60 July 2000/Vol. 43, No. 7 COMMUNICATIONS OF THE ACM

ACM
The images on this page were intentionally deleted from the electronic version of this article due to copyright considerations.

&

Simulated water flows, swirls, mixes,
falls, refracts light, and interacts with
objects in games, movie special
effects, and commercials.

Or

NICK FOSTER AND DIMITRIS METAXAS

is to provide tools not only for the artistic rendition
of our physical world but for re-creating as much of
our world in as realistic a way as possible. Until the
late 1980s, this effort generally involved interpreting
the way light interacted with the sur-

cal realism vary depending on the application. For
example, achieving greater physical realism in com-
puter animation allows the animator to better inte-
grate computer graphics elements. In movie special
effects, it allows computer-generated image elements
to be inserted into live action sequences

faces or volumes of objects. More
recently, in applications ranging from
feature films to computer games, the
trend has been toward creating virtual
worlds with increasingly realistic
physics-based models.

The reasons for wanting greater physi-

3D FLUID DYNAMIC ENGINE (ARI:—I'E IMAGE SOFTWARE,

with better overlap, so real and virtual
components interact with the environ-
ment in the same way visually. Similarly,
game developers want to provide as
immersive an atmosphere as possible;
physical interactions between players and
objects in the environment need to be real-

@‘A DIVISION OF ARETE ENTERTAINMENT)
2

COMMUNICATIONS OF THE ACM July 2000/Vol. 43, No. 7

61

&

&

istic. For graphics researchers, physics-based model-
ing has also inspired special interest. Not only is it a
fascinating topic, it leads to results that generate
applause at conferences.

Modeling physics on a computer and visualizing
the results using graphics techniques can lead to
complex pictures as dazzling as the real-world phe-
nomena they are intended to represent, especially
for such fluid effects as the motion of water, fire, and
smoke. It isn't surprising that a great deal of effort
has been put into modeling such phenomena for
computer graphics [2]. Here, we are concerned with
modeling and animating water. Although modeling
water for computer graphics

stream computer graphics research. That core says,
take enough of the complexity of the actual physical
model to get the realism the animator wants, but
make sure the animator gets that realism in a rea-
sonable amount of computational time while pro-
viding mechanisms to control the results. Even
though these last two goals—pragmatic efficiency
and control—are at odds with the aims of computa-
tional simulation, they can, when applied to numer-
ical techniques, be invaluable tools for special effects
and animation. Here, we describe a pragmatic
approach to the problem for water simulation. It isn’t
enough to concentrate on the overall speed of the

calculation. Sacrificing

is not a new research area, f=.
only recently have graphics a9
researchers sought to take
advantage of the huge body
of literature on computa-
tional fluid dynamics in the
interests of generating highly
realistic animations.
Mechanical engineers
and physicists have been
modeling the behavior of
liquids on computers for
nearly 40 years [8]. How-
ever, their approach in gen-
eral has focused on very
specific goals, such as mod-

Rotational motion is the
most important visual
part of a liquid’s
motion and must
be part of any realistic
graphics model.

& detail or user control to a
< theoretically more elegant
solution makes for good
research papers but does
not, unfortunately, always
translate into practice. In
any case, once some basic
rules are established, it is
possible to use any of a
number of available math-
ematical tools to solve the
equations for the motion
of water and apply them to
the methodology described

here.

eling the pressure around a
newly designed ship hull as

it undergoes various ocean ‘&G

Look and Feel
Water has two qualities
L) that give it its distinctive

conditions or calculating
how the coolant in a nuclear reactor core flows
around spherical rods. This focus on a few special-
ized engineering applications provides students of
computer graphics with extremely useful techniques
with which to achieve their own more general goals
of modeling water so it looks visually convincing,
moves realistically, and can be simulated on a desk-
top computer in a reasonable amount of time. To
achieve this result, animation tool writers need to
find ways to characterize the motion of a liquid so
an animator can:

* Model and animate it quickly on a computer;

* Model how it interacts with traditional computer
graphics environments;

* Allow the model to be manipulated in order to
break the boundaries of real-world physics; and

* Create great-looking pictures.

These four goals are at the core of today’s main-

62

July 2000/Vol. 43, No. 7 COMMUNICATIONS OF THE ACM

look. The first is purely
visual; no matter how much a particular volume of
water is distorting or splashing, the surface of that
volume is always smooth and well defined. In addi-
tion, its surface has both refractive and reflective
effects on light incident upon it. Combining these
effects with absorption and scattering of the light as
it passes through water produces a surface that is
highly specular and distinctive.

The visual appearance of water in motion is even
more complex. The motion of the water’s surface is
driven by interactions of the water molecules mak-
ing up the entire volume. These interactions form
what is called a “flickering cluster,” whereby links
between molecules (relatively weak hydrogen
bonds) are constantly being broken and reformed
as they slide over and around one another. This
breaking and reforming of molecular bonds leads
to a coupling between the velocity and pressure
within the volume and also causes the natural vis-
cosity of water.

Figure I. (a) A polygonal model of a simple scene; (b) the cubic cell
approximation of the same scene.

Consider a small element of water (much larger
than molecular scale). At any moment in time, this
element experiences forces on it from a number of
physical factors. For example, it is pushed along by
its neighbors while experiencing the effects of body
forces, including gravity. This element is also vis-
cous, so it tends to get caught up in the motion of its
neighbors. Getting caught up in this way is called
“drag” and leads to all the rotation we see as water
moves around objects and mixes and flows. If graph-
ics researchers can find a way to represent these
effects with a computational model and then find a
way to apply that model to traditional computer
graphics environments, they can provide a computa-
tional tool for calculating the behavior of water as if
it were part of a traditional computer graphics
animation.

The Animation Environment

In computer graphics, objects are typically modeled
as collections of parametric surfaces or 3D polygons.
These objects can be of arbitrary complexity (within
computational limits) and shape and can be defined
in more intricate and accurate detail than that of a
single pixel in the final image. To accurately take
into account the interaction between a liquid and
these complex surfaces would require a lot of com-
putational effort that may not even be visible in the
final image. This system is completely automatic and
transparent to the animator. Therefore, the first task
of the animation tool writer is to reduce this com-
plexity, so the objects in the scene are more manage-
able. The level of detail reduction is driven by the
rotational detail the animator wants from the final

water motion. Once the animator decides on that
level of detail, the system approximates the entire
environment as a series of regular cubic cells.

For each cubic cell in the grid, the system decides
whether that cell contains a solid object or is empty
and thus free to have water move through it. This
extremely simple environment model is sufficient to
produce realistic-looking interaction between water
and static objects while being completely general in
the sense that any environment can be modeled
automatically, given a grid of appropriate size. Figure
1 shows an example of a polygonal environment
together with its approximation.

At the center of each grid cell, a vector velocity
value and a scalar pressure value are defined auto-
matically. At each step during the simulation, these
grid variables completely describe a smooth, contin-
uous motion field. This field evolves over time as the
method proceeds. Thus, although the resolution of
the cubic grid remains relatively coarse, the resulting
water motion appears visually smooth and continu-
ous. By “discretizing” the environment in this way,
traditional methods for solving the equations of
motion for an incompressible fluid can be applied in
a general and straightforward manner to computer
graphics environments.

The Physics Model

The goal of physics-based graphics modeling tools is
a compromise between getting visual realism and
reasonable computational times. To reach it, model-
ing researchers need to find the smallest subset of
motion components contributing to the overall
motion the animator would ultimately want. By

COMMUNICATIONS OF THE ACM July 2000,/ Vol. 43, No. 7 63

Figure 2. The Navier-Stokes equati

for incompressible fluid flow.

viscous drag convection gravity pressure
L vV (Vu) - |(u-V)u[+ Fpq - I—Vp
mass conservation selaaly density /

examining how large bodies of real water interact
and move, the animator can write the following short
list of effects the system would have to account for:

Momentum. Water obeys the laws of energy and
momentum conservation.

Gravity. Most water waves are the result of interac-
tion between gravity and pressure.

Viscous drag. This is the key to producing the real-
istic flow of water—the component of motion
leading directly to self-propagating rotation.
Rotational motion is the most important visual
part of a liquid’s motion and must be part of any
realistic graphics model.

Pressure. While not obvious, pressure plays an
important role in the behavior of the surface of a
volume of water. Pressure waves internal to the
volume (acoustic waves) can travel much faster
than the surface waves we are all familiar with.
Thus, much of what we see at the surface has
been influenced by subtle (and sometimes not-so-
subtle) changes in pressure within the volume.

Other motion elements, including turbulence and
surface tension, are vital to water behavior under
certain conditions, but we assume that, at a human
scale, their effects are dominated by those just listed.
Conveniently, there is a physics model that includes
all of them. In the early 1800s, the French engineer
Claude Navier and the Irish mathematician George
Stokes independently derived a set of equations
describing all the forces acting on a small quantity of
liquid [7, 9]. The equations, shown in Figure 2, are
really quite elegant; even if you aren’t familiar with
the symbols, what they describe is straightforward.
Each of the four parts of the figure account for one
of the motion components just described. The
physics the equations describe are changes in veloc-
ity and pressure over time—the same variables
defined within our environment grid. If we can
somehow break the equations down into a form that
allows them to be applied to the grid, a simulator
would have a way of calculating exactly how water

64

July 2000/Vol. 43, No. 7 COMMUNICATIONS OF THE ACM

would move if it were suspended within the grid.

To adequately apply the equations to our approxi-
mated computer graphics environment, two con-
cepts are needed. The first allows us to apply the
equations directly to the grid, so we can calculate
how water moves through it. The second then pro-
vides a mechanism for representing the water within
the grid. These issues have all been dealt with in the
past in the scientific field of computational fluid
dynamics, so we don’t have to look far for useful
techniques.

Making Water Move

The literature for computational fluid dynamics is
full of many different ways to solve the Navier-
Stokes equations, each involving advantages and dis-
advantages. (A good introduction to these methods
is available in [4].) It’s well beyond the scope of this
article to discuss any of them in detail, but worth
pointing out are the salient goals of the methods in
general with respect to our problem.

Robustness. This is very important. Software engi-
neers writing animation tools want to help animators
simulate water for special-effects purposes. The very
nature of animation means there are likely to be
extremely violent things going on during the simula-
tions. The computational method must therefore
adjust dynamically to accommodate whatever it is the
animator wants. It isn't reasonable to assume the ani-
mator has any knowledge of numerical issues.

Generality. The simulaton method has to be
applicable to a wide range of different problems at a
range of different scales in a way that’s transparent to
the animator.

Flexibility. The mathematical method used in the
simulation needs to be extensible, so the simulator
can handle interaction between liquids and moving
objects without loss of generality or robustness.

In practice, as long as the animation tool solves the
equations correctly, the choice of solution method
tends to be just a trade-off between these issues of
robustness, generality, and flexibility. For the pur-
poses of this article, we value flexibility most of all
and use a finite-difference method to approximate
equations like those in Figure 2 as a Taylor series of
much simpler elements [6]. For computer graphics,
finite differences have distinct advantages. The most
useful is that a finite-difference system is sensitive
only to local change, allowing the simulator to
directly modify velocity and pressure during a simu-
lation. Thus, effects animators get all the motion
control they want at the cost of loss of control over
computation time (the disadvantage of finite differ-
ences). At the low-grid resolutions we describe here,

Figure 3. A sequence of images from an animation of a heavy object falling into a tank of water.

this is a less-serious trade-off than it might seem.

The basic approach to a finite-difference solution
to the Navier-Stokes equations first appeared 30
years ago [5]. Essentially, the equations are broken
down, or “discretized,” so they can be applied indi-
vidually to each cell in the grid. Thus, given an exist-
ing velocity field, its

mined by interpolation from within the grid.
Particles are an ideal way of defining a highly
dynamic volume that can constantly and arbitrarily
change shape without introducing additional com-
putational overhead. They are also one of the basic
primitives of computer graphics, and a lot of work
has been done regarding

possible to calculate how@%
the water is going to move
during a small time incre-
ment. The animation can
then be described by simu-

Applying realistic

P their use for surface and
volume visualization.

Using these techniques,
we produced a robust, rela-
tively fast way of taking an

lating the water motion forces Should PrOduce arbitrary scene described
over successive increments . e . using standard computer
and taking snapshots reallsth'IOOklng graphics primitives and cal-
(frames) of its position . culating how a volume of
every 1/24th of a second. motion. water would interact with

This timestep length (1/24)

itself as well as with the

produces the standard ani-
mation playback rate of 24 @

frames per second.

environment around it.
These results are by no
means scientifically accu-

Although the grid we have just described is
relatively coarse, the water motion has to be visually
smooth at all times. In real-world water-tank exper-
iments, fine powder can be dropped into the water
so experimenters can see exactly how the volume is
moving. We achieve the same thing within our sim-
ulated water environment by distributing particles
within the grid to delineate the location of the water.
Each particle represents a small volume of water but
takes no part in the calculation other than to signal
which cells contain liquid. Each particle is then
moved according to the local water velocity, as deter-

rate, but they do contain all the components of
motion giving a human viewer the visual cues that
we are observing real water behavior. The next step
is to apply this simulation mechanism to the general
animation problem, answering how effects anima-
tors can make the water behave exactly as they would
like it to behave.

Controls for Computer Animation

In a computer animation environment, only one
type of control counts, a curve. Although there are
many different mathematical ways to describe the

COMMUNICATIONS OF THE ACM July 2000,/ Vol. 43, No. 7 65

Figure 4. A sequence of test images showing
the interaction between an object and liquids of
different viscosities, including water and mud.

path of a curve, including Bezier, Bspline, and Lin-
ear, they all amount to the same thing. Any object
(an arm or an elephant, a hand or a ball) follows a
track through space defined by a set of time-varying
curves. There’s no notion of dynamics or interaction
other than that defined by hand by the animator.
But this subjective definition conflicts directly with

66 July 2000/Vol. 43, No.7 COMMUNICATIONS OF THE ACM

a dynamic simulation of water, which is nondeter-
ministic (at least to mere mortals) and obeys an
inflexible set of rules. To be useful, a general tool
needs to combine the Navier-Stokes simulator with
a notion of a defined curve, that is, it should drive
the overall motion of the liquid using a determinis-
tic curve. Given the choices we made earlier to use a
(fixed) grid together with finite differences means
that incorporating control via a deterministic curve
is quite straightforward.

The system has two types of curves within the
water environment, each representing a different
form of control—one the path of a moving, solid
object, the other a path we want the water to take.
In the case of a moving solid object, the water
should splash and flow away from and around the
object, whereas water moving in the path we want
it to take should be drawn along the path. In both
cases, however, the overall motion should always
look real. Therefore, applying realistic forces
should produce realistic-looking motion. Applying
unrealistic forces should produce motion that still
has a realistic fluid component superimposed on
top of it.

The motion of objects as they move through
water is a well-understood topic. Given the differ-
ences in motion between object and liquid, together
with the angle and direction of the object’s surface,
the system calculates the forces exerted by the object
on the water. These forces can then be applied
directly to the environment grid. The water in this
grid behaves exactly as if an object were moving
through it. Despite the grid’s relatively low resolu-
tion, the approach works surprisingly well (see Fig-
ure 3).

More care is required when applying the second
type of curve, because the forces are inherently non-
realistic. We can't just apply the forces directly, just
because we want a component of the motion to look
realistic. The key to producing a realistic-looking
animation is to encourage the water to follow the
curve by adjusting the local pressure field, effectively
fooling the liquid into thinking its neighbors are
already following the curve, so it gets dragged along
naturally. The system can then direct the water’s
motion by making pressure adjustments according
to the differences between actual and desired veloc-
ity. In this way, the Navier-Stokes equations act to
smooth out whatever motion is applied and keep it
looking fluid-like.

With these two control mechanisms in place, the
water-simulation system can be tied into a generic
computer animation system. Users need not be
familiar with fluid dynamics concepts nor with any

Figure 5. Images from Antz showing a range of
water effects created using the system described in the article.

of the physics involved. The result is a general-pur-
pose tool for creating water-based special effects.

Rendering

The cloud of particles representing the distribution
of water in the environment needs to be rendered in
such a way as to make it seem as if the particles are
enclosed in a continuous surface. The standard
(computer graphics) way to do this is to make each
particle represent a spherical density function and
define the aggregate surface implicitly from the den-
sity field created by the sum of the particles’ fields
[1], as in Figures 3 and 4. The particles can be ren-
dered directly if there are enough of them. This
method was used (in part) to render all of the images
for the final sequence of Pacific Data Image’s 1998
feature film Anzz (see Figure 5).

The combination of low-resolution water simulator
and computer-animation curve control also leads to an
unprecedented capability for special effects. In the past,
computer-generated special effects involving water were
limited to surface-wave approaches combined with par-
ticle systems for splashing and flow. Now it’s possible to
produce large-scale interaction with characters and
objects while maintaining traditional animation con-
trol techniques. The system is physics-based, so it can
be scaled to handle the interaction among types of lig-
uids, as in Figure 4. In addition, it can be used to pro-
vide a realistic component of motion to any effect
involving fluids, including wind on grass and trees,
smoke, and steam, and even, to some extent, flames on
the surrounding atmosphere.

Conclusion

This system for modeling and animating the inter-
action between realistic-looking water and a com-
puter graphics environment draws on the science of
computational fluid dynamics to calculate an
approximate velocity field describing the time-vary-

ing motion of a volume of water. It combines classi-
cal mechanics and computer graphics primitives to
provide both motion control and generality for use
as a basic animation tool. It is not a numerically pre-
cise simulator and was not designed for mechanics
applications. The method, as described, has been
used at a feature and effects animation studio
(Pacific Data Images) for a number of projects,
including the finale to Anzz, proving itself to be a
valuable special-effects tool.

REFERENCES

1. Bloomenthal, J., Ed. Introduction to Implicit Surfaces. Morgan Kaufman,
San Francisco, 1997.

2. Foster, N. Modeling and Animating Fluid Phenomena for Computer
Graphics and Special Effects, Ph.D. dissertation, University of Pennsylva-
nia, Philadelphia, 1997.

3. Foster, N. and Metaxas, D. Realistic Animation of Liquids, Graph. Mod.
Image Process. 58, 5 (1996), 471-483.

4. Fletcher, C. Computational Techniques for Fluid Dynamics. Springer Ver-
lag, Sydney, 1990.

5. Harlow, F. and Welch, J. Numerical calculation of time-dependent vis-
cous incompressible flow. Phys. Fluids 8, 12 (Dec. 1965), 2182-2189.

6. Mitchell, A. and Griffiths, D. The Finite Difference Method in Partial
Differential Equations, John Wiley & Sons, Inc., New York, 1980.

7. Navier, L. Memoire sur les lois du mouvement des fluides. Memoir. de
[Academ. Royale des Sci. 6 (1827).

8. Shaw, C. Using Computational Fluid Dynamics. Prentice Hall, London, 1992.

9. Stokes, G. On the theories of the internal friction of fluids in motion,
and of the equilibrium and motion of elastic solids. 7ransact. Cambridge
Philos. Soc. 9 (1851).

NICK FOSTER (nickf@pdi.com) is a senior engineer, research and
development, in Pacific Data Images in Palo Alto, Calif.

DiMrTRIS METAXAS (dnm@central.cis.upenn.edu) is an associate
professor in the Department of Computer and Information Science at
the University of Pennsylvania in Philadelphia and director of Penn’s
Vision, Analysis, and Simulation Technologies Laboratory.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2000 ACM 0002-0782/00/0700 $5.00

67

COMMUNICATIONS OF THE ACM July 2000/Vol. 43, No. 7

