PAGE
6
ChE Computer Applications (ChE121)

Module 2

Module 2
Solving Algebraic Equations in MATLAB
The objective of this module is to introduce MATLAB commands to solve an algebraic equation. This module shall not cover the in-depth mathematical principles involved in the solution of algebraic equations. It is best that you consult books on numerical methods for this purpose. Upon completion of this module, you are expected to:
a. solve a system of linear algebraic equations using MATLAB’s matrix operations.
b. solve an algebraic equation of single variable using MATLAB’s fzero function.
c. solve a polynomial equation in one variable using MATLAB’s roots function.
d. solve a system of nonlinear algebraic equations using MATLAB’s fsolve function.
The major sections of the module are the following:
1.1
Introduction
1.2
Solving a System of Linear Algebraic Equations
1.3
Solving an Algebraic Equation of Single Variable
1.4
Solving a Polynomial Equation in One Variable
1.5
Solving a System of Nonlinear Algebraic Equations
1.6
Summary of Commands and Functions
1.1 Introduction
Some time ago, the step used in solving a chemical engineering problem in a computer class usually involved the following:
1. Formulate a model equation that arises from a given problem.

2. Decide on the most suitable numerical method to use to solve the derived equation.

3. Using any programming language, write a routine that implements the numerical method selected and apply it on the derived equation.

4. Perform analyses of the results in terms of validity and precision.
A realization was made that the second and third steps of the process were not that significant in learning the imminent principle. However, these were the steps that ate up most of the time. It was therefore concluded that tools be created or employed to aid in the solution of the derived equations without much use of computer programming. Numerical packages such as MATLAB and POLYMATH were introduced. This solved the problem.
In this module, we will deal with solving algebraic equations using MATLAB.

1.2 Solving a System of Linear Algebraic Equations
MATLAB can solve a system of linear algebraic equations by treating the system as a product of two matrices – the matrix of coefficients of the variables and the matrix of the variables, the product of which is a matrix of the constants.

For example, you are given the following system:
2p + 3q + 4r = - 8

3p + 5q + 7r = -14

4p + 3q – 2r = 8

You can let matrix A equals the matrix of the coefficients of the variables p, q, and r by issuing the command:

>>A = [2 3 4; 3 5 7; 4 3 -2]

A =

 2 3 4

 3 5 7

 4 3 -2

You can also let b represent the matrix (in this case, b is a column vector) of the constants:

>>b= [-8;-14; 8]
b =

 -8

 -14

 8

If x represents a column vector of the variables, you can see that the system can be represented by this relationship: Ax=b
To solve for x, you premultiply both sides of the equation by the inverse of A.

 Ax = b
 A-1Ax = A-1b
But, A-1A = I (an identity matrix) which can just be taken as equal to one (1).

Thus,

 x= A-1b
You can implement this in MATLAB using the following command:

>>x=inv(A)*b
x =

 -1.0000

 2.0000

 -3.0000

Therefore, the solution is p= -1, q = 2, and r = -3.

Although, x=inv(A)*b is good enough to find the values of the variables, it is not very efficient in terms of speed. This will be felt if you have a number of variables. A better alternative is to use a matrix left division operator:

>>x=A\b

x =

 -1.0000

 2.0000

 -3.0000
You can type help mldivide for more information.
1.3 Solving an Algebraic Equation of Single Variable

MATLAB has two routines to solve an algebraic equation containing only one variable. These are the fzero and roots. The function fzero is used primarily to solve a nonlinear algebraic equation with one variable. However, it can still be used for linear equation.
To solve the equation
[image: image1.wmf](

)

2

ln

=

+

x

x

, you can do the following:

a. First, convert the equation into a form: f(x) = 0. Thus, you have
[image: image2.wmf](

)

0

2

ln

=

-

+

x

x

In MATLAB, ln(x) is an unknown function. Its equivalent is log(x). The base 10 logarithm function is log10(x).
b. Create a function routine m-file for f(x).

c. Decide on the initial guess. To help you decide, you can plot the function first.
The domain of the function is x>0. Therefore, you can plot from 0.1 to 10.0.
>> fplot('func1', [0.1 10.0])
 [image: image3.png]

The function will be zero between x=1 and x=2 which can be your initial guesses.
d. Use fzero to solve the equation with 1 as your initial guess.
>>fzero(‘func1’,1)
ans =

 1.5571

You can use feval to find the value of a function f(x) given x.

>>feval(‘func1’,1.5571)
 ans =

 -7.4883e-005
 That’s near zero indeed.

 Alternatively, you can also solve the equation without creating an m-file. This is done by using MATLAB’s inline construct. What it does is to convert an expression into a function.

>>fzero(inline(‘x+log(x)-2’),1)
ans =

 1.5571

1.4 Solving a Polynomial Equation in One Variable

If a given equation is a polynomial equation in one variable, MATLAB can find all its solutions if you use the roots function.
For example, the equation
[image: image4.wmf]0

1

4

8

3

2

2

3

4

=

-

+

+

-

x

x

x

x

 can be solved using the following commands:
>>c= [2, -3, 8, 4, -1];
>>z=roots(c)
 z =

 0.9377 + 1.9821i

 0.9377 - 1.9821i

 -0.5608

 0.1854
1.5 Solving a System of Nonlinear Algebraic Equations
Most chemical engineering problems involve a system of nonlinear algebraic equations. The function fsolve will be one of the most useful commands that you will employ.
For example, you are given the following system of nonlinear algebraic equations:

[image: image5.wmf]6

4

1

2

-

=

+

y

x

[image: image6.wmf]2

ln

3

2

=

+

x

x

Here are the steps to solve the system:
a. Make sure that each equation is in the form f(x,y) = 0. Therefore, the converted system becomes:

[image: image7.wmf]0

7

4

2

=

+

-

y

x

[image: image8.wmf]0

2

ln

3

2

=

-

+

x

x

b. Create a function routine m-file that shall contain the system. In this case, the first variable x will be x(1) and the second variable y will be x(2). You will have two functions in your m-file. The first equation will be f(1) and the second equation will be f(2).

c. Decide on the initial guess. Usually this is arbitrary. You can use x(1) =1 and x(2)=1. You can put these two initial guesses in a row vector x0.

>>x0=[1 1];
d. Solve the system using fsolve with your initial guesses found on x0:
>>x=fsolve(‘func2’,x0, optimset(‘fsolve’))
Optimization terminated successfully:

 Relative function value changing by less than OPTIONS.TolFun

x =

 0.8492 1.9303
Therefore, the solution (x,y) is (0.8492, 1.9303). The last option optimset(‘fsolve’) is to tell MATLAB to use the latest version of fsolve (2.0 or later). Otherwise, it will have a dilemma on what version of fsolve to use, the old fsolve (the grandfathered one) or the new fsolve.
1.6 Summary of Commands and Functions
The commands and functions used in the order of appearance are:
	Command/Function
	Description

	inv
	inverse of a matrix

	\
	matrix left division operator (See also: mldivide)

	fplot
	produces a plot of a function with a specified domain interval

	fzero
	finds the solutions to a single algebraic equation

	feval
	determines the value of a function at a given value of its argument(s)

	inline
	a construct that converts an expression into a function

	roots
	finds all the solutions to a polynomial equation in one variable

	fsolve
	gives the solutions to algebraic equations

function f = func2(x)

f(1)=x(1)*x(1) - 4*x(2) + 7;

f(2)= 3*x(1)*x(1) + log(x(1)) -2;

function y = func1(x)

y=x+log(x)-2;

© 2006 Allan S. Hugo. All Rights Reserved.

http://www.geocities.com/ahugo_classes/che121/

_1225768804.unknown

_1225772650.unknown

_1225790024.unknown

_1225790056.unknown

_1225773048.unknown

_1225771744.unknown

_1225768679.unknown

