PyALSA Audio

An Introduction to XMCS Player in Linux

Submitted by:

Charles Martel L. Ramota

BS ECE ‘06
Submitted to:

Mr. Luisito L. Agustin

ELC 152 A – Digital Signal Processing

August 29, 2005

Outline

I. Introduction
II. Scope and Limitations
III. ALSA

1. What is ALSA?

2. background info – OSS

3. Why is ALSA better?

4. soundcard matrix

IV. Python

1. What is Python?

2. Why Use Python?

- Development Advantages

- PyAlsaAudio module

- Python WAV module

V. Sample Code

1. WAVE Player in Linux (wavplayer.py)
VI. References

VII. Appendix

A. PyAlsaAudio documentation

B. Python Wave module documentation

Introduction

Linux is fast becoming known to more and more people. Being open source, it has attracted programmers and even ordinary PC users to explore it and eventually use it. Also, many Linux distributions are free and readily downloadable from their respective sites. This almost free license of Linux even attracts more people and even industries to use it.

On the other hand, many people are afraid and reluctant to use Linux. Many say Linux is very hard to use and it is just not user-friendly. These comments were accepted and that is why the Linux distributions come up with better versions.

One dark side note on Linux will be the limited applications that can be installed on it. Most softwares and programs, especially the commercial and proprietary ones, only use Windows as its platform. This means that these programs will not run on a Linux environment.

This problem is what inspired my partner and me to dwell on making programs in the Linux environment. In fact, this paper even has a program, written by the author, which plays WAVE files.
Scope and Limitations

This paper is an introduction to the XMCS Player in Linux, our DSP project. The written report includes an introduction to Advanced Linux Sound Architecture (ALSA) and the Python programming language. It also features two modules or libraries in Python. A sample program with its code is also provided to give students a feel of Python and how to program using the Linux environment.

The introduction to ALSA is just a brief introduction. This paper does not cover the very architecture of ALSA and its application programming interface (API). ALSA was mentioned in this report just to give the students information about Linux sounds and Linux sound drivers.

An introduction to the Python programming language is also included in this paper. The introduction, however, just covers two Python libraries namely the PyAlsaAudio module and the Python WAVE module. These modules were used in making the WAVE Player in Linux. The modules are discussed in full meaning all the commands and procedures included in the modules are discussed.

This paper has a running program in it, the WAVE player in Linux. This paper will just act as documentation to the code since no testing can be done.

This paper is based on the 40 minute presentation that I have prepared. The presentation will still be available online. However, interaction between students and the reporter is not feasible so if you have any questions, please mail them to me at shureth@yahoo.com.
What is ALSA?

ALSA (an acronym for Advanced Linux Sound Architecture) is a Linux kernel

component intended to replace the original Open Sound System (OSS) for providing drivers for sound cards. Some of the goals of the ALSA project were to support automatic configuration of sound card hardware and graceful handling of multiple sound devices in a system, goals which it has largely met.

Sound cards come in a wide variety of types, with rather different internal organization. All however are based on a "chipset", and ALSA drivers are designed for chipsets, or even for families of similar chipsets, not specific cards. However most chipsets are customizable, and when used in a card some of their capabilities may be omitted or somewhat modified. ALSA makes use of these chipsets and to be able to come up with sound drivers.

ALSA acts somehow like a universal sound driver for Linux. Upon Linux distribution installation, ALSA detects sound cards and sound devices installed in a PC. ALSA then provides functionality to those devices.
ALSA was written by Jaroslav Kysela and a team of programmers who wanted a more flexible sound API that would unlock the potential of their favorite soundcard, the Gravis Ultrasound. It started as an alternate driver for just the Gravis board, but later developed into a full sound API, supporting dozens of cards. It was developed separately from the

Linux kernel until it was introduced in the 2.5 development series in 2002 (2.5.4-2.5.5)1. In the 2.6 kernel version it obsoletes OSS by default.
The Advanced Linux Sound Architecture (ALSA) provides audio and MIDI functionality to the Linux operating system. ALSA has the following significant features:

1. Efficient support for all types of audio interfaces, from consumer

soundcards to professional multichannel audio interfaces.

2. Fully modularized sound drivers.

3. SMP and thread-safe design.

4. User space library (alsa-lib) to simplify application programming

and provide higher level functionality.

5. Support for the older OSS API, providing binary compatibility for

most OSS programs.

Logically ALSA consists of these components:

· A set of kernel drivers.
These drivers are responsible for handling the physical sound hardware from within the Linux kernel, and have been the standard sound implementation in Linux since kernel version 2.5

· A kernel level API for manipulating the ALSA devices.

· A user-space C library for simplified access to the sound hardware from user space applications. This library is called alsa-lib and is required by all ALSA capable applications.

ALSA is released under the GPL (GNU General Public license) and the LGPL

(GNU Lesser General Public License).

OSS

Open Sound System (OSS) is the first attempt in unifying the digital audio architecture for UNIX. OSS is a set of device drivers that provide a uniform API across all the major UNIX architectures. It supports Sound Blaster or Windows Sound System compatible sound cards which can be plugged into any UNIX workstation supporting the ISA or PCI bus architecture. OSS also supports workstations with on-board digital audio hardware.

Traditionally, each UNIX vendor has provided their own API for processing digital audio. This meant that applications written to a particular UNIX audio API had to be re-written or ported, with possible loss of functionality, to another version of UNIX. Applications written to the OSS API need to be designed once and then simply re-compiled on any supported UNIX architecture. OSS is source code compatible across all the platforms.

Most UNIX workstations, thus far, have only provided support for digital audio sampling and playback (business audio). OSS brings the world of MIDI and electronic music to the workstation environment. With the advent of streaming audio, speech recognition/generation, computer telephony, Java and other multimedia technologies, applications on UNIX can now provide the same audio capabilities as those found on Windows NT, OS/2, Windows 95 and the Macintosh operating systems. OSS also provides synchronized audio capabilities required for desktop video and animation playback.

The proprietary package, developed by the company 4Front Technologies, is available at www.opensound.com. However, free systems like GNU/Linux and *BSD include their own free GPL/BSD implementations.

In the previous Linux kernels (up to 2.4) OSS was the standard sound device drivers. However, the OSS/free which is included in the Linux kernel is limited. The better, more advanced version of OSS is not for free. This maybe is the biggest drawback of OSS that forced people to write better and free sound APIs. Many people say that their sound devices do not work using OSS. They should buy the proprietary version of OSS to be able to use their sound devices.

Here are some of the features of OSS
:

Digital Audio sampling and playback
· 8bit unsigned and u-law
· 16bit signed PCM data
· A-Law and IMA ADPCM (CS4231 compatible hardware)
· Stereo and mono sampling/playback
· Sampling rates between 4KHz and 48 KHz
· Half duplex and full duplex (on hardware supporting Full-duplex)
· Support for direct access to audio DMA buffer.
· Permits tighter timing for real time applications such as games and audio effect generators.
· Less processing overhead since copying of data (192 kb/s in worst case) between application buffer and the DMA buffer is not required.
· Capability to start recording and playback precisely at the same time (full duplex).
· Capability to synchronize audio recording/playback with MIDI playback.
FM and Wave-table MIDI playback
· Hardware independent access to MIDI features using built in synthesizer chips (FM or wave table) and MIDI synthesizers or sound modules.
· Device independent sample/patch loading API library for synthesizers.
· Support for SoundFont 2.0 standard (Emu/Creative)
· Support for SMPTE, MTC and other timing standards.
MIDI input and output
· Support for MPU-401 UART and Sound Blaster MIDI UART MIDI I/O.
· Support for SMPTE, MTC and other timing standards.
· Support for XG MIDI standard (Yamaha).
Mixer
· Main, FM Synthesizer, Wave-table, Digital Audio Volume
· Mic, CD-Input, Line-in Volume in
· Reverb, Chorus, and other effects on SB AWE32/64
· SRS-3D Spatial Audio on supported hardware
· Support for S/PDIF, AES/EBU, TOSLink, XLR, etc. on PRO sound cards
Advanced Technologies
· Virtual audio mixer - play 8 simultaneous audio streams with sample rate conversion and real-time mixing
· Synthesizer - Software based 32voice wave-table MIDI synthesizer
· Input Multiplexer - run up to 8 simultaneous recording applications at different sample rates, bits and channels using a single input source.
Why is ALSA Better?
Maybe the biggest drawback of OSS is that the free OSS that is integrated in the Linux kernel is quite limited. Many soundcards support features that cannot be easily added without making specific hacks to the individual driver. This has become increasingly problematic because soundcards have more advanced capabilities than before. It is somehow unreasonable to buy the proprietary package especially if you are a very good programmer.

ALSA was designed to address some of the limitations of the early OSS API. In particular, it addressed hardware MIDI support, full duplex sound, and hardware mixing. Hardware Mixing is a particularly helpful feature as it eliminates the need for a software mixer such as ESD. You will need one or the other to allow multiple sound sources to play at once. Most of these capabilities are now available in some OSS drivers, but aren't as elegantly implemented.

Perhaps the best reason to use ALSA is that it can provide better support for the advanced features of many popular soundcards. For example, the SoundBlaster Live ALSA driver supports hardware wavetable MIDI, with soundfont support. Its OSS counterpart doesn't.

With some old or obscure cards, including many from Analog Devices and quite a few other manufacturers, ALSA is the only choice you have. ALSA is very modular, and allows for cards based on similar chipsets to easily share code. If you have a card without OSS support, check the ALSA soundcard matrix, you might just get lucky.

ALSA is also backwards compatible, so apps that aren't written to the ALSA API should work in most cases. This is accomplished with an emulation layer, which must be loaded separately.

Some OSS drivers are truly excellent. An example is the EMU10k1 driver, which is the heart of the SoundBlaster Live and the SoundBlaster PCI 512. It does diverge from the OSS API to allow for 64 hardware mixed DSP streams by allowing /dev/dsp to be opened multiple times. As far as the application is concerned, it has the soundcard's full attention.

However, since ALSA is backward compatible and there is an OSS emulator in ALSA, this seemingly good advantage of OSS is also in ALSA.

ALSA, however, does not have drivers for all sound cards. Some manufacturers still won’t release information about their devices making ALSA impossible to implement on them. Some drivers are still under the development stages.
ALSA Sound Card Matrix

Below is a shortlist of manufacturers and sound card chipsets currently supported by ALSA. For the complete sound card matrix, please visit www.alsa-project.org and click on the sound card matrix on the menu.

	Manufacturer
	Chipset

	Creative Labs
	 sb8

 sb16

 sb16 emu8000

 ES1370

 ES1371

 emu10k1

 emu10k2

 SB0410 P17

	Analog Devices
	 AD1816

 AD1847

 AD1848

	Genius

	 FM801

	Advanced Gravis

	 GF1

 GF1 ES1688

 GF1 CS4231

 AMD InterWave

	Hercules

	 CS4624

 CMI8738

 CS4630

	Intel

	 440MX

 i810

 i810

 i810E

 i820

 i820

	nVidia

	 nForce

	SiS

	 SI7018

 SI7012

 SI7012

	Toshiba

	 OPL3-SA2

	VIA

	 VIA82C686

 VIA8233

 VIA8233A

 VIA8235

	Yamaha

	 YMF701

 YMF711

 YMF715

 YMF718

 YMF719

 OPL3 SA2

 OPL3 SA3

What is Python?
Python is a portable, interpreted, object-oriented programming language. It is often compared to Tcl, Perl, Scheme or Java. Its development started in 1990 at CWI in Amsterdam, and continues under the ownership of the Python Software Foundation.

In computer programming, an interpreted language is a programming language whose programs may be executed from source form, by an interpreter. Any language may, in theory, be compiled or interpreted; therefore, this designation refers to languages' implementations rather than designs. In fact, many languages have both compilers and interpreters, including Lisp, C, BASIC, and Python.

An interpreter is a computer program that executes other programs. This is in contrast to a compiler which does not execute its input program (the source code) but translates it into executable machine code (also called object code) which is output to a file for later execution. It may be possible to execute the same source code either directly by an interpreter or by compiling it and then executing the machine code produced.

In computer science, object-oriented programming, OOP for short, is a computer programming paradigm.

The idea behind object-oriented programming is that a computer program is composed of a collection of individual units, or objects, as opposed to a traditional view in which a program is a list of instructions to the computer. Each object is capable of receiving messages, processing data, and sending messages to other objects.

Object-oriented programming is claimed to give more flexibility, easing changes to programs, and is widely popular in large scale software engineering. Furthermore, proponents of OOP claim that OOP is easier to learn for those new to computer programming than previous approaches, and that the OOP approach is often simpler to develop and to maintain, lending itself to more direct analysis, coding, and understanding of complex situations and procedures than other programming methods.

The Python implementation is portable: it runs on many brands of UNIX, on Windows, OS/2, Mac, Amiga, and many other platforms.

Python combines remarkable power with very clear syntax. It has modules, classes, exceptions, very high level dynamic data types, and dynamic typing. There are interfaces to many system calls and libraries, as well as to various windowing systems (X11, Motif, Tk, Mac, and MFC). New built-in modules are easily written in C or C++. Python is also usable as an extension language for applications that need a programmable interface.

The latest Python release is version 2.4.1. This release is mostly built-in on Linux based distributions of kernel 2.6 like Fedora Core 4 and SUSE Linux 10. The latest version for Windows based machines is also readily downloadable at their site www.python.org.
Why Use Python?

Development time is a very big issue in writing a program. Usually, time means money. In using Python, the development time is greatly reduced. Upon using Python, the development time is greatly reduced due to its simple syntax yet very powerful code. Also, available Python modules and libraries correspond directly to what programmers want to use.
Python is a portable language. It is incorporated in most of Linux distributions. Also, Python is free. The windows version is readily downloadable at www.python.org.
Being an interpreted language, and having a very powerful syntax, Python gives programmers ease in the actual writing of the program. Usually, the algorithm will take most of the programmer's time. However, if the programmer will write the code using another language, say C++, the development time would be greatly increased since the actual coding process will also take up much time.

Maybe the biggest reason in using Python is the ALSA API wrappers made for it. What I'm referring to is the PyALSAAudio module developed by Casper Wilstrup. This module made it possible for us to still use the Python as the language of our project. The documentation is also good to the point that you can readily make a program out of its sample codes.
Another module, integrated in the latest release of Python, is the WAVE module. This module gives a fairly easy analysis of WAVE files. This module was used for the sample program which is the WAVE player in Linux.
Sample Program (WAVE Player in Linux)

#This program plays WAVE files in Linux

#author: Charles Martel L. Ramota

#number of lines: 18
#date: August 22, 2005

#status: program running on Fedora Core 4 and the latest SUSE distribution.

#note: comments are put using the number sign ‘#’
#---------------------------------START OF CODE-----------------------------------

import wave

import sys

import alsaaudio

def player(filename):

wavfile = wave.open(filename, 'r')

output = alsaaudio.PCM(alsaaudio.PCM_PLAYBACK)

output.setchannels(wavfile.getnchannels())

output.setrate(wavfile.getframerate())

output.setformat(alsaaudio.PCM_FORMAT_U16_LE)

output.setperiodsize(320)

counter = wavfile.getnframes() /320

while counter != 0:

counter -= 1

output.write(wavfile.readframes(320))

wavfile.close()

player(sys.argv[1])

#---------------------------------END OF CODE--
This is a running program compiled using Python 2.4.1. The modules sys and wave are built in libraries of the latest Python version. The alsaaudio module is installed separately but is readily downloadable at www.sourceforge.net/projects/pyalsaaudio.

Essentially, there are two libraries used in this program – PyAlsaAudio and the Python Wave module. Documentations of the said modules are included as Appendices to this file.

The player function is declared. The function first opens an input wave file and names it as wavfile. The next line declares the output as a PCM device with type PCM_PLAYBACK. This means to open the device in playback mode.

After that, the output channels, rate, and format are set. These parameters must be identical to the parameters of the Wave file itself. This is where the wave module comes in. The commands getnchannels, getframerate, getnframes, and readframes are included in the Python wave module. They are basically commands to get specific parameters of a wave file. These commands get the parameters of the sample wave file and then feed those parameters to the output. The periodsize controls the internal number of frames per period and is also the buffer. The buffer can be quite large, and transferring it in one operation could result in unacceptable delays, called latency. To solve this, ALSA splits the buffer up into a series of periods (called fragments in OSS/Free) and transfers the data in units of a period.

After making the output parameters identical to the input, the next thing to do is to send the information and write it to the output device which is the PCM device. To do this, there is a counter that decrements until all of the information is sent.

Basically, the output writes at the device until there is data. The number of frames is divided by the periodsize to get the number of PCM data or simply the counter. Upon writing, the counter is decremented (counter -= 1 is just like counter-- or counter = counter – 1). When all of the data are written to the device, the wave file is closed.

To use the player function, it is called at the end of the code. The command sys.argv[1] means that the 2nd argument after the Python call in the command string is the filename. Please refer to the screenshot below to see what I mean.
[image: image1.png]E] 2z Blocalhost = pythonhles:

File Edit View Teminal Tabs Help

[tsarlz@localhost ~]$ cd pythonfiles

[tsarlzelocalhost pythonfiles]$ python wavplayer.py hellotest.wav
nframes: 27040

[tsarlz@localhost pythonfiles]$ |

[pythonfiles v | "wavplayer.py" selected (499 bytes)

@] [tsate D pythonfies =1
@ Applications Places Deskiop @B RDES @ & @ Mon Aug 29, 827 PM @)

In this case, the hellotest.wav is the second argument and it is also the file name of the sample wave file.

For a complete list of commands in the PyAlsaAudio and Python wave module, please see the Appendix.
References:
· www.python.org

· www.sourceforge.net/projects/pyalsaaudio

· www.opensound.com/oss.html

· www.alsa-project.org

· www.linux.org

· www.wikipedia.org

· alsa.opensrc.org

· www.sabi.co.uk/Notes/linuxSoundALSA.html

· www.linuxhardware.org/features/01/03/06/179255.shtml

· kerneltrap.org/node/2719

· www.linuxjournal.com/article/6735
Special thanks to:
· My project partner: Mr. James Jesus Bermas
· To the people who inspired me: Trina, my friends, and to the one I greet everyday through texts (you know who you are, my friend). :)
· To the Ultimo
Appendix A

PyAlsaAudio
alsaaudio

Availability: Linux.

The alsaaudio module defines functions and classes for using ALSA.

	mixers(
	[cardname])

List the available mixers. The optional cardname specifies which card should be queried (this is only relevant if you have more than one sound card). Omit to use the default sound card

	class PCM(
	[type], [mode], [cardname])

This class is used to represent a PCM device (both playback and capture devices). The arguments are:
type - can be either PCM_CAPTURE or PCM_PLAYBACK (default).
mode - can be either PCM_NONBLOCK, PCM_ASYNC, or PCM_NORMAL (the default).
cardname - specifies which card should be used (this is only relevant if you have more than one sound card). Omit to use the default sound card

	class Mixer(
	[control], [id], [cardname])

This class is used to access a specific ALSA mixer. The arguments are:
control - Name of the chosen mixed (default is Master).
id - id of mixer (default is 0) - More explaniation needed here
cardname specifies which card should be used (this is only relevant if you have more than one sound card). Omit to use the default sound card

exception ALSAAudioError
Exception raised when an operation fails for a ALSA specific reason. The exception argument is a string describing the reason of the failure.

The acronym PCM is short for Pulse Code Modulation and is the method used in ALSA and many other places to handle playback and capture of sampled sound data.

PCM objects in alsaaudio are used to do exactly that, either play sample based sound or capture sound from some input source (perhaps a microphone). The PCM object constructor takes the following arguments:

	class PCM(
	[type], [mode], [cardname])

type - can be either PCM_CAPTURE or PCM_PLAYBACK (default).

mode - can be either PCM_NONBLOCK, PCM_ASYNC, or PCM_NORMAL (the default). In PCM_NONBLOCK mode, calls to read will return immediately independent of whether there is any actual data to read. Similarly, write calls will return immediately without actually writing anything to the playout buffer if the buffer is full.

In the current version of alsaaudio PCM_ASYNC is useless, since it relies on a callback procedure, which can't be specified from Python.

cardname - specifies which card should be used (this is only relevant if you have more than one sound card). Omit to use the default sound card

This will construct a PCM object with default settings:

Sample format: PCM_FORMAT_S16_LE
Rate: 8000 Hz
Channels: 2
Period size: 32 frames

PCM objects have the following methods:

	pcmtype(
)

Returns the type of PCM object. Either PCM_CAPTURE or PCM_PLAYBACK.

	pcmmode(
)

Return the mode of the PCM object. One of PCM_NONBLOCK, PCM_ASYNC, or PCM_NORMAL

	cardname(
)

Return the name of the sound card used by this PCM object.

	setchannels(
	nchannels)

Used to set the number of capture or playback channels. Common values are: 1 = mono, 2 = stereo, and 6 = full 6 channel audio. Few sound cards support more than 2 channels

	setrate(
	rate)

Set the sample rate in Hz for the device. Typical values are 8000 (poor sound), 16000, 44100 (cd quality), and 96000

	setformat(
)

The sound format of the device. Sound format controls how the PCM device interpret data for playback, and how data is encoded in captures.

The following formats are provided by ALSA:

	Format
	Description

	PCM_FORMAT_S8
	Signed 8 bit samples for each channel

	PCM_FORMAT_U8
	Signed 8 bit samples for each channel

	PCM_FORMAT_S16_LE
	Signed 16 bit samples for each channel (Little Endian byte order)

	PCM_FORMAT_S16_BE
	Signed 16 bit samples for each channel (Big Endian byte order)

	PCM_FORMAT_U16_LE
	Unsigned 16 bit samples for each channel (Little Endian byte order)

	PCM_FORMAT_U16_BE
	Unsigned 16 bit samples for each channel (Big Endian byte order)

	PCM_FORMAT_S24_LE
	Signed 24 bit samples for each channel (Little Endian byte order)

	PCM_FORMAT_S24_BE
	Signed 24 bit samples for each channel (Big Endian byte order)

	PCM_FORMAT_U24_LE
	Unsigned 24 bit samples for each channel (Little Endian byte order)

	PCM_FORMAT_U24_BE
	Unsigned 24 bit samples for each channel (Big Endian byte order)

	PCM_FORMAT_S32_LE
	Signed 32 bit samples for each channel (Little Endian byte order)

	PCM_FORMAT_S32_BE
	Signed 32 bit samples for each channel (Big Endian byte order)

	PCM_FORMAT_U32_LE
	Unsigned 32 bit samples for each channel (Little Endian byte order)

	PCM_FORMAT_U32_BE
	Unsigned 32 bit samples for each channel (Big Endian byte order)

	PCM_FORMAT_FLOAT_LE
	32 bit samples encoded as float. (Little Endian byte order)

	PCM_FORMAT_FLOAT_BE
	32 bit samples encoded as float (Big Endian byte order)

	PCM_FORMAT_FLOAT64_LE
	64 bit samples encoded as float. (Little Endian byte order)

	PCM_FORMAT_FLOAT64_BE
	64 bit samples encoded as float. (Big Endian byte order)

	PCM_FORMAT_MU_LAW
	A logarithmic encoding (used by Sun .au files)

	PCM_FORMAT_A_LAW
	Another logarithmic encoding

	PCM_FORMAT_IMA_ADPCM
	a 4:1 compressed format defined by the Interactive Multimedia Association

	PCM_FORMAT_MPEG
	MPEG encoded audio?

	PCM_FORMAT_GSM
	9600 constant rate encoding well suited for speech

setperiodsize(period)

Sets the actual period size in frames. Each write should consist of exactly this number of frames, and each read will return this number of frames (unless the device is in PCM_NONBLOCK mode, in which case it may return nothing at all)

	read(
)

In PCM_NORMAL mode, this function blocks until a full period is available, and then returns a tuple (length,data) where length is the size in bytes of the captured data, and data is the captured sound frames as a string. The length of the returned data will be periodsize*framesize bytes.

In PCM_NONBLOCK mode, the call will not block, but will return (0,'') if no new period has become available since the last call to read.

	write(
	data)

Writes (plays) the sound in data. The length of data must be a multiple of the frame size, and should be exactly the size of a period. If less than 'period size' frames are provided, the actual playout will not happen until more data is written.

If the device is not in PCM_NONBLOCK mode, this call will block if the kernel buffer is full, and until enough sound has been played to allow the sound data to be buffered. The call always returns the size of the data provided

In PCM_NONBLOCK mode, the call will return immediately, with a return value of zero, if the buffer is full. In this case, the data should be written at a later time.

Mixer Objects

Mixer objects provides access to the ALSA mixer API.

	class Mixer(
	[control], [id], [cardname])

control - specifies which control to manipulate using this mixer object. The list of available controls can be found with the alsaaudio.mixers function. The default value is 'Master' - other common controls include 'Master Mono', 'PCM', 'Line', etc.

id - the id of the mixer control. Default is 0

cardname - specifies which card should be used (this is only relevant if you have more than one sound card). Omit to use the default sound card

Mixer objects have the following methods:

	cardname(
)

Return the name of the sound card used by this Mixer object

	mixer(
)

Return the name of the specific mixer controlled by this object, For example 'Master' or 'PCM'

	mixerid(
)

Return the ID of the ALSA mixer controlled by this object.

	switchcap(
)

Returns a list of the switches which are defined by this specific mixer. Possible values in this list are:

	Switch
	Description

	'Mute'
	This mixer can be muted

	'Joined Mute'
	This mixer can mute all channels at the same time

	'Playback Mute'
	This mixer can mute the playback output

	'Joined Playback Mute'
	Mute playback for all channels at the same time

	'Capture Mute'
	Mute sound capture

	'Joined Capture Mute'
	Mute sound capture for all channels at a time

	'Capture Exclusive'
	Not quite sure what this is

To manipulate these swithes use the setrec or setmute methods

	volumecap(
)

Returns a list of the volume control capabilities of this mixer. Possible values in the list are:

	Capability
	Description

	'Volume'
	This mixer can control volume

	'Joined Volume'
	This mixer can control volume for all channels at the same time

	'Playback Volume'
	This mixer can manipulate the playback volume

	'Joined Playback Volume'
	Manipulate playback volume for all channels at the same time

	'Capture Volume'
	Manipulate sound capture volume

	'Joined Capture Volume'
	Manipulate sound capture volume for all channels at a time

	getvolume(
	[direction])

Returns a list with the current volume settings for each channel. The list elements are integer percentages.

The optional direction argument can be either 'playback' or 'capture', which is relevant if the mixer can control both playback and capture volume. The default value is 'playback' if the mixer has this capability, otherwise 'capture'

	getmute(
)

Return a list indicating the current mute setting for each channel. 0 means not muted, 1 means muted.

This method will fail if the mixer has no playback switch capabilities.

	getrec(
)

Return a list indicating the current record mute setting for each channel. 0 means not recording, 1 means not recording.

This method will fail if the mixer has no capture switch capabilities.

	setvolume(
	volume,[channel],[direction])

Change the current volume settings for this mixer. The volume argument controls the new volume setting as an integer percentage.

If the optional argument channel is present, the volume is set only for this channel. This assumes that the mixer can control the volume for the channels independently.

The optional direction argument can be either 'playback' or 'capture' is relevant if the mixer has independent playback and capture volume capabilities, and controls which of the volumes if changed. The default is 'playback' if the mixer has this capability, otherwise 'capture'.

	setmute(
	mute, [channel])

Sets the mute flag to a new value. The mute argument is either 0 for not muted, or 1 for muted.

The optional channel argument controls which channel is muted. The default is to set the mute flag for all channels.

This method will fail if the mixer has no playback mute capabilities

	setrec(
	capture,[channel])

Sets the capture mute flag to a new value. The capture argument is either 0 for no capture, or 1 for capture.

The optional channel argument controls which channel is changed. The default is to set the capture flag for all channels.

This method will fail if the mixer has no capture switch capabilities

Appendix B
Python Wave module
wave -- Read and write WAV files

The wave module provides a convenient interface to the WAV sound format. It does not support compression/decompression, but it does support mono/stereo.

The wave module defines the following function and exception:

	open(
	file[, mode])

If file is a string, open the file by that name, other treat it as a seekable file-like object. mode can be any of

'r', 'rb'

Read only mode.

'w', 'wb'

Write only mode.

Note that it does not allow read/write WAV files.

A mode of 'r' or 'rb' returns a Wave_read object, while a mode of 'w' or 'wb' returns a Wave_write object. If mode is omitted and a file-like object is passed as file, file.mode is used as the default value for mode (the "b" flag is still added if necessary).

	openfp(
	file, mode)

A synonym for open(), maintained for backwards compatibility.

exception Error

An error raised when something is impossible because it violates the WAV specification or hits an implementation deficiency.

Wave_read Objects

Wave_read objects, as returned by open(), have the following methods:

	close(
)

Close the stream, and make the instance unusable. This is called automatically on object collection.

	getnchannels(
)

Returns number of audio channels (1 for mono, 2 for stereo).

	getsampwidth(
)

Returns sample width in bytes.

	getframerate(
)

Returns sampling frequency.

	getnframes(
)

Returns number of audio frames.

	getcomptype(
)

Returns compression type ('NONE' is the only supported type).

	getcompname(
)

Human-readable version of getcomptype(). Usually 'not compressed' parallels 'NONE'.

	getparams(
)

Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype, compname), equivalent to output of the get*() methods.

	readframes(
	n)

Reads and returns at most n frames of audio, as a string of bytes.

	rewind(
)

Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with the aifc module, and don't do anything interesting.

	getmarkers(
)

Returns None.

	getmark(
	id)

Raise an error.

The following two methods define a term ``position'' which is compatible between them, and is otherwise implementation dependent.

	setpos(
	pos)

Set the file pointer to the specified position.

	tell(
)

Return current file pointer position.

Wave_write Objects

Wave_write objects, as returned by open(), have the following methods:

	close(
)

Make sure nframes is correct, and close the file. This method is called upon deletion.

	setnchannels(
	n)

Set the number of channels.

	setsampwidth(
	n)

Set the sample width to n bytes.

	setframerate(
	n)

Set the frame rate to n.

	setnframes(
	n)

Set the number of frames to n. This will be changed later if more frames are written.

	setcomptype(
	type, name)

Set the compression type and description.

	setparams(
	tuple)

The tuple should be (nchannels, sampwidth, framerate, nframes, comptype, compname), with values valid for the set*() methods. Sets all parameters.

	tell(
)

Return current position in the file, with the same disclaimer for the Wave_read.tell() and Wave_read.setpos() methods.

	writeframesraw(
	data)

Write audio frames, without correcting nframes.

	writeframes(
	data)

Write audio frames and make sure nframes is correct.

� www.wikipedia.org

� pyAlsaAudio documentation

� www.alsa-project.org

� www.opensound.com/oss.html

� http://www.opensound.com/oss.html

� http://www.linuxjournal.com

� www.wikipedia.org

� Ibid

� Ibid

� www.wikipedia.org

� www.python.org

PAGE
PyALSA Audio 1
Charles Martel L. Ramota

