Progress Report of Ph.D. Work on

"Design & Development of Zero Pollution Air Engine"

Ву

Bharat Raj Singh

Under Supervision of

Dr. Onkar Singh
Professor, Mechanical Engineering Department,
Harcourt Butler Technological Institute,
Nawabganj, Kanpur-202802

Submitted on

17th April' 2008

To

R.D.C. (Mechanical Engg. Deptt.), U.P. Technical University, Lucknow

1.0 TITLE OF WORK: "Design & Development of Zero Pollution Air Engine"

2.0 DETAILS OF WORK DONE TILL LAST PRESENTATION:

- **2.1** Literature survey about air engine / turbine and related turbo machinery has been completed. Details at Annexure –I.
- **2.2** Literature survey of motor bike available in India & its parameters has been completed. Details at Annexure- II.
- **2.3** On the basis of available parameters the 2-D design of air turbine rotor, casing, vanes, springs, pulley etc. has been done.
- **2.4** Fabrication of simple vaned type air turbine based on first design has been completed.
- **2.5** Vaned turbine has been run and part testing done for first design.

3.0 DETAILS OF WORK DONE SINCE LAST PRESENTATION (8TH JUNE' 2007):

- **3.1** Theoretical analysis of vaned type turbo machinery completed.
- **3.2** Based on mathematical modeling of vaned turbo machinery the mathematical model of vaned type air turbine has been developed.

$$w = n \left(\frac{\gamma}{\gamma - 1}\right) p_1 v_1 \left\{ \left(\frac{p_4}{p_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1 \right\} - n \left(p_4 - p_5\right) v_4$$

Where w = Theoretical work done

 p_1 & v_1 are pressure & volume respectively at which air impinges upon the vanes of turbine,

 p_4 & v_4 are pressure & volume respectively up to which maximum expansion of air takes place,

 $p_{\rm 5}$ is the pressure at which turbine releases the air to atmosphere.

$$\eta_{net} = \frac{Actual - Workdone}{Net - Input}$$

3.3 Thermodynamic cycle for expansion process in vaned type air turbine has been identified and shown ahead

3.4 Parameters to be studied:-

i) Dependent parameters: Specific air consumption, Speed of rotation, Torque, Work output, Efficiency

ii) Independent parameters: Rotor diameter, diameter of casing (outer cylinder), number of vanes, dia of nozzle, air pressure, Vaned turbine design

Dependent parameters = f_n (Independent variables)

3.5 Optimization of mathematical model is done as shown below:

$$w = n \left(\frac{\gamma}{\gamma - 1} \right) p_1 v_1 \left\{ \left(\frac{p_4}{p_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right\} - n \left(p_4 - p_5 \right) v_4$$
 (1)

Let
$$\frac{\gamma - 1}{\gamma}$$
 = k (constant)

$$w = \frac{n \cdot p_1 \cdot v_1}{k} \left\{ \left(p_4^k \cdot p_1^{-k} \right) - 1 \right\} - n \left(p_4 - p_5 \right) v_4$$
 (2)

Applying Lagrange's Multiplier, the optimum value of shaft-work will be obtained when:-

$$\frac{\partial w}{\partial v_A} = 0 \tag{3}$$

$$\frac{\partial w}{\partial p_A} = 0 \tag{4}$$

Differentiating (2) with respect to v_4 ,

$$\frac{\partial w}{\partial v_4} = 0,$$

$$-n(p_4-p_5)=0$$

or,
$$p_4 = p_5 \cong 1.0 \ atm \ pressure \cong 1.0132 bar$$
 (5)

Differentiating (2) with respect to p₄,

$$\frac{\partial w}{\partial p_4} = 0 ,$$

$$n.\frac{p_1.v_1}{k}p_1^{-k}.k.p_4^{k-1}-n.v_4=0$$

or,
$$n.p_1^{1-k}.v_1.p_4^{k-1} - n.v_4 = 0$$

Let
$$c = p_1^{1-k}.v_1$$
,

Then,
$$n.c.p_4^{k-1} - n.v_4 = 0$$

Therefore,
$$p_4 = \left(\frac{v_4}{c}\right)^{1-k}$$
 (6)

From the above, it is clear that for optimal shaft work, p_4 has direct relation with v_4 , p_1 and v_1 , where $\left(p_1^{1-k}.v_1\right)$ is taken as a constant, p_4 = p_5 =1 atm pressure.

4.0 FURTHER WORK:

- 4.1 Optimization of vaned air turbine using mathematical model developed
- 4.2 Fabrication of engine for optimum parameters
- 4.3 Experimentation on fabricated air turbine / engine
- 4.4 Results and analysis
- 4.5 Conclusions
- 4.6 Thesis report writing

5 PUBLICATIONS FROM WORK DONE TILL DATE:

5.1 Publication in Journals:

- Singh, Onkar and Singh, B. R., "Concept of Development of vaned type air turbine" —Pacific Journal of Transport Phenomena & Turbomachinery-Honolulu, Hawaii- under peered review.
- Singh, Onkar and Singh, B. R., "Development of a vaned type novel air turbine"- Journal of Mechanical Engineers Sciences, London- accepted & reviewer's comments received for revision.

5.2 Papers presented and published in Proceedings of International Symposium / Conferences:

- "Development of a Vaned Type Novel Air Turbine", 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-12)- scheduled on 17-22, 2008 at Pacific Center of Thermal Fluids Engineering, sherton Mona Surfrider Hotel, Honolulu, Hawaii.
- "A Study of Compressed Air as an alternative to Fossil Fuel for Automobile Engines", International Conference on Challenges & Strategies for Sustainable Energy and Environment- held on 10th & 11th June'2006 at UPTU, Lucknow.

5.3 Papers accepted for International Symposium / Conferences:

(Papers are likely to be published in Journals, after peered review)

- Optimal Uses of Wind Energy leading towards a Novel Resource for Future Sustainability-ASME 2nd International Conference on Energy Sustainability (ES-2008)- scheduled on August 10-14, 2008 at Jacksonville, Florida, USA".
- Study on Energy Storage System for 21st Century and Uses of Compressed Air as an Alternative to Fossil Fuel for Light Transport Engines - ASME 2nd International Conference on Energy Sustainability (ES-2008-54229) scheduled on August 10-14, 2008 at Jacksonville, Florida, USA.

mpressed Air Storage Engine -2 nd ial Issues in Emerging Technologies 08) scheduled on December 17-20,	International Conference on Th
(Bharat Raj Singh)	
(Dr. Onkar Singh) Supervisor	