
We replace " in Eq. A.31 to arrive at this equation.

p =
1

2
erfc

0
BB@
vuuut 3

2(M � 1)
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�PL
k=1 �kwk

�2
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2
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1
CCA (A.39)

We de�ne 
 as follows.


 =
"AV

�PL
k=1 �kwk

�2
N0

PL
k=1 w

2
k

(A.40)

Replacing 
 into the above equation for p results in Eq. 2.36.

A.2.3 Derivation of Pe for Rectangular Constellations

We shall assume a rectangular constellation of dimension
q

M
2
by

p
2M . The proba-

bility of error for this constellation provides an upper bound to the probability of er-

ror of the optimal constellation. With the same approach as before, we have 4 signals

with two neighbors, (3
p
2M �8) signals with three neighbors, and (M �3

p
2M +4)

signals with four neighbors. Therefore,

Pe(
) < 1�
1

M

h
4p2 + (3

p
2M � 8)p3 + (M � 3

p
2M + 4)p4

i
(A.41)

Replacing the expressions for p2, p3, and p4 from Eqs. A.8 - A.13 into the above

equation,

Pe(
) < 2

 
2�

3
p
2M

!
p �

 
2�

3
p
2M

!2

p
2 +

1

2
p
2 (A.42)

The p2 terms will be small with respect to p. Therefore a tight bound is,

Pe(
) < 2

 
2 �

3
p
2M

!
p (A.43)
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The equation for p is the same as in Eq. A.31. But " will be di�erent since we

have a rectangular constellation instead of a square. To determine ", we shall �rst

de�ne the signal amplitudes in terms of the inphase and quadrature components.

Amc = 2m� 1�
p
2M m = 1; 2; : : :

p
2M (A.44)

Ams = 2m� 1�

s
M

2
m = 1; 2; : : :

s
M

2
(A.45)

Therefore the average signal amplitude is equal to,

E[A2
m] =

2M � 1

3
+

M
2
� 1

3
(A.46)

=
5
2
M � 2

3
(A.47)

=
2
�
5
4
M � 1

�
3

(A.48)

And �nally the average energy is expressed as

"AV = E[A2
m]" [51] (A.49)

=
2

3

�
5

4
M � 1

�
" (A.50)

From this we have an expression for ".

" =
3"AV

2
�
5
4
M � 1

� (A.51)

By replacing " in Eq. A.31 with this result,

p =
1

2
erfc
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By setting,


 =
"AV

�PL
k=1 �kwk

�2
N0

PL
k=1 w

2
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(A.53)

we have the �nal equation for p.

p =
1

2
erfc
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CA (A.54)

Substituting the above equation for p into Eq. A.43,

Pe(
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If we replace the
�
1 � 1p

M

�
terms with

�
1 �

3

2
p
2p
M

�
and the (M � 1) terms with

�
5
4
M � 1

�
in Eq. 2.39, the result is Pe.
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where

u1 =

vuut 3
c(1 + (L� 1)�)

2
�
5
4
M � 1

�
+ 3
c(1 + (L� 1)�)

(A.58)

u2 =

vuut 3
c(1 � �)

2
�
5
4
M � 1

�
+ 3
c(1 � �)

(A.59)
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A.3 Appendix for Non-coherent FSK

A.3.1 Derivation of [P (U2 < U1jU1 = u1)]
M�1

We substitute p(U2) from Eq. 2.52 into Eq. 2.56.

P (U2 < U1jU1 = u1) =
Z u1

0

1

(2�22)
L(L � 1)!

u
L�1
2 e

�u2=2�22 du2 (A.60)

From [9],

Z
x
m
e
ax
dx = e

ax
mX
r=0

(�1)r
m!xm�r

(m� r)! ar+1
(A.61)

Using the above equation, we can solve the integral in Eq. A.60.

P (U2 < U1jU1 = u1) = 1 �
L�1X
r=0

u
L�1�r
1 e

�u1=2�22

(L� 1 � r)! (2�22)
L�1�r = 1 �

L�1X
j=0

yj (A.62)

Raising Eq. A.62 to the M � 1 power, and using [22],

(a+ x)n =
nX

k=0

0
BBB@

n

k

1
CCCAx

k
a
n�k (A.63)

we obtain,

0
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(A.64)

In the following equations we remove the �rst yj from the summation and reapply

Eq. A.63.

0
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=
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=
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r1X
r2=0

: : :
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If we combine the results from Eq. A.62 and Eq. A.65 we get the following.

[P (U2 < U1jU1 = u1)]
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A.3.2 Derivation of Pe

The probability of error in terms of the probability of a correct decision is Pe = 1�Pc.

We have the equation for Pc in Eq. 2.55. Substitute Eq. A.66 and Eq. 2.47 into this

equation to obtain

Pc =
M�1X
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The following formula from [22] may be employed to solve the integrals:

Z 1

0
x
��1

e
��x

dx =
�(�)

��
(A.68)

where <f�g > 0 and fRef�g > 0

The resulting expression for Pc is more usefully expressed in terms of 
c instead of

�
2
1, �

2
2, and �, where


c =
"E[�2]

N0

�
2
1 = �

2
2(1 + 
c)

� = �
c�
2
2

We make the substitutions to obtain Eq. 2.57 for Pe.
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Appendix B

Indoor Radio Channel

B.1 Ray Tracing

B.1.1 Projections

As described in Section 3.2, the elapsed time based on the x-axis for up to four

bounces is,

0 - re
ections :

����� xr � xt

c cos �t cos �t

����� (B.1)

1 - re
ection :

����� xt + xr

c cos �t cos �t

����� (B.2)

:

�����(W � xt) + (W � xr)

c cos �t cos�t

����� (B.3)

2 - re
ections :

�����xt +W + (W � xr)

c cos �t cos �t

����� (B.4)

:

�����(W � xt) +W + xr

c cos �t cos �t

����� (B.5)

133



3 - re
ections :

�����xt + 2W + xr

c cos �t cos�t

����� (B.6)

:

�����(W � xt) + 2W + (W � xr)

c cos �t cos �t

����� (B.7)

4 - re
ections :

�����xt + 3W + (W � xr)

c cos �t cos �t

����� (B.8)

:

�����(W � xt) + 3W + xr)

c cos �t cos �t

����� (B.9)

where �t is the aspect angle and �t is the elevation angle. The projections are illus-

trated in Figure B.1. For the times for the y-axis and z-axis, replace the denominator

by c sin �t cos �t and c sin �t, respectively, and we replace the x-coordinates with the

appropriate y and z coordinates.

B.1.2 Attenuation by Inner Walls

A ray passes through the partitions with some attenuation, but we neglect any

re
ections o� the partitions. This greatly simpli�es our model. The rationale is

that the likelihood of these re
ections reaching the receiver is minute. In addition

the power level of the re
ected ray in the event that it reaches the receiver will be

extremely small due to the minimal re
ection of the partition and the large path

loss.

Since the path of the ray and the locations of the partitions are known, the

intersection between the ray and any of the partitions can be found. The number

of intersections is counted and the power level of the ray is scaled accordingly. The

intersection between the ray and a partition is found as follows.
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xt r0 x

No

Single

Double

Triple

Quadruple

Bounce

Bounce

Bounce

Bounce

Bounce

Figure B.1: Projections of the path onto the x-axis for all possible bounce combina-

tions.
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We begin by assuming that the partitions are parallel to either the walls or the


oor. Select two consecutive points along the path of the ray. These include the

transmitter, re
ection, and receiver points. Label the points as R1 and R2. The four

corners of the partition are labeled P1, P2, P3, and P4. See the �gure below for an

illustration of the problem.

@
@
@
@

@
@
@
@

H
H
H
H

H
H
H
H

H
H

H
H

H
H

H
H

H
HY

R1

R2

P1

P2

P3

P4

Any point along the R1-R2 line is given by the coordinates (x; y; z) and de�ned

by the following parametric equations.

x = xR1 + (xR2 � xR1) t (B.10)

y = yR1 + (yR2 � yR1) t (B.11)

z = zR1 + (zR2 � zR1) t (B.12)

If the partition is parallel to the left and right walls, then the x-coordinates of the

partition points are all equal and value of x at the intersection of the ray and the
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partition will be equal to this value. If the partition is parallel to the top and bottom

walls then y is known, and if the partition is parallel to the 
oor and ceiling (i.e. a

false ceiling) then z is known.

One of the coordinates of the intersection point between the partition and the

ray is known. This allows for solving for the parametric value t. Then the two

other intersection coordinates can be found. We then check that the intersection

coordinates lie between the points R1 and R2. If this is the case then the ray passes

through the partition and the power level is attenuated by the absorption factor of

the partition.

B.2 Equalizers

B.2.1 Diversity Combiner Followed by a Linear Equalizer

We solve for the equalizer tap weights that minimize the MSE. The MSE is given by

the equations below.

MSE = E

����x̂sign � x
sig
n

���2� (B.13)
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j (B.14)

As in Section 3.3.1, we rewrite the equation for the MSE in vector form. The

(2N + 1) by (2N + 1) matrix � is de�ned as follows.

� = [�(j + N + 1; q +N + 1)] (B.15)

= �
2
x

MX
i=0

MX
p=0| {z }

i+j=p+q

(
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i g
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i g
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�
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+

8>>><
>>>:

�
2
ẑ j = q

0 otherwise

(B.16)

where j; q = �N;�N + 1; : : : N � 1; N

In addition c and s are de�ned as,

c = [cj] (B.17)

If N is less than or equal to M then s has the following form.

sT = �
2
x[g

sig
N g

sig
N�1 � � � gsig1 g

sig
0| {z }

N+1

0 � � � 0| {z }
N

] (B.18)

Otherwise if N is greater than M then s has the following form.

sT = �
2
x[0 � � � 0| {z }

N�M

g
sig
M g

sig
M�1 � � � gsig1 g

sig
0| {z }

M+1

0 � � � 0| {z }
N

] (B.19)

In addition �
2
ẑ is given below.

�
2
ẑ = �

2
z

LX
k=1

wkw
�
k (B.20)

The equation for the MSE in Eq. B.14 is rewritten in vector form.

MSE = cH�c� cHs� sHc+ �
2
x (B.21)
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The MSE is minimized with respect to the equalizer tap weights.

@

@w
(MSE) = 0 (B.22)

= 2�c � 2s (B.23)

Therefore the equalizer tap weights can be found as follows.

�c = s (B.24)

c = ��1s (B.25)

The MSE is found in terms of the channel by replacing Eq. B.25 into Eq. B.21.

MSE = �
2
x � s

H��1s (B.26)

B.2.2 Diversity Combiner Followed by a Decision Feedback

Equalizer

We will assume that there are no feedback errors when solving for the equalizer tap

weights that minimize the MSE, therefore ~xsign = x
sig
n . The MSE is given by the

equations below.

MSE = E

����x̂sign � x
sig
n

���2� (B.27)
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j (B.28)

As before the equation for the MSE is rewritten in vector form. The matrix � is

given by Eq. B.16, but is of size (N1+1) by (N1+ 1). A new matrix � is de�ned as

follows.

�ij =

8>>><
>>>:

�
2
xg

sig
i�j+N1+1

i� j +N1 + 1 �M

0 otherwise

(B.29)

where i = 1; 2; : : : N2

j = 1; 2; : : : N1 + 1

In addition c, d, and s are de�ned as,

c = [cj] (B.30)

d = [dk] (B.31)

If N1 is less than or equal to M then s has the following form.

sT = �
2
x[g

sig
N1

g
sig
N1�1 � � � gsig1 g

sig
0 ] (B.32)

Otherwise if N1 is greater than M then s has the following form.

sT = �
2
x[0 � � � 0| {z }

N1�M

g
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M g

sig
M�1 � � � gsig1 g

sig
0| {z }
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] (B.33)
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The equation for the MSE in Eq. B.28 is rewritten in vector form.

MSE = cH�c � cHs� sHc+ �
2
xd

Hd� dH��c� cH�Td+ �
2
x (B.34)

The vector w is de�ned as equal to [c d]T . We need to rewrite Eq. B.34 such that

we can replace of occurrences of c and d by w. We begin by rewriting all the vectors

in terms of a vectors of size N1+N2+1 and all the matrices in terms of matrices of

size N1 +N2 + 1 by N1 +N2 + 1.

MSE = [cH 0]
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x (B.35)

This is equivalent to the following equation.

MSE = [cH dH ]
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The vector [cT dT ]T is replaced with w.

MSE = wH

2
6664

� ��T

��� �
2
xI

3
7775w �wH

2
6664
s

0

3
7775� [sH 0]w+ �

2
x (B.37)

The MSE is minimized with respect to the equalizer tap weights to determine the

following form for the tap weights.

w =

2
6664

� ��T

��� �
2
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3
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�1 2
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s

0

3
7775 (B.38)

Below is the �nal form for w, found with the inversion identity from [9].
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2
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The MSE in terms of the channel is found by replacing Eq. B.39 into Eq. B.37.

MSE = �
2
x � s
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�2x
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!�1

s (B.40)

B.3 Probability of Error

The output of the receiver can be rewritten as,

x̂
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n =
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q
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i x
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The probability of a correct decision is given as,
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where <(x) is the real part of the complex variable x. and =(x) is the imaginary

part of x. We de�ne p,

p = Probf<(x̂sign � x
sig
n ) �

r
"

2
g = Probf=(x̂sign � x

sig
n ) �

r
"

2
g (B.43)

As a �rst step in �nding the upper bound on p, the equation for p is expanded

as given below.

p = Prob
nh
<(qsig0 )� 1

i
<(xsign )�=(qsig0 )=(xsign )+

T2X
i=T1
i6=0

h
<(qsigi )<(xsign�i)�=(qsigi )=(xsign�i)

i
+

IX
l=1

U2X
i=U1
i6=0

h
<(qint;li )<(xint;ln�i )�=(qint;li )=(xint;ln�i )

i
<(ẑn) �

r
"

2

9>>=
>>; (B.44)

By the Cherno� bound [3, 59],

p � exp

�
��
r
"

2

�
E [exp (�<(ẑn))] �

E

h
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�

h
<(qsig0 )� 1

i
<(xsign )

�i
E

h
exp

�
�=(�qsig0 )=(xsign )

�i
�

E

2
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From [59] we have,

E [exp (�<(ẑn))] = exp

�
1

2
�
2
�
1

2
�
2
ẑ

��
(B.46)

E [exp (�<(qi)<(xn�i))] � exp

�
1

2
�
2
�
1

2
�
2
x

�
(<(qi))

2
�

(B.47)

E [exp (�=(qi)=(xn�i))] � exp

�
1

2
�
2
�
1

2
�
2
x

�
(=(qi))

2
�

(B.48)

We substitute Eqs. B.46-B.48 into Eq. B.45 and arrive at the following result.

p � exp

8>><
>>:��

r
"

2
+
1

4
�
2
�
2
ẑ +

1

4
�
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2
x

2
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i6=0

���qsigi

���2

+
U2X

i=U1
i6=0

���qint;li

���2
3
775
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>>; (B.49)

We now �nd the value of � (greater than zero) that minimizes the right hand side of

Eq. B.49. We accomplish this by setting the derivative of p with respect to � equal

to zero and solving for �.

� =

q
"
2

1
2
�2ẑ +

1
2
�2x

"
1 � 2<(qsig0 ) +

PT2
i=T1
i6=0

���qsigi

���2 +PI
l=1

PU2
i=U1
i6=0

���qint;li

���2
# (B.50)

We then substitute the result for � into Eq. B.49, and arrive at the following result.

p � exp

8>>>>><
>>>>>:

�"=2

�2ẑ + �2x

"
1 � 2<(qsig0 ) +
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i6=0
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>>>>>;
(B.51)
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Using Eq. B.41 and Eq. 3.13, the MSE can be expressed as,

MSE = �
2
ẑ + �

2
x

2
6641 � 2<(qsig0 ) +

T2X
i=T1
i6=0

���qsigi

���2 + IX
l=1

U2X
i=U1
i6=0

���qint;li

���2
3
775 (B.52)

By substituting this result into Eq. B.49, we arrive at the �nal form of p.

B.4 Zero-Forcing Transmitter

The following equation represents the received signal at time n and at user m, with

an MC receiver.

x̂n;m =
LX

k=1

NX
j=�N

w
�
m;j;kyn�j;m;k (B.53)

=
LX

k=1

NX
j=�N

SX
l=1
l6=m

LX
p=1

MX
i=0

w
�
m;j;kc

�
l;pxn�i�j;lhl;m;p;k;i +

LX
k=1

NX
j=�N

w
�
m;j;kzn�j;m;k (B.54)

where cl;p is the weight of the p
th antenna element of the lth transmitting user, xn;l

is the data transmitted by user l at time n, hl;m;p;k;i is the channel impulse response

transmitting from user l and antenna element p, and received by user m at antenna

element k, and zn;m;k is the AWGN at time n at antenna element k of receiving user

m. There are S users, all the users have antenna arrays with L elements, and the

channel impulse response has a duration of M . The weights of the k
th receiving

antenna and the j
th delay element of the m

th receiving user is wm;j;k. There are

2N + 1 delay elements in the multitap diversity combiner (MC).
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The standard approach to �nding the optimal transmitter and receiver weights

is minimize the mean-square-error (MSE) with respect to the weights. Therefore the

MSE is given as follows.

MSE =
1

S

SX
m=1

8>><
>>:�

2
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l6=m
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w
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; (B.55)

where t is the transmitting partner of m. This equation can be written in matrix

form.

MSE =
1

S

SX
m=1

8>><
>>:

SX
l=1
l6=m

cH(l)wH(m)�(l;m)w(m)c(l)� cH(t)	(t;m)w�(m)�
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2
x + �

2
zw

H(m)w(m)
o

(B.56)

=
1

S

SX
m=1
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cT (t)	
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2
x + �

2
zw

H(m)w(m)
o

(B.57)

The MSE approaches zero as c(l) approaches in�nity and w(m) approaches zero.

The MSE approaches zero when in the limit the �rst, second, and third terms of

146



Eq. B.56 approach �
2
x. To control this phenomenon, we contain the transmitter

weights by a beamforming solution.

First we will �nd the transmitter weights. The beamforming solution requires

that in the direction of the desired receiver the transmitted signal be unity. But in

our case we are transmitting to a receiving array, so we transmit unity to the average

direction of the receiving array. Therefore,

cH(t)	(t;m)1 = �
2
x (B.58)

The cost function is given by,

1
S

PS
l=1

(
cH(l)

"PS
m=1
m 6=l

wH(m)�(l;m)w(m)

#
c(l)� cH(l)	(l; t)w�(m)�

wT (t)	H(l; t)c(l) + �
2
x + �cH(t)	(t;m)1

o
+ �

2
zw

H(m)w(m) (B.59)

We take the partial derivative of the cost function with respect to c(l) and set the

result to zero. We then solve for c(l). The result is,

c(l) =

2
664

SX
m=1
m 6=l

wH(m)�(l;m)w(m)

3
775
�1

[	(l; t)w�(m)� �	(t;m)1] (B.60)

It can be shown that
PS

m=1
m6=l

wH(m)�(l;m)w(m) is singular. Therefore this method

of �nding the transmitter weights has no solution.

An alternate approach for determining the transmitter weights is the zero-forcing

solution. First we rewrite Eq. B.54 as follows.

x̂n;m =
SX
l=1
l6=m

LX
p=1

c
�
l;p

N+MX
i=�N

g
0
l;m;p;ixn�i;l + ẑn;m (B.61)
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ẑn;m =
LX

k=1

NX
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w
�
m;j;kzn�j;m;k (B.63)

We expand this as follows.

x̂n;m =
LX
p=1

c
�
t;pg

0
t;m;p;0xn;t

| {z }
transmitted signal

+
LX
p=1

N+MX
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| {z }
Co-channel Interference

+ ẑn;m| {z }
AWGN

(B.64)

We need to solve for the transmitter weights such that the ISI and the co-channel

interference is nulli�ed. First we rewrite Eq. B.61 in matrix form.

x̂n;m =
SX
l=1
l6=m

cH(l)G0(l;m)x(l) + ẑn;m (B.65)

For unity transmitted signal in the direction of the desired receiver and to nullify

the ISI we have the following for m = 1 : : : S.

cH(l)G0(l;m) =

8>>><
>>>:

�N 0 N+M

[0 � � � 010 � � � 0] if m = t

[0 � � � 0] otherwise

9>>>=
>>>;

(B.66)

Therefore

cH(l)[G0(l; 1) � � �G0(l; t) � � �G0(l; S)] =

[ 0 � � � 0| {z }
2N+M+1

� � �
�N 0 N+M

0 � � � 010 � � � 0 � � � 0 � � � 0| {z }
2N+M+1

] (B.67)
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We rewrite this equation as follows.

cH(l)Q(l) = 1(l) (B.68)

As a �nal solution,

c(l) =
h
Q(l)QH(l)

i�1
Q(l)1(l) (B.69)

If (2N+M+1)S is greater than L then Eq. B.68 is underdetermined and we will not

completely nullify the interference. In addition, the zero-forcing solution completely

neglects the AWGN.

We must now determine the receiver weights. If we derive the values for the

weights by MMSE, we will again have the case where the transmitter weights become

in�nite and the receiver weights become zero. Therefore we will solve for the receiver

weights by the beamforming method.

We refer back to Eq. B.57. The �rst step is to de�ne the following.

wH(m)	0(t;m)1 = �
2
x (B.70)

The cost function is given by,

1
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2
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H(m)w(m)
o

(B.71)

We take the partial derivative of the cost function with respect to w(m) and set the
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result to zero. We then solve for w(m). The result is,

w(m) =

2
664

SX
l=1
l6=m

cH(l)�0(l;m)c(l) + I�2z

3
775
�1

�
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To �nd �,

1H	
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Therefore,
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150



Appendix C

Power Control

We begin with Eq. 4.5. The goal is to �nd the values Pi for all S users which

enable the transmission links between transmitting partners to be above the SINR

threshold. Therefore we solve the set of linear equations for Pi, following [7]. Eq. 4.5

can be expanded and rewritten as follows.

Pt(G
NISI
i;t � 
iG

ISI
i;t )� 
i

X
j 6=i
j 6=t

PjGi;j = ni
i (C.1)

i = 1 : : : S

This can be restated in vector form.

HP = N (C.2)
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where

Hij =

8>>>>>>>><
>>>>>>>>:

G
NISI
i;t � 
iG

ISI
i;t if j = t

�
iGi;j if j 6= i , j 6= t

0 if j = i

(C.3)

Ni = ni
i (C.4)

However, the matrix H will have a diagonal of all zeros in this form. Therefore we

must interchange the rows between each pair of transmitting and receiving partners.

We rewrite the equations as follows.

H0P = N0 (C.5)

where for each pair of users i and t (i 6= t),

H
0
i;j = Ht;j

H
0
t;j = Hi;j

j = 1 : : : S

N
0
i = nt
t

N
0
t = ni
i (C.6)

We solve for the vector P by matrix inversion, if the solution exists. Negative values

for the transmitting power indicates that no solution exists.
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