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Figure 3.4: Impulse response with 8 meter transmitter/receiver separation.
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In both the DC/LE and the DC/DFE, the �rst stage is the DC. The input from

each antenna is weighted and all channels are summed. The output of the DC, rn,

is then fed into the equalizer.

The MC receiver is comprised of a LE on each antenna branch. The output of the

LE for each channel is summed. The output provides an estimate of the transmitted

symbol.

An equation is derived to represent the MSE between the output symbol and the

transmitted symbol. We then solve for the receiver weights that minimize the MSE.

In addition, we derive an upperbound for the Pe. We then evaluate the e�ectiveness

of each receiver with these two performance measures.
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3.3.1 Multitap Diversity Combiner

We begin the derivation of the MSE for a system with a MC receiver with the

assumption of omnidirectional transmission. Therefore the received signal is given

by,

yn;k =
MX
i=0

x
sig

n�i
h
sig

k;i
+

IX
l=1

MX
i=0

x
int;l

n�i
h
int;l

k;i
+ zn;k (3.11)

where yn;k is the received signal at time n and antenna element k. The user trans-

mitting the data we wish to receive is denoted by `sig' and the interfering users are

denoted by `int'. The ith of M channel taps, at the kth antenna element is denoted

by hk;i.

The output of the MC with L antennas and 2N +1 taps per antenna is given by,
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n
=
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w
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The MSE is
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We expand this equation and rewrite it in vector form. We de�ne the (2N +1)L

by (2N + 1)L matrix � as follows.

� = [�(k + L(j +N);m+ L(q +N))] (3.15)
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k;m = 1; � � �L j; q = �N; � � �N

In addition we de�ne w =
h
wk+L(j+N)

i
and s as follows. If N is less than or equal

to M then s has the following form.
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Otherwise if N is greater than M then s has the following form.
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Therefore the equation for the MSE in vector form is

MSE = wH�w �wHs� sHw + �
2

x
(3.19)

83



We minimize the MSE with respect to the antenna weights. We then solve for the

antenna weights which are given by w = ��1s. The MSE can be rewritten as

�
2

x
� sH��1s.

3.3.2 Diversity Combiner Followed by an Equalizer

A single tap diversity combiner can be expressed as an MC with N = 0. The output

of the DC is expressed as,

rn =
MX
i=0

x
sig

n�ig
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i +
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i=0

x
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n�i g
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i + ẑn (3.20)
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w
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k
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The output of a 2N + 1 tap length LE is given by,

x̂
sig

n
=

NX
j=�N

c
�

j
rn�j (3.24)

where cj are the equalizer weights. The output of DFE with a feedforward �lter of

length N1 + 1 and a feedback �lter of length N2 is given below.

x̂
sig

n
=

0X
j=�N1

c
�

j
rn�j �

N2X
k=1

d
�

k
~xsig
n�k

(3.25)

where cj are the feedforward �lter taps and dk are the feedback �lter taps. The

output of the decision decision device is given by ~xsig
n
.
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Using a similar procedure to Section 3.3.1, we can �nd the equalizer tap weights.

See Appendix B.2 for complete details.

3.3.3 Probability of Error

To avoid lengthy error probability simulations, we derive an upper bound on Pe

as a function of the MSE. From Eq. 2.35, with the signal set size equal to 2k, the

expression for the probability of error is given as,

Pe = 1�
h
1� 2(1 � 2�k=2)p

i
2

(3.26)

The variable p is given in Eq. B.43 and is a function of numerous di�erently

distributed random variables. Therefore we will �nd an upper bound on p, by using

the Cherno� bound. See Appendix B.3 for the derivation. The �nal form of p is,

p � exp

"
�"=2
(MSE)

#
(3.27)

3.3.4 Simulation Results

To simulate the performance of the receivers we created a 
oor of an o�ce building,

divided into three cells with a pair of users randomly placed in each cell. The receivers

were composed of a nine element antenna array for reception, with omnidirectional

transmission. The channel from every user to every antenna element of every other

user was determined, yielding the received signal and the co-channel interference. For

each receiver the optimal receiver weights for the minimumMSE of the system were
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Figure 3.9: Probability of error vs. received SNR for adaptive receiver simulation.

calculated for a range of signal-to-noise ratios (SNR), based on 4-QAM modulation.

The symbol rate was 16MHz. To reduce the length of the simulation, the receiver

weights were analytically calculated to determine the MSE and an upperbound on Pe.

This was repeated for many di�erent user placements to produce averaged results.

The results are given in Figure 3.9.

We see from Figure 3.9 that for Pe = 10�3, the MC yields a reduction in the

required received SNR of almost 5dB as compared to the DC. We see that the

DC/LE and DC/DFE are both less than 1dB better than the DC alone.
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The performance of the DC with a large number of antennas limits the e�ective-

ness of equalization. The DC reduces the ISI caused by delayed responses in the

indoor radio environment by placing a null in the beampattern of the antenna array

in the direction of the ISI. In addition the indoor radio environment is dominated by

CCI and the ISI is minimal as compared to the mobile radio environment. Therefore

the e�ect of an equalizer following a DC on the MSE is small. In addition, the

equalizers have no e�ect on co-channel interference. On the other hand, with the

MC, the multiple taps for each antenna branch allows for joint adaption in time and

space. This results in the optimal reduction of both the ISI and CCI yielding a large

performance gain.

We conclude that additional antenna elements provide much more gain than

additional equalizer taps. However, the result is much more expensive hardware,

since each adaptive antenna element demands either a separate downconverter path

or highly linear and well-matched complex RF adaptive multipliers.

3.4 Adaptive Transmission

With an iterative algorithm the receiver weights are adaptively calculated based on

minimizing the measured error. In this manner, the receiver can adapt to changes

in the channel. However, on transmission there is no error information with which

to adapt the antenna weights, and in a distributed system the transmitter has no
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knowledge of the signaling environment.

To deal with these di�culties we have developed a new algorithm in which the

DC receiver antenna weights are used for transmission. The receiver calculates the

optimal antenna weights to null interfering signals and minimize the MSE. Therefore,

if we use the same weights on transmission, we will be transmitting through nulls in

the beampattern in the direction of the interfering users, thereby reducing co-channel

interference in the system (assuming time-division duplex transmission and a slowly

changing channel.) In addition, with a DC receiver, there is minimal additional

hardware complexity in implementing the adaptive transmitter. For other receiver

structures, it would be necessary to calculate DC receiver antenna weights for use

on transmission. A signi�cant bene�t of this scheme is that no feedback is required

between users.

To measure the performance of the transceivers, we use the same simulation as

in Section 3.3, adding now the transmitter array. In Figure 3.10, we illustrate the

optimal analytical simulation results. These are calculated by solving for the receiver

weights which minimize the MSE for the given channel. Then the DC receiver weights

are used for transmission. The receiver weights are then recalculated. This procedure

is repeated until the MSE of the system converges to a stable solution. In the �gure,

the solid lines indicate omnidirectional transmission. This is used to compare to the

adaptive transmitter algorithms. The dashed lines indicate using receiver weights

for transmission (RW).
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Figure 3.10: Probability of error vs. received SNR for adaptive transmitter/receiver

simulation.

For comparison, we also simulated the system in which channel information be-

tween all the users in the network is fed back, with adaptation of the transmitters ac-

complished by a zero-forcing (ZF) solution. The derivation is given is Appendix B.4.

Dotted lines in the �gure indicate a ZF transmitter. For each transmitter we exam-

ine two di�erent receivers, a single-tap diversity combiner, noted as DC in the �gure,

and a multitap diversity combiner with three taps per antenna, noted as MC in the

�gure.

As in Section 3.3, we achieve a 5dB gain, at a Pe of 10
�3, with the MC receiver
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over the DC receiver, with omnidirectional transmission. Comparing the transmit-

ter structures, we achieve the best performance with the ZF transmitter and an MC

receiver. This structure yields a 3dB gain over the RW transmitter and an MC

receiver. In addition, the ZF transmitter results in more than a 8dB gain over om-

nidirectional transmission. But this performance gain is at the cost of a tremendous

increase in system and hardware complexity. On the other hand, using the RW

transmitter attains a 5dB performance gain over omnidirectional transmission with

a small increase in system and hardware complexity.

An important result is that with the RW transmitter only a 1dB gain is achieved

by using an MC receiver instead of a DC receiver. However in Section 3.3 we saw a

5dB gain using the MC receiver as opposed to the DC receiver. Since the adaptive

transmitter greatly reduces the CCI, the bene�ts of the MC receiver are now greatly

diminished. Therefore, for a minimal loss in performance, we can signi�cantly sim-

plify our transceiver design by only implementing a DC receiver. For transmission

we can then use the receiver weights directly without having to calculate a separate

set of weights for the transmitter.
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3.5 LMS Adaptation of the Transceiver Struc-

ture

3.5.1 General Performance

We now examine the performance of a realistic implementation of the adaptive

transceiver. To analytically derive the receiver weights as discussed above requires

knowledge of the channel characteristics in the form of a channel covariance ma-

trix. This information could be provided by implementing a channel estimator. But

the derivation also requires a matrix inversion of the covariance matrix. Matrix

inversions are computationally costly.

An alternative approach is to iteratively adjust the weights by the steepest de-

scent method. After the detection of every symbol we adjust the weights based on

the error between the transmitted symbol and the output of the decision device. If

convergence is possible, we eventually will attain the receiver weights which mini-

mize the MSE. This is the least-mean-square (LMS) algorithm [51]. This algorithm

is simple and yet capable of achieving satisfactory performance under the right con-

ditions. It's major limitation the relatively slow rate of convergence [26]. For an

indepth analysis of the LMS algorithm see [26].

We have chosen the LMS algorithm for its simple implementation due to the
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hardware constraints of the system. Other iterative algorithms such recursive least-

squares (RLS), which is based on Kalman �ltering theory, would provide typical

convergence rates of an order of magnitude faster than the LMS algorithm. This

improvement in performance, however, is achieved at the expense of a large increase

in computation complexity [26], which we cannot a�ord.

The adaptation of the transceiver is accomplished by �rst updating the the re-

ceiver weights. The general form of the update is,

wi+1 = wi +�eiyi (3.28)

where wi denotes the vector of receiver antenna weights at the i
th iteration, �

denotes a positive number small enough to ensure convergence [51], ei denotes the

error in the output of the antenna array, and yi denotes the input vector to the

antenna array. During training of the transceiver, ei is calculated as the di�erence

between the value of the transmitted symbol and the output of the array. Otherwise

the error is calculated as the di�erence between the output of the decision device

and the output of the antenna array.

Through experimentation, � equal to 0.01 was found to be appropriate. Larger

values for � resulted in unstable conditions in which the update of wi was too

large and the system diverged. Smaller values for � resulted in very slow rates of

convergence.

To summarize the operation of the transceiver, the input from the elements of

92



10-3

10-2

10-1

0 2 4 6 8 10 12 14 16 18

Input SNR

Pr
ob

ab
ili

ty
 o

f 
E

rr
or

- analytical
. LMS adaptation
   1000 samples for training

DC , receiver weights

MC , omnidirectional

DC , omnidirectional

Figure 3.11: A comparison of analytical and LMS adaptive simulations.

the antenna array are multiplied by antenna weights which are then combined. The

resulting output is passed through a decision device which selects the symbol which

is closest in value to the output of the antenna array. This is the estimate of the

transmitted symbol. Then the update of the receiver antenna weights is performed

as described above. The new values of the receiver weights are also used as new

transmitter weights at the next iteration.

Simulations have shown that the performance is close to optimal when allowing

1000 samples to train the transceiver, as illustrated in Figure 3.11.
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3.5.2 Convergence Rates

We now examine the convergence behavior of the LMS adaptation of the transceiver.

First we will explore the e�ects of network topology on adaptation rates. We compare

the adaptation rates of a multiple cell system versus a single cell system. In the latter,

the interfering users could be spaced much closer together. This illustrates the e�ects

of the proximity of the interfering users to each other on the adaptation rates.

From simulations we found that for the multiple cell system there is almost no

loss in performance with as few as 300 training symbols. The results are illustrated in

Figure 3.12. For the single cell environment, the overall performance is signi�cantly

reduced, but the adaptation rate has not changed. We again found that with as few

as 300 training symbols, there is little loss in performance. This is demonstrated in

Figure 3.13.

However, in some cases the single cell system did not converge. When there is a

strong interaction between the users in the network it sometimes occurs that when

one user adapts its transmitter, all other users adapt their transmitters in reaction.

This again causes a strong reaction by all the users and they all adapt again, and

so forth. The network oscillates with no convergence, or diverges. In addition, there

are cases where an interferer is in much closer proximity to a user than its partner.

The interference strongly dominates the received signal and causes the adaptation

of the transceiver to diverge.
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Distributed operation requires that such events be very rare. We must ensure

that the primary factor governing adaptation should be the users' own link. When

we implement a multicell system with orthogonal signaling to reduce CCI, we are

also decoupling the users in the network. By reducing the interaction between users

we ensure system convergence. In addition, our complete system design will include

line-probing and power control algorithms which will only allow users to enter the

system in a high SNR environment. With these algorithms we are further ensuring

that the interaction between interfering users will be limited.

We now consider two di�erent operating scenarios. Suppose �rst that the users

are active for only a short period of time, as for example in bursty data transmission.

In addition, if we implement a frequency-hopped system, the users will also only

transmit at a given frequency for a short time. These situations result in the users

constantly retraining their transceivers. Therefore we may have many users entering

the system and training simultaneously. We compare this system to one in which

users are active for long periods of time, such as voice communication. Therefore a

new user would enter a stable system.

We have simulated six users training simultaneously. As before using a training

sequence length of 300 symbols results in little loss in performance. When a new

pair of users enters a system where four other users have already trained and are

fully adapted, 200 symbols for training su�ce, as seen in Figure 3.14.
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Figure 3.14: Four completely adapted users in the system, one new pair of users

enters the system; one pair of users per cell; DC receiver; receiver weights for trans-

mission. Line (A) illustrates the system performance with two pairs of users. Line

(F) demonstrates the results when a new pair enters the system with omnidirec-

tional transmission. Lines (B-D) give the results when the new pair use the receiver

weights for transmission and trains the transmitter with 200, 500, and 1000 symbols,

respectively. Line (E) is similar except only 100 symbols are used for training.
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3.6 A More Robust System

Our simulations of the indoor environment have shown that on average small delay

spreads result in little bene�t from equalization. This is especially true when utilizing

a large antenna array for diversity combining. In addition, we have shown that

the dominant interference is CCI, which is not reduced by equalization. However,

occasionally ISI will limit performance, particularly when we wish to employ large

constellations.

In Figure 3.15 we illustrate the analytical results of adding an LE or a DFE

following the DC. The signaling environment is comprised of signi�cant ISI and no

CCI. We still see that the DC/LE with 9 equalizer taps provides almost no gain over

the DC alone. Therefore the adaptive transmitter and the DC receiver must still be

able to place nulls in the beampattern in the directions of the signi�cant ISI and

also smooth out channel spectrum nulls. We do see a 1:5dB gain in performance

at a Pe of 10�3 when implementing the DC/DFE with 5 feedforward taps and 4

feedback taps. However, all the performance gain is due to the feedback �lter; the

same system performance is achieved with no feedforward taps. The DC/DFE with

0 feedforward taps and 8 feedback taps provides a system performance gain of almost

2:5dB over a DC alone.

Adding the DFE may reduce the speed of adaptation. We simulate the perfor-

mance of the adaptive transceiver with a DFE following the DC with 5 feedforward
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Figure 3.16: Six users, one pair per cell; DC/DFE receiver with 5 feedforward taps

and 4 feedback taps; receiver antenna weights for transmission.

taps and 4 feedback taps, with a repeat of the simulation from Section 3.5.2 for a

multicell system. The results are given in Figure 3.16. We now �nd that we require

400 training samples instead of 300 as before. We repeated the experiment with no

feedforward taps and 4 feedback taps, as illustrated in Figure 3.17. For the same

system performance, we see that the required number of training symbols is again

reduced to 300. Greater performance was achieved in an ISI environment with no

feedforward taps and 8 feedback taps. Simulations to create Figure 3.18 show that

only 300 training symbols are required. Therefore a feedback �lter following the
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Figure 3.17: Six users, one pair per cell; DC/DFE receiver with 0 feedforward taps

and 4 feedback taps; receiver antenna weights for transmission.
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DC can be added with no reduction in the adaptation rate. In addition, since the

feedback �lter is adapted separately from the DC, we can still use the receiver DC

weights for transmission.

3.7 Conclusion

In a distributed indoor system, feedback of channel information to adapt transmit-

ters, or �xed beampatterns, is not feasible. We have developed a practical scheme

of adapting the transmitters that leads to large performance gains without such in-

teraction. The algorithm converges with mild restrictions on system coupling, using

the well-known and simple LMS algorithm. The functionality of the LMS algorithm

in the system design is fortunate since it signi�cantly reduces hardware complexity.

To ensure robust performance in ISI, we include a short feedback section of the

DFE after the DC for reception. We adapt the DC and the DFE separately, so as to

not reduce the rate of convergence. In addition, separate adaptation of the DC and

the DFE allows the DC weights to be reused for transmission, minimizing hardware

complexity.
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Chapter 4

Joint Adaptation of Adaptive

Antennas and Power Control

4.1 Introduction

Due to limited bandwidth, cellular systems reuse frequency channels among cells.

Frequency reuse is the dominant cause of CCI. If the power transmitted to a receiver

is limited to the minimum level required for a quality link, interference levels at other

receivers will be reduced. Therefore, in addition to the transmitter and receiver

arrays, a power control algorithm will play a crucial role in reducing CCI in the

system. However, a communication link becomes more vulnerable to interference

when the transmitted power is reduced [87].

A power control algorithm has been incorporated in the communication system in
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which users minimize their transmitting power level such that the intended receivers

achieve a SINR threshold level required for adequate performance. We formulate the

problem by �rst explicitly de�ning the SINR.

SINR =
Gain from transmitting to receiving partner

CCI + ISI + AWGN
(4.1)

A threshold is set such that the SINR at a receiver is above a level 
. The de�nition

for the SINR can be rewritten in terms of channel gains and transmitter power levels.

Gain from transmitting

to receiving partner

= PtG
NISI

i;t
(4.2)

CCI =
X
j 6=i

j 6=t

PjGi;j (4.3)

ISI = PtG
ISI

i;t
(4.4)

where GNISI

i;t
is the gain between the ith receiving user and its transmitting partner,

with no ISI included. The gain due to the ISI is given as GISI

i;t
. The gain between the

interfering users j and the receiver user i is given as Gi;j . The transmitting power

level of the partner of receiving user i is Pt, and the power level of user j is Pj. The

SINR threshold of receiving user i is given by 
i. The total number of users in the

system is denoted by S. Therefore for the ith receiver,

PtG
NISI

i;tP
j 6=i

j 6=t

PjGi;j + PtG
ISI

i;t + ni
= 
i (4.5)

i = 1 : : : S

where the AWGN at the ith receiving user is denoted as ni. A power control system

106



model is illustrated in Figure 4.1.

This set of equations is then solved for the transmitter power levels. In this

manner, if a solution exists, all users maintain a high-quality communication link

with the minimum required power. Minimizing the transmitted power reduces CCI

in the system.

The power control algorithm must be adaptive to conform to slow changes in the

channel. Hence, both the transceiver and power control algorithm will be adaptive.

We must ensure that the joint adaptation of the adaptive antenna and the power

control algorithms is feasible. Therefore, power control is included in the simulation

of the LMS adaptation of the antenna weights. For ease of simulation, a centralized

form of the power control will be implemented. The power control is calculated by

solving the system of linear equations involving the channel gain matrix and power

vector. See Appendix C for details. While several distributed algorithms exist, we

anticipate that the power control algorithm actually implemented will be based on

[13].

4.2 Joint Adaptation

Our �rst attempt was to allow the antennas to adapt for 500 iterations and then

calculate the power required to achieve the SINR threshold. We observed large jumps

in the SINR and the MSE and the power level after calculation of the power values.
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Figure 4.1: Power control system model.
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The adaptive antennas were minimizing the MSE, in which case some users could

be well above the SINR threshold and some could be well below. The power control

forced all users to the same SINR threshold. To allow the two di�erent algorithms

to converge, many more cycles were simulated.

We observed that with each cycle the MSE, SINR, and power level would oscillate.

In many cases the power level would change by large jumps after calculation of the

power control vector. The large change in power would cause extremely large error

vectors in the LMS adaptation of the antenna weights. In most cases the simulation

diverged if enough cycles were permitted.

Three corrections were implemented in order to allow for the joint adaptation of

the two algorithms. First, the allowable change in the power by the power control

algorithm was limited to 1dB at each update. This ensured that the antenna adap-

tation would not be overwhelmed by the power control. Second, the power control

values were recalculated every 10 iterations instead of every 500 iterations. Together

this mimics a distributed, iterative implementation of the power control as in [13].

In addition, the power control now iterates to a solution on a similar time scale as

the adaptive antennas.

However, the most signi�cant change was to normalize the weights of the trans-

mitter array. Before, both the transmitter array and the power control algorithm

could cause large changes to the power level of the users. This situation created

the oscillations in the simulation. By normalizing the transmitter weights such that
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the main lobe of the beampattern has unity gain, the power control algorithm has

full control of the power level of the users in the system. Then the sole task of the

transmitter array is to minimize the interference by shaping the beampattern.

With these changes, the simulation became stable and adapted quickly.

4.3 Simulations

We now examine the performance of the joint adaptation of the antenna arrays and

the power control for an example of three pairs of users at random positions and

orientations. In Figures 4.2 and 4.3 we illustrate the power and SINR levels as a

function of the iteration number. The initial power level is set such that the gain

between each pair at the best antenna will correspond to an SNR of 0dB (no ISI

or CCI). From Figure 4.3, we see that within 200 iterations the SINR of all users

achieves the threshold of 20dB. The system requires 200 iterations to achieve the

necessary power at increments of 1dB with an update every 10 iterations.

However, we see from Figure 4.2 that power levels of the users had originally risen

to a level above what is necessary to achieve the threshold. After 200 iterations the

rate of increase of the power level greatly decreases. Therefore the antenna weights

reduce the interference and the required power level is consequently reduced.

If we repeat this experiment with an initial power level corresponding to an

SNR of 20dB, we require far fewer power level steps to achieve the SINR threshold.
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Figure 4.2: Illustration of power usage for the 6 users in the system. Initial power

level based upon 0dB SNR. Receiver weights used for transmission.
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Figure 4.3: Illustration of SINR of the 6 users in the system. Initial power level

based upon 0dB SNR. Receiver weights used for transmission.
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Therefore the system converges more rapidly. These results are given in Figures 4.4

and 4.5. However, when a new pair of users enters the system with a high initial

power level, the users already in the system will experience a large increase in the

interference level. The integrity of the links of the users already in the system might

be compromised. These results give an indication of the future research necessary

to achieve fast adaptation of new users, while protecting the quality of the links of

the old users. This will entail an in-depth investigation of distributed power control

and line probing algorithms.

The �nal test is to ensure that the adaptive transmitter array still provides gain

over an omnidirectional transmitter with the inclusion of the power control. For

generalized results, this experiment has been repeated for 25 di�erent cases. The

users achieved the SINR threshold in only eight cases with omnidirectional transmis-

sion. On the other hand, the SINR threshold was achieved in 22 cases with adaptive

transmission. In addition, when the users in the system achieved the SINR thresh-

old, the system with adaptive transmission required on average a 13dB lower power

level than the system with omnidirectional transmission. This again illustrates the

dramatic performance increase achievable with adaptive transmission using receiver

weights for transmission, due to the signi�cant reduction in the interference.
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Figure 4.4: Illustration of power usage for the 6 users in the system. Initial power

level based upon 20dB SNR. Receiver weights used for transmission.
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Figure 4.5: Illustration of SINR of the 6 users in the system. Initial power level

based upon 20dB SNR. Receiver weights used for transmission.
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4.4 Conclusion

In this chapter we have demonstrated a fundamental result that ensures the feasibility

of the system design. Joint distributed adaptation of the power control algorithm and

antenna arrays is stable. In addition, large performance gains over omnidirectional

transmission results in large capacity increases.
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Chapter 5

Conclusion

We began this research with an analytical investigation of the advantages of diver-

sity combining in 
at-fading correlated channels. With closed form solutions for

the probability of error problems for many coherent and non-coherent modulation

schemes, we avoided lengthy simulations that would have been necessary for testing

di�erent system designs. Even though the emphasis has been on spatial diversity in

the form of antenna arrays, these results are generalized for arbitrary diversity such

as coding. We have found that for all modulation schemes, large diversity gain with

little loss in performance is still achieved with relatively large channel correlation.

This alleviates hardware design constraints of the antenna arrays regarding coupling

and correlation of the elements. Therefore we can proceed with the next project dis-

regarding channel correlation. This greatly simpli�es analytical analysis and system

simulations.
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In the second major research problem, the channel environment was expanded to

include frequency-selective fading due to multipath and ISI. In addition, the interfer-

ence was presumed to be due to competing users in the system as well as noise. This

opens the possibility of gains from antenna arrays even larger than those available

from diversity combining.

Our goal has been to design and demonstrate the feasibility of an adaptive, high-

speed communication system. To create a high capacity system, many adaptive

algorithms are implemented to reduce interference. These include adaptive antenna

arrays for directional transmission, adaptive antenna arrays for beamforming on

reception, adaptive equalization, and power control. With peer-to-peer communi-

cation, all adaptive algorithms must be distributed and the system be stable. We

have shown that by decoupling the interaction of the interfering users in the system,

stable convergence of the transceivers is ensured. In worse ISI conditions, we found

that including the feedback �lter of a DFE after the antenna array resulted in signif-

icant performance gains without reducing the adaptation rate of the transceiver. In

addition, we found that by decoupling the adaptation of the transmitter array and

the power control algorithm results in stable joint adaptation.

Further research will involve the implementation details of the adaptive transceiver.

We need to establish the parameters for training the adaptive algorithms. Future

research must also include developing a channel probing algorithm, to answer the

following questions. What is the best method to bring in new users into a system
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and not disrupt users already in the system? How does a new user quickly determine

channel characteristics in a distributed system? An e�cient channel probing algo-

rithm will further limit destructive interaction between users adding to the stability

of the communication system.

119



Appendix A

Appendix for Correlated Slowly

Flat-Fading Rayleigh Channels

A.1 Appendix for PSK: Derivation of Pe for all

M

The equation for Pe is given in Eq. 2.5, while Pe(
) and p(
) are given in Eqs. 2.2,2.3,

and 2.18. We �rst derive Pe for M = 2 using Eq. 2.2. Substituting Eqs. 2.2 and

2.18 into the equation for Pe,

Pe =
(1 + (L � 1)�)L�2

2
c(L�)L�1

Z
1

0

e
�





c(1+(L�1)�) erfc(
p

) d
 �

L�2X
i=0

(1 + (L� 1)�)L�2�i

2 � (L�)L�1�i � (
c)i+1 � (1 � �)i � i!

Z
1

0



i
e
�





c(1��) erfc(
p

) d
 (A.1)

120



From [51],

Z
1

0

x
i
e
�x=aerfc(

p

) dx = 2 i! ai+1

�
1� �

2

�i+1 iX
k=0

0
BBB@

i+ k

k

1
CCCA
�
1 + �

2

�k
(A.2)

where � =

s
a

1 + a

therefore

Pe =
(1 + (L� 1)�)L�2

2
c(L�)L�1
2 a1

�
1� �1

2

�
�

L�2X
i=0

(1 + (L� 1)�)L�2�i

2 � (L�)L�1�i � (
c)i+1 � (1� �)i � i!
�

2 i! ai+1
2

�
1 � �2

2

�i+1 iX
k=0

0
BBB@

i+ k

k

1
CCCA
�
1 + �2

2

�k
(A.3)

where a1 = 
c(1 + (L� 1)�) �1 =
q

a1

1+a1

a2 = 
c(1� �) �2 =
q

a2

1+a2

Substitution of the above variables results in Eq. 2.20.

Now we will derive Pe for M � 4 using Eq. 2.2. Substitute Eqs. 2.3 and 2.18

into Eq. 2.5 to obtain

Pe �
(1 + (L� 1)�)L�2


c(L�)L�1

Z
1

0

e
�





c(1+(L�1)�) erfc

�p

 sin

�
�

M

��
d
 � (A.4)

L�2X
i=0

(1 + (L� 1)�)L�2�i

(L�)L�1�i � (
c)i+1 � (1� �)i � i!

Z
1

0



i
e
�





c(1��) erfc

�p

 sin

�
�

M

��
d


We use a change of variable to put the integrals in Eq. A.5 into the form of Eq. A.2.

This produces Eq. 2.21 as a �nal result for Pe for M � 4.
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A.2 Appendix for QAM

A.2.1 Derivation of Pe for Square Constellations

We begin with 16-QAM as an example. The standard constellation is a 4 by 4 grid.

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r-

?

n1

n2

-

?

�
6

-
6

�

We de�ne the minimum distance between two points as `d'. A correct decision can

be made about a received signal if the magnitude of the noise is less than d

2
.

r r r-�
n1n2

s1 s2 s3

d
� -

Therefore the probability of an erroneous decision is the probability that n >
d

2
. We

de�ne

p = Prob

(
n >

d

2

)
(A.5)

= Prob

(
n < �

d

2

)
(A.6)
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We divide the signals in the constellation into three groups. The �rst group are the

signals with two neighbors. The probability of a correct decision is expressed as

p2 = Prob

(
n1 <

d

2

)
Prob

(
n2 > �

d

2

)
(A.7)

= (1� p)2 (A.8)

The second group is the set of signals with three neighbors.

p3 = Prob

(
n1 <

d

2

)
Prob

(
�
d

2
< n2 <

d

2

)
(A.9)

= (1 � p)

"
1 �

 
Prob

(
n2 < �

d

2

)
+ Prob

(
n2 >

d

2

)!#
(A.10)

= (1 � p)(1� 2p) (A.11)

The third group is the set of signals with four neighbors.

p4 = Prob

(
�
d

2
< n1 <

d

2

)
Prob

(
�
d

2
< n2 <

d

2

)
(A.12)

= (1� 2p)2 (A.13)

For the 16 signal set, we have 4 signals with two neighbors, 8 signals with three

neighbors, and 4 signals with four neighbors. In general for a square grid constella-

tion,M = 2k and k is even, there are 4 signals with two neighbors, 4(
p
M�2) signals

with three neighbors, and (
p
M � 2)2 signals with four neighbors. The probability

of error for a symbol can then be de�ned as

Pe = 1�
1

M

h
4p2 + 4(

p
M � 2)p3 + (

p
M � 2)2p4

i
(A.14)

After replacing p2, p3, and p4 into the above equation we obtain Eq. 2.35.
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A.2.2 Derivation of p for Square Constellations

To relate Pe and the SNR, we must explicitly derive p. We refer back to the de�nition

of p in Eq. A.6. Since this is one dimensional, we can assume for now that we have

a multiamplitude signal. The received signal is expressed as,

rk(t) = �ke
�j�kAmu(t) + zk(t) [51] (A.15)

where

Am = 2m� 1�
p
M m = 1; 2; : : :

p
M [51] (A.16)

The following decision variable is equivalent to the output of the demodulator.

Uk;m = <
(
e
j�k

Z
T

0

rk(t)u
�(t) dt

)
(A.17)

= 2�k"Am + �k (A.18)

where

�k = <
(Z

T

0

zk(t)u
�(t) dt

)
(A.19)

The variance of �k is 2"N0.

After passing through the diversity combiner the decision variable is as follows.

Um =
LX

k=1

Uk;mwk (A.20)

= 2"Am

LX
k=1

�kwk +
LX

k=1

�kwk (A.21)

Um is a Gaussian random variable with variance of 2"N0

P
k=1 w

2

k
.
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In the absence of noise the distance between two received signals is,

d = 2"(Am �Am�1)
LX

k=1

�kwk (A.22)

= 4"
LX

k=1

�kwk (A.23)

If we replace d in Eq. A.6 with the above result and replace n with
P

L

k=1
�kwk, we

get

p = Prob

(
LX

k=1

�kwk > 2"
LX

k=1

�kwk

)
(A.24)

Since �k is a Gaussian random variable, we rewrite this equation in terms of a

Gaussian distribution.

p =
1q
2��2
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2
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2
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With the following change of variable,

t =
x

p
2��

(A.26)

dt =
dx
p
2��

(A.27)

we get the equation below in the form of the erfc function.
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Before proceeding any further, a notational clari�cation is in order. For all the

previous modulation schemes, the signal energy " was equivalent to the average signal

energy "AV . So to be more precise, our de�nition of the average signal-to-noise ratio


c should be


c =
"AV

N0

E[�2
k
] (A.32)

For a multiamplitude signaling scheme the signal energy is no longer equivalent

to the average signal energy. Therefore we must derive "AV in terms of " and replace

" in our equation for p. From [51], the average transmitted energy is,

"AV = E[A2

m
]

Z
T

0

ju(t)j2 dt [51] (A.33)

= 2E[A2

m
]" (A.34)

The average value of A2

m
is given in [51].

E[A2

m
] =

M � 1

3
(A.35)

where

Am = 2m� 1�
p
M for m = 1; 2; : : :

p
M (A.36)

Therefore,

"AV =
2

3
(M � 1)" (A.37)

And " in terms of "AV is,

" =
3

2(M � 1)
"AV (A.38)
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