A NEW LOOK AT NITRATE TOXICITY

Fred Owens
Optimum Quality Grains
Des Moines, IA, USA

Tom Rehberger AgTech, Inc. Waukesha, WI, USA

Nitrate (NO₃-) Background

Major form of N in most soils.

Often first factor limiting plant growth.

(Fertilizer N = ammonium nitrate, urea)

Assimilated rapidly by growing plants.

Problems:

Plant or fertilizer nitrate toxic for cattle, sheep, other livestock.

(acute-collapse, death: chronic-abortion)

High nitrate water supply - infant deaths.

("Blue Baby" effect)

Yields toxic fermentation gases. (N₂0) Environmental accumulation.

Nitrate (NO₃-) History

Discovery of Toxicity:

- 1894 Chile saltpeter is toxic to cattle.
- 1895 Corn plant toxicity related to KNO₃ crystals in corn leaf axils, cut surfaces, inside stalks. Blamed on *potash* poisoning! Burned like "firecracker fuses." (26,000-35,000 ppm NO₃-N).
- 1939 Oat hay poisoning. When nitrate was precipitated out, sap longer toxic! Methemoglobin & nitrite in bile and urine. (5,800 ppm NO₃-N)

Nitrate (NO₃-)

Toxicity types: Acute - Collapse, death Chronic? - Long-term, sub-lethal. No appetite, low production, abortion? Toxic dose varies widely: Plant vs chemical (KNO₃) added. Water vs Feed (water more toxic). Dry vs Wet feed. (Dry hay releasés nitrate 3 times faster than wet forage.) Species differ - Hemoglobin sensitivity. Animals in a species differadaptation, intake patterns.

Nitrate (NO₃-)

Acute Poisoning - Signs of anoxia: 1. Bluish/chocolate brown mucous

- membranes.
- 2. Rapid, difficult, noisy breathing.
- 3. Rapid pulse (150+/minute)
- 4. Salivation, bloat, tremors, staggering.
- 5. Weakness, coma.

Confirmatory diagnosis:

Dark, "chocolate-colored" blood.

Methemoglobinemia.

High blood nitrate.

Residual oxygen combining capacity.

Nitrate (NO₃-)

Basis of expressing nitrate concentration

Basis:	<u>Ratio</u>	Toxic level in	forage
NO ₃ -N	1.0	1,000ppm =	.10%
NO ₃	4.4	4,400ppm =	.44%
KNO ₃	7.3	7,300ppm =	.73%
All these	are equal!	Just different	basis.

Methods for measuring nitrate:

Qualitative - Field forage stain test Quantitative - Colorimetric, Electrode

Nitrate-N in Diet - Safe & Hazardous Levels

What Happens to Nitrate-N in the Rumen?

Potential Control Points:

Potential Control Points:

1. Forage concentration varies with: Plant species Crops: Sudans, sorghum-sudan, sorghum, corn, wheat, oats, rye, barléy, millet Grasses: fescue, johnsongrass Weeds: pigweed, mustard, kocia, nightshade, lambsquarter, nettles, elderberry, burdock, thistle Legumes: Alfalfa? Lower in perennials, woody plants.

1. Forage concentration varies with: Plant maturity

Plant Maturation and Nitrate

Plant Maturation and Nitrate

1. Forage concentration varies with:

Plant species and maturity

Level of N fertility

Fertilization and Nitrate

1. Forage concentration varies with:
Plant species and maturity
Level of N fertility
Plant stress

Frost, low temperatures.

Acid or deficient (P, S, Mb) soils.

Water shortage

Nitrate-N of Corn Stalks 35 d Post-

Forage nitrate-N concentration serves as an index of plant N status and grain yield.

Thus, high levels are considered a desirable trait by grain growers and plant breeders!

Corn Stalk Nitrate-N vs Grain Yield

1. Forage concentration varies with:
Level of N fertility
Plant species and maturity
Plant stress

Frost, low temperatures. Acid or deficient (P, S, Mb) soils.

Water shortage
Cool, cloudy weather, shade

Shading and Cotton Petiole Nitrate-N

1. Forage concentration varies with:

Level of N fertility

Plant species and maturity

Plant stress

Water shortage

Weather & shading

Frost damage

Time of day

Nitrate uptake continues during the dark, but is depleted during photosynthesis. Lowest late afternoon.

Avoid grazing or harvest in the morning.

Nitrate-N of Corn Stalks

Nitrate-N of Corn Stalks

1. Forage concentration varies with: Level of N fertility Plant species and maturity Plant stress Water shortage Weather & shading Frost damage Time of day Plant part

Uptake by plant roots; transported to leaves for reduction to nitrite.

Nitrate-N of Corn Plants

Nitrate in Corn Plant Parts

Nitrate-N in Stalk

1. Forage concentration varies with:
Level of N fertility
Plant species and maturity
Plant stress

Water shortage Weather & shading Frost damage

Time of day

Plant part

Low stocking rate - skip lower leaves.

Avoid harvesting the bottom stems of the corn plant. Cuts yield & nitrate.

Cutting Height and Nitrate in Corn Silage

1. Forage concentration varies with:
Level of N fertility
Plant species and maturity
Plant stress

Water shortage
Weather & shading
Frost damage
Time of day
Plant part

2. Reduce by fermentation/ensiling.

Nitrate-N converted to gaseous form.

Corn Plant Ensiling and Nitrate

Small Grain Ensiling and Nitrate

Nitrate Remaining after Grass Silage Fermentation

1. Forage concentration varies with: Level of N fertility Plant species and maturity

Plant stress

Water shortage Weather & shading Frost damage

Time of day Plant part

- 2. Reduce by fermentation/ensiling.
- 3. Dilute diet with low-nitrate forage/grain

Typical Feed Nitrate Levels

A. Reducing Nitrate Intake

1. Forage concentration varies with:

Level of N fertility

Plant species and maturity

Plant stress

Water shortage

Weather & shading

Frost damage

Time of day

Plant part

- 2. Reduce by fermentation/ensiling.
 3. Dilute diet with low-nitrate forage/grain.
- 4. Avoid water sources high in nitrate.

Nitrate-N in Water Safe & Hazardous Levels

Water's Contribution to Nitrate-N Intake

Nitrate in Drinking Water

Nitrate Removal from Water

- 1. Distillation costly to install.
- 2. Reverse osmosis costly to install/run.
- 3. Anion exchange columns short life.
- 4. Bottled water.

Boiling useless - Concentrates nitrate. Aluminum pan - converts nitrate to nitrite

Collect rainwater - Possibility (Pb, asbestos concerns)

Nitrate Assay Methods

1. Field test:

Diphenylamine spot test.

Diphenylamine + H₂SO₄ + NO₃yields blue/black spot on forage.

Test inside of stems.

2. Laboratory tests:

Colorimetric.

Nitrate electrode.

Nitrate reductase (from corn plants).

Potential Control Points:

B. Prevent Nitrite Formation

Nitrate itself is NOT toxic. Nitrite is.

Nitrate (NO_3^-) ----->Nitrite (NO_2^-) Nitrate reductase

Bacteria, Fungi, Algae, Plants, Animals?
A. Inducible, particulate form
B. Soluble, constitutive form.
NADH or NADPH are electron donors.
Activity varies diurnally in plants.
1 mole Molybdenum / mole enzyme.

B. Prevent Nitrite Formation

Nitrate-Reducing Bacteria

E. coli, Shigella, Salmonella, Klebsiella, **Enterobacter, Proteus (Energy source** for anaerobic bacteria) Nitrate-Sensitive Bacteria

Clostridia. Prevents C. botulinum growth in foods, clostridial degradation of silage.

Nitrate/Nitrite added to processed meats: bright red color = nitrosohemoglobin. Nitrate or vitamin C-Botulism prevention.

Nitrate Reductase contains Molybdenum (Mo) Tungsten (W) is competitive Inhibitor for Mo.

B. Prevent Nitrite Formation

Tungsten (W) inactivates nitrate reductase Lactating cows research: Netherlands.

Rumen cultures: 100 to 500 uM of W prevented nitrate reduction. Feeding 6 - 12 mg W/kg body weight prevented toxicity from 10,000 ppm. Higher levels needed with Mb rich diets.

Concerns about Tungsten: W in milk (.4% of dose). Soil/plant effects?

Potential Control Points:

C. Increase Nitrite Removal

Nitrite (NO₃-) Hydroxylamine Ammonia (NH₄)

Nitrite reductase

Plants form - Not use NADH or NADPH.
Bacteria - Defense mechanism. NADH
dependent & NADPH dependent forms.
Flavin dependent.

pH optimum 5.6.

Contains Fe.

Ammonia-useful NPN source.

Requires energy - Concentrate feeds.

C. Increase Nitrite Metabolism

Adaptation:

1. Ruminal bacteria:

Short term: Microbes adapt in 2 - 4 h.

Long term: More nitrite reducers.

Propionibacterium inoculants.

Heat-resistant, cheese fermenters

Become permanent residents.

Ionophore sensitive?

2. Pre-adapt to nitrate?
May prime nitrate reduction.

3. Pre-adapt to nitrite? Not tried to date.

C. Increase Nitrite Metabolism

- 1. Small frequent meals. Feed hay before pasturing cattle.
- 2. Totally mixed dry rations.
- 3. Avoid damp forages (hay, fodder).
- 4. Gradually adapt to high nitrate feeds. Bacterial adaptation/inoculation.
- 5. Increased dietary energy supply: Carbohydrate supplements.
- 6. Other diet components:
 Extra energy (concentrate).
 Vitamin A?
 - Replace soybean meal with urea?

Potential Control Points:

D. Decrease Nitrite Effects

Acute toxicosis:

Nitrite reacts with hemoglobin to stop oxygen transport by blood. Short term drastic effects.

Chronic toxicosis:

Depressed feed intake.

Oxygen depletion of uterus or fetus. Increased blood ammonia may reduce implantation and fertility?

Hemoglobin (Hb) Metabolism

Hemoglobin (Hb) Metabolism

D. Decrease Nitrite Effects

Animal adaptation: Nitrate is vasodilatory agent. With gradual adaptation: Increased hemopoiesis (More Hb). Increased blood volume. Increased hemoglobin restoration? Methemoglobinemia - Transitory. NADH dependent diaphorase in red blood cells. Higher blood glucose speeds hemoglobin restoration. Adapted grazers tolerate 3400-4600 ppm forage (>3 times toxic dry dose)

Methemoglobin Concentrations

Time of Day

D. Hemoglobin Restoration

Diaphorase: Present in red blood cells. NADH generation from glucose. Ruminants: Low blood glucose (NADH), esp. with roughage diets. Benefit from added concentrate. Ionophores?

D. Nitrite Toxicity Treatments

- Acute toxicosis treatment:

 Intravenous infusion 100 ml/500 kg
 body weight of a 4% methylene blue solution (Stanton, 1999).
 to 4 (or up to 15) mg methylene blue per kg body weight.
- 2. Sodium tungstate preventative.
- 3. Ascorbate, menadione, glutathione, vitamin E?
- 4. Chlortetracyclines.

D. Gas Toxicity Concern

Silage Fermentation Gases: NO, NO₂, N₂O₄, CO₂, Released first 1 - 10 d of fermentation. 5 ppm NO_x odor threshold (8 h max). 75 ppm visual (brown) detection. 100 ppm danger. 700 ppm fatal in 30 min - Man & Animal! Reacts with lung fluids to form nitric acid! Permanent lung damage. Ventilate silo. Heavy gases - sink.

Conclusions

Forage/Silage Control Points

- 1. Avoid high nitrate forage species.
- 2. Avoid excess N fertilization/drought.
- 3. Test suspicious forage & water for nitrate.
- 4. Avoid harvesting or grazing forages in wilting stage.
- 5. Harvest crops late in the day.
- 6. Leave lower stems in the field.
- 7. Ensile high nitrate forages.

Conclusions

Feeding/Management Control Points

- 1. Feed high nitrate forages only to nonpregnant heifers and dry cows.
- 2. Dilute high nitrate forages with grain or low nitrate feeds. Totally mixed rations.
- 3. Adapt animals gradually to high nitrate forages.
- 4. Avoid high meal size of suspect forage.
- 5. Be alert for symptoms and have antidote (methylene blue) on hand.
- 6. Avoid silage gases for 10 days after ensiling crop.
- 7. Consider propionibacteria inoculation.

Thanks for your Attention

Shalom Aleichem