Copyright Rational Software 2001 http://www.therationaledge.com/content/dec_00/m_iterative.html

mRat,d@@

et B-ZiN1E far the rational cnmr'numty
Features Management ews Rationally Speaking Technical Franklin's Kite

b subscribe

) From Waterfall to Iterative Development -- A
Challenging Transition for Project Managers

b contact us

) submit an article

by Philippe Kruchten
Rational Fellow

b rational.com

The Rational Unified Process (RUP) advocates an iterative
or spiral approach to the software development lifecycle, p issue contents
as this approach has again and again proven to be

superior to the waterfall approach in many respects. But
do not believe for one second that the many benefits an

% iterative lifecycle provides come for free. Iterative

) archives

development is not a magic wand that when waved solves p mission statement
all possible problems or difficulties in software
development. Projects are not easier to set up, to plan, or
to control just because they are iterative. The project
manager will actually have a more challenging task,
especially during his or her first iterative project, and most
certainly during the early iterations of that project, when
risks are high and early failure possible. In this article, |
describe some of the challenges of iterative development
from the perspective of the project manager. | also
describe some of the common "traps™” or pitfalls that we, at
Rational, have seen project managers fall into through our consulting
experience, or from reports and war stories from our Rational colleagues.

b editorial staff

y
53
<

Iterative Development

Classic software development processes follow the waterfall lifecycle, as
illustrated in Figure 1. In this approach, development proceeds linearly
from requirements analysis through design, code and unit testing,
subsystem testing, and system testing, with limited feedback on the
results of the previous phases.

Figure 1: The Waterfall Development Process

jprince
http://www.therationaledge.com/content/dec_00/m_iterative.html

jprince
Copyright Rational Software 2001

Risk - @ .

Code & Uni

Time

The fundamental problem of this approach is that it pushes risk forward in
time, where it's costly to undo mistakes from earlier phases. An initial
design will likely be flawed with respect to its key requirements, and
furthermore, the late discovery of design defects tends to result in costly
overruns and/or project cancellation. The waterfall approach tends to
mask the real risks to a project until it is too late to do anything
meaningful about them.

An alternative to the waterfall approach is the iterative and incremental
process, as shown in Figure 2.

In this approach, built

upon the work of Barry

Boehm's spiral model Requirements

(see "Further Reading™), _Analysis & Design
the identification of risks Initial Planning :

to a project is forced Planning Imprementation
early in the lifecycle, :::largﬁm |

when it's possible to

' Test
attack and react to them ‘/
in a timely and efficient Evaluation : -

manner. This approach is -

one of continuous Deployment
discovery, invention, and -
implementation, with
each iteration forcing the results in an
development team to executable release
drive to closure the
project's artifacts in a
predictable and
repeatable way.

Each iteration

Figure 2: An lterative Approach to Development

The Good: Benefits of Iterative Development

Compared with the traditional waterfall process, the iterative process has

many advantages.

1. Serious misunderstandings are made evident early in the lifecycle,
when it's possible to react to them.

2. It enables and encourages user feedback, so as to elicit the
system's real requirements.

3. The development team is forced to focus on those issues that are
most critical to the project, and team members are shielded from
those issues that distract them from the project's real risks.

4. Continuous, iterative testing enables an objective assessment of the
project's status.

5. Inconsistencies among requirements, designs, and implementations
are detected early.

6. The workload of the team, especially the testing team, is spread out
more evenly throughout the lifecycle.

7. This approach enables the team to leverage lessons learned, and
therefore to continuously improve the process.

8. Stakeholders in the project can be given concrete evidence of the
project's status throughout the lifecycle.

Risk Mitigation

An iterative process lets you mitigate risks earlier because integration is
generally the only time that risks are discovered or addressed. As you roll
out the early iterations, you go through all process components, exercising
many aspects of the project, including tools, off-the-shelf software, and
people skills. Perceived risks will prove not to be risks, and new,
unsuspected risks will be discovered.

If a project must fail for some reason, let it fail as soon as possible, before
a lot of time, effort, and money are expended. Do not bury your head in
the sand too long; instead, confront the risks. Among other risks, such as
building the wrong product, there are two categories of risks that an
iterative development process helps to mitigate early:

. Integration risks

. Architectural risks

An iterative process results in a more robust architecture because you
correct errors over several iterations. Flaws are detected in early iterations
as the product moves beyond inception. Performance bottlenecks are
discovered at a time when they can still be addressed instead of being
discovered on the eve of delivery.

Integration is not one "big bang" at the end of the life cycle; instead,
elements are integrated progressively. Actually, the iterative approach
that we recommend involves almost continuous integration. What used to
be a lengthy time of uncertainty and pain -- taking as much as 40% of the

total effort at the end of a project -- is now broken into six to nine smaller
integrations that begin with far fewer elements to integrate.

Accommodating Changes

You can envisage several categories of changes:

. Changes in requirements

An iterative process lets you take into account changing
requirements. The truth is that requirements will normally change.
Requirements change and "requirements creep” have always been
primary sources of project trouble, leading to late delivery, missed
schedules, unsatisfied customers, and frustrated developers. But by
exposing users (or representatives of users) to an early version of
the product, you can ensure a better fit of the product to the task.

. Tactical changes
An iterative process provides management with a way to make
tactical changes to the product -- for example, to compete with
existing products. You can decide to release a product early with
reduced functionality to counter a move by a competitor, or you can
adopt another vendor for a given technology. You can also
reorganize the contents of an iteration to alleviate an integration
problem that needs to be fixed by a supplier.

. Technological changes
To a lesser extent, an iterative approach lets you accommodate
technological changes. You can use it during the elaboration phase,
but you should avoid this kind of change during construction and
transition because it is inherently risky.

Learning as You Go

An advantage of the iterative process is that developers can learn along
the way, and the various competencies and specialties are more fully
employed during the entire life cycle. For example, testers start testing
early, technical writers write early, and so on; in a non-iterative
development, the same people would be waiting to begin their work,
making plan after plan. Training needs -- or the need for additional
(perhaps external) help -- are spotted early during assessment reviews.

The process itself can also be improved and refined along the way. The
assessment at the end of an iteration looks at the status of the project
from a product/schedule perspective and analyzes what should be
changed in the organization and in the process so that performance will be
better in the next iteration.

Increased Opportunity for Reuse

An iterative process facilitates reuse of project elements because it is
easier to identify common parts as they are partially designed or
implemented instead of identifying all commonality in the beginning.
Identifying and developing reusable parts is difficult. Design reviews in

early iterations allow architects to identify unsuspected potential reuse and
to develop and mature common code in subsequent iterations. It is during
the iterations in the elaboration phase that common solutions for common
problems are found and patterns and architectural mechanisms that apply
across the system are identified.

Better Overall Quality

The product that results from an iterative process will be of better overall
quality than are products that result from a conventional sequential
process. The system will have been tested several times, improving the
quality of testing. The requirements will have been refined and will
therefore be more closely related to the users' real needs. And at the time
of delivery, the system will have been running longer.

The Hard: Unexpected Downside and Common
Traps

Iterative development does not necessarily mean less work and shorter
schedules. Its main advantage is to bring more predictability to the
outcome and the schedule. It will bring higher quality products, which will
satisfy the real needs of end-users, because you will have had time to
evolve requirements as well as a design and an implementation.

Iterative development actually involves much more planning and is
therefore likely to put more burden on the project manager: An overall
plan has to be developed, and detailed plans will in turn be developed for
each iteration. It also involves continuous negotiation of tradeoffs between
the problem, the solution, and the plan. More architectural planning will
also take place earlier. Artifacts (plans, documents, models, and code) will
have to be modified, reviewed, and approved repeatedly at each revision.
Tactical changes or scope changes will force some continuous replanning.
Thus, team structure will have to be modified slightly at each iteration.

Trap: Overly Detailed Planning Up to the End

It is typically wasteful to construct a detailed plan end-to-end, except as
an exercise in evaluating the global envelope of schedule and resources.
This plan will be obsolete before reaching the end of the first iteration.
Before you have an architecture in place and a firm grip on the
requirements -- which occurs roughly at the Lifecycle Architecture (LCA)
milestone -- you cannot build a realistic plan.

So, incorporate precision in planning commensurate with your knowledge
of the activity, the artifact, or the iteration being planned. Near-term plans
are more detailed and fine grained. Long-term plans are maintained in
coarse-grained format.

Resist the pressure that unknowledgeable or ill-informed management
may bring to bear in an attempt to elicit a "comprehensive overall plan.”
Educate managers, and explain the notion of iterative planning and the
wasted effort of trying to predict details far into the future. An analogy
that is useful: a car trip from New York to L.A. You plan the overall route
but only need detailed driving instructions to get you out of the city and

onto the first leg of the trip. Planning the exact details of driving through
Kansas, let alone the arrival in California, is unnecessary, as you may find
that the road through Kansas is under repair and you need to find an
alternate route, etc.

Acknowledging Rework Up Front

In a waterfall approach, too much rework comes at the very end, as an
annoying and often unplanned consequence of finding nasty bugs during
final testing and integration. Even worse, you discover that most of the
cause of the "breakage" comes from errors in the design, which you
attempt to palliate in implementation by building workarounds that lead to
more breakage.

In an iterative approach, you simply acknowledge up front that there will
be rework, and initially a lot of rework: As you discover problems in the
early architectural prototypes, you need to fix them. Also, in order to build
executable prototypes, stubs and scaffolding will have to be built, to be
replaced later by more mature and robust implementations. In a healthy
iterative project, the percentage of scrap or rework should diminish
rapidly; the changes should be less widespread as the architecture
stabilizes and the hard issues are being resolved.

Trap: Project Not Converging

Iterative development does not mean scrapping everything at each
iteration. Scrap and rework has to diminish from iteration to iteration,
especially after the architecture is baselined at the LCA milestone.
Developers often want to take advantage of iterative development to do
gold plating: to introduce yet a better technique, to perform rework, etc.
The project manager has to be vigilant so as to not allow rework of
elements that are not broken -- that are OK or good enough. Also, as the
development team grows in size, and as some people are moved around,
newcomers are brought in. They tend to have their own ideas about how
things should have been done. Similarly, customers (or their
representatives in the project: marketing, product management) may
want to abuse the latitude offered by iterative development to
accommodate changes, and/or to change or add requirements with no
end. This effect is sometimes called "Requirements Creep."Again, the
project manager needs to be ruthless in making tradeoffs and in
negotiating priorities. Around the LCA milestone, the requirements are
baselined, and unless the schedule and budget are renegotiated, any
change has a finite cost: Getting something in means pulling something
out. And, remember that "Perfect is the enemy of good."” (Or in French:
"Le mieux est I'ennemi du bien.")

Trap: Let's Get Started; We'll Decide Where to Go Later

Iterative development does not mean perpetually fuzzy development. You
should not simply begin designing and coding just to keep the team busy
or with the hope that clear goals will suddenly emerge. You still need to
define clear goals, put them in writing, and obtain concurrence from all
parties; then refine them, expand them, and obtain concurrence yet again.
The bright side is that in iterative development, you need not have all the
requirements stated before you start designing, coding, integrating,
testing, and validating them.

Trap: Falling Victim to Your Own Success

An interesting risk comes near the end of a project, at the moment the
"consumer bit" flips. By this we mean that the users go from believing that
nothing will ever be delivered to believing that the team might actually
pull it off. The good news is that the external perception of the project has
shifted: whereas on Monday the users would have been happy if anything
were delivered on Tuesday, they become concerned that not everything
will be delivered. This is the bad news. Somewhere between the first and
second beta, you find yourself inundated with requests for features that
people want to be sure are included in the first release. Suddenly, these
become major issues. The project manager goes from worrying about
delivering minimal acceptable functionality to a situation in which every
last requirement is now "essential” to the first delivery. It is almost as
though, when this bit flips, all outstanding items get elevated to an "A"
priority status. The reality is that there is still the same number of things
to do, and the same amount of time in which to do them. While external
perceptions may have changed, prioritization is still very, very important.

If, at this crucial moment, the project manager loses his nerve and starts
to cave in to all requests, he actually puts the project in schedule danger
again! It is at this point that he or she must continue to be ruthless and
not succumb to new requests. Even trading off something new for
something taken out may increase risk at this point. Without vigilance,
one can snatch defeat from the jaws of success.

Putting the Software First

In a waterfall approach, there is a lot of emphasis on "the specs” (i.e., the
problem-space description) and getting them right, complete, polished,
and signed-off. In the iterative process, the software you develop comes
first. The software architecture (i.e., the solution-space description) needs
to drive early lifecycle decisions. Customers do not buy specs; it is the
software product that is the main focus of attention throughout, with both
specs and software evolving in parallel. This focus on "software first" has
some impact on the various teams: Testers, for example, may be used to
receiving complete, stable specs, with plenty of advance notice to start
testing, whereas in an iterative development, they have to begin working
at once, with specs and requirements that are still evolving.

Trap: Too Much Focus on Management Artifacts

Some managers say, "l am a project manager, so | should focus on
having the best set of management artifacts | can; they are key to
everything." Not quite true! Although good management is key, the
project manager must ensure in the end that the final product is the best
that can be produced. Project management is not an exercise in covering
yourself by showing that you have failed despite the best possible
management. Similarly, you may focus on developing the best possible
spec because you have been hurt by poor requirements management in
the past; this will be of no use whatsoever if the corresponding product is
buggy, slow, unstable, and brittle.

Hitting Hard Problems Earlier

In a waterfall approach, many of the hard problems, the risky things, and
the real unknowns are pushed to the right in the planning process, for
resolution during the dreaded system integration activity. This leaves the
first half of the project as a relatively comfortable ride, where issues are
dealt with on paper, in writing, without involving many stakeholders
(testers, etc.), hardware platforms, real users, or the real environment.
And then suddenly, the project enters integration Hell, and everything
breaks loose. In iterative development, planning is mostly based on risks
and unknowns, so things are tough right from the onset. Some hard,
critical, and often low-level technical issues have to be dealt with
immediately, rather than pushed out to some later time. In short, as
someone once said to me: In an iterative development you cannot lie (to
yourself or to the world) very long. A software project destined for failure
should meet its destiny earlier in an iterative approach.

One analogy is a university course in which the professor spends the first
half of the semester on relatively basic concepts, giving the impression
that it is an easy class that allows students to receive good marks at the
mid-term with minimal effort. Then suddenly, acceleration occurs as the
semester comes to a close. The professor tackles all the challenging topics
shortly before the final exam. At this point, the most common scenario is
that the majority of the class buckles under the pressure, performing
lamentably on the final exam. It is amazing that otherwise intelligent
professors are taken aback by this repeated disaster, year after year, class
after class. A smarter approach would be to front-load the course, tackling
60% of the work prior to the mid-term, including some challenging
material. The correlation to managing an iterative project is to not waste
precious time in the beginning solving non-problems and accomplishing
trivial tasks. The most common reason for technical failure in startups:
"They spent all their time doing the easy stuff.”

Trap: Putting Your Head in the Sand

It is often tempting to say, "This is a delicate issue, a problem for which
we need a lot of time to think. Let us postpone its resolution until later,
which will give us more time to think about it." The project then embarks
on all the easy tasks, never dedicating much attention to hard problems.
When it comes to the point at which a solution is needed, hasty solutions
and decisions are taken, or the project derails. You want to do just the
opposite: tackle the hard stuff immediately. | sometimes say, "If a project
must fail for some reason, let it fail as soon as possible, before we have
expended all our time and money."

Trap: Forgetting About New Risks

You performed a risk analysis at the inception and used it for planning, but
then forgot about risks that develop later in the project. And they come
back to hurt you later. Risks should be re-evaluated constantly, on a
monthly, if not weekly, basis. The original list of risks you developed was
just tentative. It is only when the team starts doing concrete development
(software first) that they will discover many other risks.

Clashes Because of Different Lifecycle Models

The manager of an iterative project will often see clashes between his

environment and other groups such as top management, customers, and
contractors, who have not adopted -- or even understood the nature of --
iterative development. They expect completed and frozen artifacts at key
milestones; they do not want to review requirements in small
installments; they are shocked by rework; and they do not understand the
purpose or value of some ugly architectural prototype. They perceive
iteration as just fumbling purposelessly, playing around with technology,
developing code before specs are firm, and testing throwaway code.

At a minimum, make your intentions and plans clearly visible. If the
iterative approach is only in your head and on a few whiteboards shared
with your team, you will run into trouble later on.

The project manager must protect the team from external attacks and
politics in order to prevent the outside world from disrupting or
discouraging the team. He or she must act as a buffer. In order to be "the
steady hand on the tiller,” the project manager must build trust and
credibility with the external community. Therefore, visibility and "tracking
to plan” is still important, especially in light of "the plan" being somewhat
unconventional in many people’s eyes. In fact, it is actually more
important.

Trap: Different Groups Operating on Their Own Schedules

It is better and easier to have all groups (or teams, or subcontractors)
operating according to the same phase and iteration plan. Often project
managers see some benefit in fine-tuning the schedule of each individual
team, each of which ends up having its own iteration schedule. When this
happens, all the perceived benefits will be lost later, and teams will be
forced to synchronize to the slower group. As much as is feasible, put
everybody on the same heartbeat.

Trap: Fixed-Price Bidding During Inception

Many projects are pushed into bidding for contractual development far too
early, somewhere in the middle of inception. In an iterative development,
the best point in time for all parties to do such bidding is at the LCA
milestone (end of elaboration). There is no magic recipe here: It takes
some negotiation and education of the stakeholders, showing the benefits
of an iterative development, and eventually a two-step bidding process.

Accounting for Progress Is Different

The traditional earned-value system to account for progress is different,
since artifacts are not complete and frozen, but are reworked in several
increments. If an artifact has a certain value in the earned value system,
and you get credit for it at the first iteration in which you created it, then
your assessment of progress is overly optimistic. If you only get credit
when it becomes stable two or three iterations later, your measure of
progress becomes depressingly pessimistic. So when using such an
approach to monitor progress, artifacts must be decomposed in chunks.
For example: initial document (40%), first revision (25%), second revision
(20%), final document (15%). Each chunk must be allocated a value. You
can then use the earned value system without having to complete each
element.

An alternative would be to organize the earned value around the iterations
themselves, and gauge the value from the evaluation criteria. Then the
intermediate tracking points (usually monthly) reported in the Status
Assessment would be built around the Iteration Plan. This requires a finer-
grained tracking of artifacts than the traditional requirements spec, design
spec, etc., because you are tracking the completion of various use cases,
test cases, and so on.

As Walker Royce says, "A project manager should be more focused on
measuring and monitoring changes: changes in requirements, in the
design, in the code, than in counting pages of text and lines of code.” (See
References and "Further Reading" below.) And Joe Marasco adds, "Look
out not only for change, but also for churn. Things that change multiple
times to return to the same starting point are a symptom of deeper
problems.”

On the positive side, having concrete software that runs early can be used
by the wise project manager to obtain some early credibility points. It can
show off progress in a more meaningful fashion than completed and
reviewed paperwork with hundreds of check boxes ticked off. Also,
engineers prefer "demonstrations of how it works" to "documentation of
how it should work." Demonstrate first, then document.

Deciding on Number, Duration, and Content of
Iterations

What do we do first? The manager who is new to iterative development
often has a hard time deciding on the content of iterations. Initially, this
planning is driven by risk, technical and programmatic, and by criticality of
the functions or features of the system under construction. (RUP gives
guidelines for deciding the number and duration of iterations.) The criteria
also evolve throughout the lifecycle. In construction, planning is geared to
completing certain features or certain subsystems; in transition, it is
geared to fixing problems and increasing robustness and performance.

Trap: Pushing Too Much in the First Iteration

We talked above about not tackling the hard problems first. On the other
hand, going too far in the opposite direction is also a recipe for failure.
There is a tendency to want to address too many issues and cover too
much ground in the first or first few iterations. This fails to acknowledge
other factors: A team needs to be formed (trained), new techniques need
to be learned, and new tools need to be acquired. And often, the problem
domain is new to many of the developers. This often leads to a serious
overrun of the first iteration, which may discredit the entire iterative
approach. Or, the iteration is aborted -- declared done when nothing runs -
- which is basically declaring "victory" at a point at which none of the
lessons may be drawn, missing most of the benefits of iterative
development.

When in doubt, or when confronted with crisis, make it smaller somehow
(this applies to the problem, the solution, the team). Remember that
completeness is a late lifecycle concern. "Appropriate incompleteness”
should be the manager's early lifecycle concern. If the first iteration

contains too many goals, split it into two iterations, and then ruthlessly
prioritize which objectives to attempt to achieve first.

It is better to shoot for a simpler, more conservative goal early in the
project. Note we didn't say easy. Having a solid, acquired result early in
the process will help build morale. Many projects that miss the first
milestone never recover. Most that miss it by a lot are doomed despite
subsequent heroic efforts. Plan to make sure you don't miss an early
milestone by a lot.

Trap: Too Many lterations

First, a project should not confuse the daily or weekly builds with
iterations. Since there is fixed overhead in planning, monitoring, and
assessing an iteration, an organization that is unfamiliar with this
approach should not attempt to iterate at a furious rate on its first project.
The duration of an iteration should also take into consideration the size of
the organization, its degree of geographic distribution, and the number of
distinct organizations involved. Revisit our "six plus or minus three" rule of
thumb.

Trap: Overlapping Iterations

Another very common trap is to make iterations overlap too much.
Starting to plan the next iteration somewhere toward the last fifth of the
current iteration, while attempting to have a significant overlap of
activities (i.e., starting detailed analysis, designing and coding the next
iteration before finishing the current one and learning from it) may look
attractive when staring at a GANTT chart, but will lead to problems. Some
people will not be committed to following up and completing their own
contribution to the current iteration; they may not be very responsive to
fixing things; or they will just decide to take any and all feedback into
consideration only in the next iteration. Some parts of the software will
not be ready to support the work that has been pushed forward, etc.
Although it is possible to divert some manpower to perform work
unrelated to the current iteration, this should be kept minimal and
exceptional. This problem is often triggered by the narrow range of skills
of some of the organization's members, or a very rigid organization: Joe is
an analyst, and this is the only thing he can or wants to do; he does not
want to participate in design, implementation, or test. Another negative
example: A large command and control project has its iterations so
overlapped that they are basically all running in parallel at some point in
time, requiring management to split the entire staff across iterations, with
no hope of feeding back lessons learned from the earlier ones to the later
ones.

See Figure 3 for a few common unproductive iteration patterns.

A Good Project Manager and a Good Architect

To succeed, a software project needs both a good project manager and a
good architect. The best possible management and iterative development
will not lead to a successful product without a good architecture.
Conversely, a fantastic architecture will fail lamentably if the project is not
well managed. It is therefore a matter of balance, and focusing solely on

project management will not lead to

success. The project manager I
cannot simply ignore architecture: It
takes both architecture expertise e ——
and domain expertise to determine
i I .
the 20% of things that should go
into early iterations. Teams not synchronized - > chaos
Trap: Use the Same Person as 1 7 J
the PM and the Architect First iteration too loaded - > panic

Using the same person as project
manager and architect will work only

on small projects (5-10 people). For _

larger endeavors, having the same []

person play the role of both project |

manager and architect will usually —
I

end with the project neither properly

managed nor well architected. First, Too much overlap - > no feedback loop

the roles require different skill sets.

Second, the roles, in and of Fi) i
igure 3: Some Dangerous lteration

themselves, are more than a full- Patterns

time job. Therefore, the project

manager and architect must

coordinate daily, communicate with

one another, and compromise. The roles are akin to that of a movie

director and a movie producer. Both work toward a common goal but are

responsible for totally different aspects of the undertaking. When the same

person plays two roles, the project rarely succeeds.

Conclusion

At this stage, you may feel discouraged: so many problems ahead, so
many traps to fall into. If it is so hard to plan and execute an iterative
development, why bother? Rejoice; there are recipes and techniques to
systematically address all these issues, and the payoffs are greater than
the inconvenience in terms of achieving reliably higher quality software
products. Some key themes: "Attack the risks actively or they will attack
you." (From Tom Gilb's book, listed under References and Further
Reading.) Software comes first. Acknowledge scrap and rework. Choose a
project manager and an architect to work together. Exploit the benefits of
iterative development.

The waterfall model made it easy on the manager and difficult for the
engineering team. Iterative development is much more aligned with how
software engineers work, but at some cost in management complexity.
Given that most teams have a 5-to-1 (or higher) ratio of engineers to
managers, this is a great tradeoff.

Although iterative development is harder than traditional approaches the
first time you do it, there is a real long-term payoff. Once you get the
hang of doing it well, you will find that you have become a much more
capable manager, and you will find it easier and easier to manage larger,
more complex projects. Once you can get an entire team to understand

and think iteratively, the method scales far better than traditional
approaches.

Author Note: John Smith, Dean Leffingwell, Joe Marasco, and Walker
Royce helped me write this article by sharing their experiences in iterative
project management. Part of this article is included in Chapter 6 of our
colleague Gerhard Versteegen's new book on software development (see
below).

References and Further Reading
Rational Unified Process 2000, Rational Software, Cupertino, CA, 2000.

Boehm, Barry W. "A Spiral Model of Software Development and
Enhancement,” Computer, May 1988, IEEE, pp. 61-72.

Gilb, Tom. Principles of Software Engineering Management, Addison-
Wesley, 1988.

Kruchten, Philippe. The Rational Unified Process -- An Introduction,
Addison Wesley Longman, 1999.

Royce, Walker. Software Project Management -- A Unified Approach,
Addison Wesley Longman, 1999.

Versteegen, Gerhard. Projektmanagement mit dem Rational Unified
Process, Springer-Verlag, Berlin, 2000.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.

Thank youl!

Copyright Rational Software 2000 | Privacy/Legal Information

