
Theodore G Cleveland Page 1 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Purpose: MatLab and FORTRAN Practice Examination

Problem –1 FORTRAN .. 2
Problem –2 Linear Systems (use MatLab).. 6
Problem 3 Integration (MatLab) ... 9
Problem 4 Ordinary Differential Equations – Use MatLab.. 11

Theodore G Cleveland Page 2 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Problem –1 FORTRAN

Use your FORTRAN root finding program to determine the depth a sphere of specific

weight 0.6 (specific weight of water is 1) sinks into water as a function of its radius. The

weight of the sphere as a function of its radius is 3
3
4 rweight πγ= where the specific

weight is denoted by gamma. The volume of a spherical segment (see figure) is

)3(
3
1 32 hrhvolume −= π

h

r

h

r

Figure 1. Bouyant Sphere in Water
The force balance is that the weight of water displaced is equal to the weight of the

floating object. To compute the forces, multiply the specific weight of water and the

volume displaced and set this value equal to the weight of the sphere, then solve for h.

In your program, you want to rewrite your function as

)3(
3
1

3
4)(323 hrhrhf −−= ππγ

and solve for f(h) =0, using a realistic initial guess. Verify your numerical result using

the MatLab symbolic solver on the actual equation, then substitute the numerical values

and see how they compare with your FORTRAN result.

Theodore G Cleveland Page 3 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

 program findroot
c
c allocate program memory
c
 real*8 guess,stepsize,root
c
c allocate function names and tell compiler they are external
c to the findroot module
c note: necessary on most compilers, appears to be optional on the
c visual fortran
c
 real*8 func,dfdx
 external finc,dfdx
c
c prompt user for an initial guess and ths stepsize value
c
 write(*,*)'root finder program '
 write(*,*)'enter initial guess'
 read(*,*)guess
 write(*,*)'enter a stepsize, if in doubt, enter 1e-6'
 read(*,*)stepsize
c
c we will limit our program to 20 updates
c
 do 1001 it=1,20,1
 guess=guess - func(guess)/dfdx(guess,stepsize)
c
c test for rootness
c
 if (abs(func(guess)) .le. 1.e-06) then
 write(*,*)'root found within tolerance'
 root=guess
 write(*,*)' root function value'
 write(*,9001)root,func(root)
 go to 1002
 else
 end if
 1001 continue
c
c get to next lines only if we fail to find a root
c
 write(*,*)'cannot find root after 20 trials -- last guess is'
 write(*,*)' guess = ',guess,' function value = ',func(guess)
c
c next line ends execution - get here from either the rootness test or above
c
 1002 stop
 9001 format(1x,g12.5,2x,g12.5)
 end

 function dfdx(x,dx)
c
c finite-difference approximation for derivative of function
c named "func"
c
 real*8 x,dx,func,dfdx
 external func
 dfdx= (func(x+dx) - func(x)) / dx
 return
 end

c function for sphere submerge ONLY THIS MODULE CHANGES!!!

 function func(h)
c

Theodore G Cleveland Page 4 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

c we will hard-code the sphere sp. gravity and radius, change and
c recompile as needed. Since we have to change the function anyway,
c this unstructured coding is acceptable
c
 real*8 func,pie,h,r,gamma
 pie=acos(-1.)
 gamma=0.6
 r=4.0
c
c pick meaningful r
c
 func=gamma*(4./3.)*pie*r**3 - ((1./3.)*pie*(3*r*h**2-h**3))
 return
 end

That was the fortran solution. To verify in MatLab easiest way is to:

Step 1: Compute the sphere weight for a given radius (we used 4) in the example.

Step 2: compute buoyant force for a lot of h values, pick value closest to sphere weight.

Step 3: See if results are consistent with FORTRAN solution.

Theodore G Cleveland Page 5 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Mat lab shows that h is somewhere between 4 and 5, FORTRAN picked 4.53, so results

are reasonable.

Theodore G Cleveland Page 6 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Problem –2 Linear Systems (use MatLab)

Use the linear algebra method and the polyval() function to analyze the following

experimental results of fuel mileage versus vehicle weight.

Weight (lbs) Mileage (mpg) Weight (lbs) Mileage (mpg)
2775 33 3325 20
2495 27 3200 21
2405 29 3450 19
2545 28 3515 21
2270 34 3495 19
2560 24 4010 19
3050 23 4205 17
3710 24 2900 24
3085 23 2555 28
2940 21 2790 21
2395 26 2190 34

From these data determine the linear equation that relates fuel mileage to vehicle weight.

Based on your analysis how well are the data represented by a straight line?

Step 1: Capture the table and save as two column ASCII file (use Excel)

Step 2: Load in the file, extract the columns and convert into rows

Step 3: Use the curve fitting tools and find the equation.

Step 4: Try polynomial other than linear, see which is better.

Theodore G Cleveland Page 7 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Theodore G Cleveland Page 8 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Theodore G Cleveland Page 9 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Problem 3 Integration (MatLab)

Fugacity is a term used in engineering to describe the available work from an isothermal

process. For an ideal gas, the fugacity f is equal to its pressure P, but for real gasses

∫
−

=
P

dP
P

C
P
f

0

1)ln(

Where C is the experimentally determined compressibility factor. For methane, values of

C are tabulated as

P(atm) C

1 0.9940

10 0.9370

20 0.8683

40 0.7043

60 0.4515

80 0.3429

120 0.4259

160 0.5252

250 0.7468

400 1.0980

Develop a script that calculates f given the tabulation for all values of P between 1 and

400 atmospheres in 2 atm increments. Plot your result of f versus pressure. Assume that

the value C varies linearly between the tabulated values.

Step 1 Produce two vectors P, and C that interpolate the tabulated values.

Step 2 Formulate the integrand using these two vectors .

Theodore G Cleveland Page 10 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Step 3. Cumulate the integrand and this will represent the integral with the variable limit.

Step 4. Perform required arithmetic on the integral to recover fugacity.

Theodore G Cleveland Page 11 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Problem 4 Ordinary Differential Equations – Use MatLab

Use the Euler method to solve for y at x=0.1 from

xyyx
dx
dy

++=

With the initial condition that y=1.0 at x=0.0. Use a stepsize of ∆x = 0.01 and again

using 0.001. Compare the results.

Step 1: Construct the finite difference equation for updating:

)()()(xyyxxxyxxy ++∆+=∆+

Step 2: Starting with the initial values (x,y) = (0,1) step forward by increments of ∆x until
we get to the desired (x,y) pair.

Step 3: The scripts below should perform the required computations. Also two screen
captures of the two cases requested.

% function to integrate
function euler_out=euler_func(x_input,y_input);
euler_out=x_input+y_input+(x_input*y_input);
% end function name is 'euler_func'; file name is 'euler_func.m'

% euler's method
clear all
x_start=input('enter initial x value \n');
y_start=input('enter initial y value \n');
x_end=input('enter final x value \n');
x_step=input('enter x-step size \n');

% figure number of update steps to take
nsteps=(x_end-x_start)/x_step;
% start marching
x_now(1)=x_start;
y_now(1)=y_start;
for i=2:1:nsteps+1;
 y_now(i)=y_now(i-1)+x_step *(euler_func(x_now(i-1),y_now(i-1)));
 x_now(i)=x_now(i-1)+x_step;
end
plot(x_now,y_now,'o'),xlabel('x-value'),ylabel('y-value'),title('euler solution to dy/dx
= x + y + xy')

Theodore G Cleveland Page 12 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Theodore G Cleveland Page 13 12/1/2003

CIVE 1331 Computing for Engineers

H:\Courses\CIVE_1331\CE1331F2003\CIVE_1331\CIVE1331_ABET_Format\LabExer
cises\Lab013\CIVE1331_Solution_013.doc

Naturally you need to extract the result at (0.1,y?) but that is left to you, just extract the
proper part of the result array.

