that α
1
3 + β

1
3 is a root of the cubic equation x3 + 3qx + 2p = 0.

(d) By putting y = x− 1, find a real root of the equation x3 − 3x2 + 9x− 9 = 0.
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3.2 Rational functions and Parital fractions

Definition 3.10. A rational function is the ratio of two polynomials i.e. it can be written as
p(x)
q(x)

, where p(x) and q(x) are polynomials (q(x) cannot be zero polynomial).

Moreover, it is said to be a proper fraction if deg p(x) < deg q(x). Otherwise, it is a improper
fraction.

3.2.1 An overview

Given a rational function f(x) =
p(x)
q(x)

. Suppose q(x) can be factorized into factors with real

coefficients. Then f(x) can be expressed as sum or difference of simpler fractions. These simpler
fractions are called partial fractions. The general procedure for writing a rational function into
partial fractions is as follows:

1. Is f(x) a proper fraction?

(Yes) Go to next step.

(No) Use long division to rewrite f(x) as the sum of a polynomial and a proper fraction.

2. Factorize q(x) completely into factors with real coefficients.

3. Express f(x) as partial fractions with unknowns according to the rules stated in the next
section.

4. Determine the unknowns.

5. Write f(x) in partial fractions.

Example 3.20. Express
x3 + 2x− 1

x2 − 1
in partial fractions.

1. It is an improper fraction. Therefore, by long division, we obtain the following:

x3 + 2x− 1 = x(x2 − 1) + 3x− 1

∴
x3 + 2x− 1

x2 − 1
= x +

3x− 1
x2 − 1

2. Consider
3x− 1
x2 − 1

. Factorize the denominator completely, we get

3x− 1
x2 − 1

=
3x− 1

(x + 1)(x− 1)
.

3. Write
3x− 1

(x + 1)(x− 1)
=

A

x + 1
+

B

x− 1
, where A, B are constants to be determined.

4. By calculation, we have A = 1, B = 2.

5. Hence
x3 + 2x− 1

x2 − 1
= x +

1
x + 1

+
2

x− 1
.
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3.2.2 Partial fractions

When expressing a rational function in partial fractions, different types of factors in the denomi-
nators correspond to different terms in partial fractions. There are four types:

Type I - Non-repeated linear factor (ax + b) corresponds to the fraction
A

ax + b
, where A is a

constant.

Example 3.21. Express
2x

(x + 2)(x− 2)
in partial fractions.

Solution.

Type II - Non-repeated quadratic factors (ax2 + bx+ c) corresponds to the fraction
Ax + B

ax2 + bx + c
,

where A, B are constants.

Example 3.22. Express
3x2 − 3x + 2

(x2 + 1)(x− 1)
in partial fractions.

Solution.
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Type III - Repeated linear factor (ax + b)k corresponds to the fraction

A1

(ax + b)
+

A2

(ax + b)2
+ · · ·+ Ak

(ax + b)k

where A1, A2, . . . , Ak are constants.

Example 3.23. Express
x2 + x− 1
(x− 1)2x

in partial fractions.

Solution.

Type IV - Repeated quadratic factor (ax2 + bx + c)k corresponds to the fraction

A1x + B1

(ax2 + bx + c)
+

A2x + B2

(ax2 + bx + c)2
+ · · ·+ Akx + Bk

(ax2 + bx + c)k

where A1, A2, . . . , Ak and B1, B2, . . . , Bk are constants.

Example 3.24. Express
2x4 + 4x3 + 3x2 + 2x− 2

(x− 1)(x2 + x + 1)2
in partial fractions.

Solution.
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Example 3.25.

(a) Resolve
1

k(k + 1)
into partial fractions.

(b) Hence, express
1

1 · 2
+

1
2 · 3

+
1

3 · 4
+ · · ·+ 1

99 · 100
as a rational number.

Solution.

Example 3.26.

(a) Resolve
1

k(k + 2)
into partial fractions.

(b) Hence evaluate lim
n→∞

n∑
k=1

1
k(k + 2)

.

Solution.
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Example 3.27.

(a) Resolve F (x) =
2

(x + a)(x + a + 1)(x + a + 2)
into partial fractions, where a is a real number.

(b) Prove that
n∑

k=1

F (k) =
1

1 + a
− 1

2 + a
− 1

n + a + 1
+

1
n + a + 2

.

Solution.

Exercise 3.9.

1. Resolve the following into partial fractions:

(a)
x3 + 7x2 + 15x + 11
(x + 1)(x + 2)(x + 3)

(b)
3x2 + x− 8

(x + 1)2(x− 5)

(c)
1

(x2 + x + 1)(x− 1)

(d)
x4 + x3 + 2x2 + 2
(x2 + 1)2(x + 1)

2. (a) Resolve
1

x(x + 3)
into partial fractions.

(b) Hence evaluate lim
n→∞

n∑
k=1

1
k(k + 3)

.

3. Let g(x) be a quadratic polynomial and a, b, c are distinct real constants.

(a) Consider the following partial fractions:

g(x)
(x− a)(x− b)(x− c)

=
A

x− a
+

B

x− b
+

C

x− c

Express A, B, C in terms of a, b, c, g(a), g(b) and g(c) only.

(b) Hence resolve
x2 + 1

(x + 1)(x + 2)(x + 3)
into partial fractions.
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Binomial Theorem

4.1 Permutations and Combinations

Definition 4.1. For any positive integer n,

n! = 1 · 2 · 3 · · · (n− 1) · n

Moreover, 0! = 1.

Definition 4.2. Pn
r = number of ways to choose r objects from n different objects (1 ≤ r ≤ n)

and then arrange them in order.

Theorem 4.1. For 1 ≤ r ≤ n,

Pn
r = n(n− 1)(n− 2) · · · (n− r + 1) =

n!
(n− r)!

Proof.

34
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Definition 4.3. Cn
r = number of ways to choose r objects from n different objects (r ≤ n) without

regarding the order of arrangement.

Theorem 4.2. For 1 ≤ r ≤ n,

Cn
r =

n(n− 1)(n− 2) · · · (n− r + 1)
r!

=
n!

r!(n− r)!

Proof.

Remark 4.1.

1. Pn
r is called the permutations of n different objects taken r at a time.

2. Cn
r is called the combinations of n different objects taken r at a time.

3. Pn
0 =

n!
(n− 0)!

= 1.

4. Cn
0 =

n!
0!(n− 0)!

= 1.
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4.2 Binomial theorem and identities

Here are three useful identities:

Theorem 4.3. For any positive integer n and r be non-negative integer such that r ≤ n,

1. Cn
r = Cn

n−r

2. Cn
r−1 + Cn

r = Cn+1
r (r ≥ 1)

3. Cn−1
r−1 =

r

n
Cn

r

Proof.

Remark 4.2.

1. The first identity means that the number of ways to select r objects from n objects is equal
to the number of ways to select n− r objects from n objects.

2. The second identity is closely related to the construction of the Pascal Triangle.
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Theorem 4.4. (Binomial Theorm) For any non-negative integer n, we have

(1 + x)n =
n∑

r=0

Cn
r xr

Proof.

The following is another version of Binomial Theorem.

Theorem 4.5. (a + b)n =
n∑

r=0

Cn
r arbn−r

Proof.
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Example 4.1. Find the constant term in the expansion of
(

4x− 1
2 3
√

x

)20

.

Solution.

Example 4.2. If the coefficient of three consecutive terms in the expansion of (1 + x)n are 120,
210 and 252 respectively, find the value of n.

Solution.
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Example 4.3. Prove that
n−1∑
r=0

Cn
r+1x

r =
1
x

[(1 + x)n − 1].

Solution.

Example 4.4. Prove that

(a)
n∑

r=0

Cn
r = 2n.

(b)
n∑

r=0

(−1)nCn
r = 0.

(c)
n∑

r=0

C2n
2r =

n−1∑
r=0

C2n
2r+1 = 22n−1.

Solution.
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Exercise 4.1.

1. Show that for one value of r the coefficient of xr in the expansion of (3 + 2x− x2)(1 + x)34

is zero.

2. Prove that (3n + 1)
[
C2n

n

]2
= (n + 1)

[
(C2n+1

n )2 − (C2n
n−1)

2
]
.

3. For n ≥ 5, prove that C2n
n < 22n−2.

4. Show that
2n+1∑

r=n+1

C2n+1
r = 22n.

5. (a) Prove that for any positive integer n,
(

1 +
1
n

)n

= 1 +
n∑

r=1

[
1
r!

r−1∏
k=0

(
1− k

n

)]
.

(b) Hence, or otherwise, show that for n ≥ 2,

(i)
(

1 +
1
n

)n

<

(
1 +

1
n + 1

)n+1

,

(ii)
(

1 +
1
n

)n

< 3.

4.3 Further techniques

4.3.1 Using differentiation and integration

By differentiating and integrating the identity (1 + x)n =
n∑

r=0

Cn
r xr, we obtain the following useful

results:

Theorem 4.6. For any positive integer n,

(a) n(1 + x)n−1 =
n∑

r=0

rCn
r xr−1.

(b)
1

n + 1
[
(1 + x)n+1 − 1

]
=

n∑
r=0

Cn
r

r + 1
xr+1.

Proof.
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Example 4.5. For any positive integer n > 1,

(a)
n−1∑
r=0

rCn
r = n(2n−1 − 1).

(b) Cn
1 − 2Cn

2 + 3Cn
3 − 4Cn

4 + · · ·+ (−1)n−1nCn
n = 0.

(c) Cn
0 +

1
2
Cn

1 +
1
3
Cn

2 +
1
4
Cn

3 + · · ·+ 1
n + 1

Cn
n =

2n+1 − 1
n + 1

.

Solution.

Example 4.6. Let n be a positive integer. Evaluate

(a)
n∑

r=0

(r + 1)Cn
r .

(b)
n∑

r=0

(r + 1)2Cn
r .

(c)
n∑

r=0

2r(2r + 1)Cn
r .

Solution.
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Example 4.7. Let n be a positive integer. Show that

n−1∑
r=1

rCn
r+1 = 1 + (n− 2)2n−1.

Solution.

Exercise 4.2.

1. Evaluate the following expressions:

(a)
n∑

r=0

(r + 2)Cn
r

(b)
n∑

r=0

Cn
r

2r + 1

(c)
n∑

r=1

(r + 1)(r − 1)Cn
r−1

(d)
n∑

r=0

Cn
r

(r + 1)(r + 2)

(e)
n∑

r=0

(−1)rr2

r + 1
Cn

r

2. Prove that
1

1!(2n)!
+

1
2!(2n− 1)!

+
1

3!(2n− 2)!
+ · · ·+ 1

n!(n + 1)!
=

22n − 1
(2n + 1)!

.
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4.3.2 Comparing coefficients

Sometimes identities involving binomial coefficients can be proved by expanding an algebraic ex-
pression using two different ways and then comparing their coefficients.

Example 4.8. (Vandermonde Theorem)

(a) Let m, n and r be non-negative integers such that r ≤ m + n. Prove that

Cm
0 Cn

r + Cm
1 Cn

r−1 + Cm
2 Cn

r−2 + · · ·+ Cm
r Cn

0 = Cm+n
r

(b) Hence, show that for any non-negative integer n,

(Cn
0 )2 + (Cn

1 )2 + (Cn
2 )2 + · · ·+ (Cn

n )2 = (C2n
n )2

Solution.

Example 4.9. By considering the coefficient of xn in the expansion of (1− x2)n, show that

(Cn
0 )2 − (Cn

1 )2 + (Cn
2 )2 − · · ·+ (−1)n(Cn

n )2 =

{
0 if n is odd,
(−1)

n
2 n!

(n
2 )!(n

2 )! if n is even.

Solution.
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Exercise 4.3.

1. Using the identity (1 + x)2k−p = (1 + x)k−p(1 + x)k, show that

k∑
r=p

Ck−p
r−p Ck

r = C2k−p
k

for 0 ≤ p ≤ k.

2. (a) Show that for all positive integers n and m,

(1 + x)n+m+1 − (1 + x)n

x
= (1 + x)n + (1 + x)n+1 + · · ·+ (1 + x)n+m

.

(b) Hence show that Cn
n + Cn+1

n + Cn+2
n + · · ·+ Cn+m

n = Cn+m+1
n+1 .

(c) Using (b), or otherwise, show that

m+4∑
r=5

r(r − 1)(r − 2)(r − 3) = 24(Cm+5
5 − 1).

Hence evaluate
m+4∑
r=5

r(r − 1)(r − 2)(r − 3) for k ≥ 4.

3. Suppose n is a positive integer.

(a) Prove that

n(1 + x)2n−1 =

(
n∑

r=1

rCn
r xr−1

)(
n∑

r=0

Cn
n−rx

r

)
.

(b) Hence by comparing coefficients of a certain power of x, prove that

Cn
1 Cn

2 + 2Cn
2 Cn

3 + 3Cn
3 Cn

4 + · · ·+ (n− 1)Cn
n−1C

n
n =

n(2n− 1)!
(n− 2)!(n + 1)!

.


