
The Nature of Software: What's So Special
About Software Engineering?

by Philippe Kruchten
Rational Fellow

As engineering organizations
across North America struggle
with the concept of opening
their doors to and registering --
or even licensing -- software
engineers, questions naturally
arise about what software
engineering actually entails.
How do we qualify and evaluate
software engineers? How do we validate their experiences? A first reaction
may be to approach these tasks in the same way that we have done for all
other engineering disciplines. However, software engineering differs from
structural, mechanical, and electrical engineering in subtle ways. The
differences are linked to the soft, but rather unkind, nature of software. In
this article, I explore four key differentiating characteristics:

● Absence of a fundamental theory

● Ease of change

● Rapid evolution of technologies

● Very low manufacturing costs

Absence of a Fundamental Software Theory

Despite all the research done by computer scientists, there is no
equivalent in software for the fundamental laws of physics. This lack of
theory, or at least the lack of practically applicable theories, makes it
difficult to do any reasoning about software without actually building it.
During design, software can be structured and partitioned into chunks, but
the real thing (once it crawls inside a computer) is actually totally
unstructured, so that anything that goes wrong somewhere can corrupt
something somewhere else. The absence of solid and widely applicable
theory also means that the few software engineering standards we do

jprince
Copyright Rational Software 2001

jprince
http://www.therationaledge.com/content/oct_01/f_natureOfSoftware_pk.html

have rely on good practice alone, whereas building codes in other
disciplines can trace their rules to sound physical principles.

Ease of Change

Software is, almost by definition, easy to change, so naturally,
organizations want to take advantage of this characteristic. There is
pressure to change software throughout its entire development and even
after it's delivered. If you're building a bridge, you don't have this kind of
flexibility. You cannot say, "Hmm, now that I see the pilings, I would like
this bridge to be two miles upstream." But it is very, very difficult to
change software in a rigorous fashion, with all ramifications of all changes
fully understood and completely coordinated. Again, because of the
absence of solid theory, it's hard to validate a change set and its impact
without actually doing all the changes. Most of the damage that is done to
software is done through changes.

Rapid Evolution of Technologies

Software development techniques, and the environment of software itself,
are changing at an extremely rapid pace that does not allow for
progressively consolidating a body of knowledge. This puts a lot of
pressure on companies to train and re-train their software engineers, and
some do not really understand why they have to spend four times more
per capita on training than do people from other disciplines. This makes
the initial training software engineers have received less important, except
for the most general education, such as math and so on -- especially when
this original training occurred twenty-five or more years ago. This rapid
evolution also means that it is more and more difficult to maintain and
evolve "legacy" systems -- as the recent Y2K scramble has demonstrated --
because the technologies used some ten years ago are not in use any
more, and people who still have mastery over them are rather rare. The
norms and standards also have to evolve rapidly to catch up with
technology evolution. Finally, software engineering, unlike other
disciplines, has not had the benefit of hundreds or thousands of years of
experience.

Very Low Manufacturing Cost

First, I would like to note a slight shift in paradigm. Software engineers
speak about design, but by this they mean only a high-level description of
their intent, and then they think of program construction as akin to
manufacturing. Actually it is not -- program implementation is more like
preparing a cast in mechanical engineering. Also, for a software engineer,
a prototype is roughly equivalent to a scale model; it's pretty incomplete.
The real "manufacturing" of software entails almost no cost; a CD-ROM,
for example, costs less than a dollar, and delivery over the Internet only a
few cents. Often it doesn't matter if the design -- that is, the initial
program -- is a bit wrong; we can just fix it and manufacture it again, as
we noted above in the discussion on ease of change. We hear people refer
to this as a "free bug fix release" or a "must-have upgrade." Clearly, this
combination -- ease of change and low manufacturing cost -- has led the
software industry into a pretty big mess. And these practices are

supported by outrageous licensing policies that allow the designer and
manufacturer to assume no responsibility other than, in good cases, a
promise that they will re-manufacture the product in a few days or
months. You can't do that with a bridge or a car engine because the cost
would be huge, and that forces engineers involved in building these things
to get them right the first time.

Engineering All the Same?

For twenty years, refusing to acknowledge the four factors I described, the
software industry has tried hard to pretend that software development
could follow the same path as other engineering disciplines. We have
failed. We also hoped that science would bring us solutions, but they have
not been forthcoming. Why? To answer that question, let's look at two
important ways that software engineering departs from other disciplines.

Iterative Development

The very rational and straightforward "waterfall" development lifecycle --
define and freeze requirements, create and validate the design, implement
and test, then deliver -- works very well in many disciplines but has failed
many times in software engineering. This project lifecycle does not
accommodate changes: It does not allow you to really validate much, so
you have to rely on your own warm, fuzzy feeling that "the design is OK."
Nor does it allow for tactical changes in technology, or take advantage of
the low manufacturing cost -- except for pushing undue costs on to
consumers.

Today, software engineers take a more iterative approach to software
development, which allows them to integrate changes, to refine and
validate the design based on execution and not just examination, and to
accommodate evolution in technology. An iterative approach would be
impossible in other disciplines; you cannot build a bridge iteratively, for
example.

Iterative development allows you to continuously verify the quality of a
constructed prototype as opposed to demonstrating correctness a priori,
based on fixed laws. Software has no laws that can ensure the ultimate
product will perform as expected, but iterative development allows you to
confront technical risks earlier in the development cycle.

Also, software engineering puts more emphasis on some techniques that
have less importance in other disciplines, such as requirements
management and change management, because requirements and other
software artifacts may change throughout the development lifecycle and
even after that.

Component-Based Development

Another dream of software engineers is to mimic with software what has
happened in electronics or construction -- to develop families of
standardized parts out of which you can build larger and larger sub-
assemblies and ultimately complete systems. This sounds straightforward,

but actually very few can do it. Again, this is due to the lack of a strong
underlying theory to rigorously define the components and their interface.
The situation has not been helped by the rapid changes in technologies:
No component family has had time to settle and develop as a self-
sustaining industry. Only recently has a new sub-discipline emerged --
software architecture -- which tries to address, despite the lack of
fundamental theory, some of the structural aspects involved in
constructing large software programs and reusing software assets across
product lines or product families.

So, if I agree with David Parnas1 that software engineering should be
treated on an equal footing with other engineering disciplines and not
solely as computer science or some kind of enlightened craftsmanship,
then I also have to acknowledge fundamental differences that make some
of the more traditional approaches to engineering and engineering
management inapplicable to software. Software engineering has
developed its own approaches to manage its specificities over the last few
years.

I believe that the registration process for professional software engineers --
as well as the construction of accredited software engineering programs --
must understand, acknowledge, and address these specificities.

Notes

1 David Parnas, "Software Engineering Programs Are Not Computer
Science Programs," IEEE Software, December 1999, 19-30.

References

Steve McConnell, After the Gold Rush: Creating a True Profession of
Software Engineering. Microsoft Press, 1999.

Gilda Pour, Martin Griss, and Michael Lutz, "The Push to Make Software
Engineering Respectable." IEEE Computer, May 2000, 35-43.

David Parnas, "Software Engineering Programs Are Not Computer Science
programs," IEEE Software, December 1999, 19-30.

Philippe Kruchten, "Putting the Engineering into Software Engineering."
Innovations, 4 (1), January 2000, pp. 23-24.

Koni Buhrer, "From Craft to Science: Searching for First Principles of
Software Development." The Rational Edge, December, 2000.
http://www.therationaledge.com/content/dec_00/f_craftscience.html

For more information on the products or services discussed in this

article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2001 | Privacy/Legal Information

