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Abstract

Nowadays, still images are used everywhere in the digital world. The shortages of storage
capacity and transmission bandwidth make efficient compression solutions essential. A
revolutionary mathematics tool, wavelet transform, has already shown its power in image
processing.

MinImage, the major topic of this paper, is an application that compresses still images
by wavelets. Minlmage is used to compress grayscale images and true color images. It
implements the wavelet transform to code standard BMP image files to LET wavelet image
files, which is defined in Minlmage. The code is written in C++ on the Microsoft Windows
NT platform.

This paper illustrates the design and implementation details in Minlmage according
to the image compression stages. First, the preprocessor generates the wavelet transform
blocks. Second, the basic wavelet decomposition is applied to transform the image data
to the wavelet coefficients. The discrete wavelet transforms are the kernel component of
MinImage and are discussed in detail. The different wavelet transforms can be plugged in
to extend the functionality of Minlmage. The third step is the quantization. The standard
scalar quantization algorithm and the optimized quantization algorithm, as well as the
dequantization, are described. The last part of Minlmage is the entropy-coding schema.
The reordering of the coefficients based on the Peano Curve and the different entropy coding
methods are discussed. This paper also gives the specification of the wavelet compression
parameters adjusted by the end user.

The interface, parameter specification, and analysis of Minlmage are shown in the final
appendix.

1 Introduction

There are many image transmissions through the Internet around the world everyday. The
widespread, consumer-market use of information in the form of images has contributed much to
the development of data compression techniques. Large amounts of data can create enormous
problems in both storage and transmission. For example, a single A4 (8.27” width and 11.69”
height) size color picture, scanned at 300 dpi with 24 bits/pixel of true color, will produce
approximately 25 Megabytes of data without being compressed. At least 17 floppy disks are
required to store such a picture. This picture requires more than 6 minutes for transmission by
a 64k bit/s ISDN line. In a distributed environment, large image files remain a major bottleneck
within such system. One possible solution is to increase the bandwidth, but the relatively high



cost makes this a less attractive solution. Therefore, compression is a necessary and essential
method for creating image files with the manageable and transmittable sizes. This paper will
focus on a still image compressor (MinImage) design and its implementation based on some basic
wavelet transforms.

A digital image is represented by a matrix of numeric values each representing a quantized
intensity value. The points at which an image is sampled are called pixels. At each pixel location,
the brightness and the chrominance of the image are sampled and quantized. The pixel values
in intensity images are called gray scale levels or colors. True color images are multi-spectral
images when the spectral sampling is restricted to three bands, and these correspond to the red,
green, and blue wavelengths to which the human visual system responds.

The design goal of image compression is to represent images with as few bits as possible,
according to some fidelity criteria, to save both storage and transmission channel capacities.
The basic principle of image compression techniques is getting rid of the inherent redundancies.

There are two basic categories of image processing techniques. One is lossless encoding,
which is reversible and does not sacrifice any information. The other technique is lossy encoding,
which causes image quality degradation in the compression step. Careful consideration of human
visual perception can optimize the algorithm to make the degradation less recognizable, though
it depends on the selected compression ratio. Wavelet analysis is a new mathematical tool,
which can be regarded as an extension of Fourier analysis. It has already shown its arguably
revolutionary impacts upon a wide range of applications.

The visual system of a human being works in the same way as a wavelet transform. The
cells of visual system react to both frequency and space in the same manner as wavelet trans-
form, which means that a wavelet transform can encode natural scenes concisely. By wavelet
transform, the original values of a two-dimensional image data can be packed into a relatively
small number of large magnitude coefficients. The wavelet coeflicients only indicate changes,
areas with no change or very small change give small or zero coefficients. One important prop-
erty of the wavelet transform is energy invariance: The total amount of energy in the image
does not change after the wavelet transform is performed. It implies that any change in the
wavelet coefficients is proportional to the change in the reconstructed image. Therefore, the low
magnitude coefficients can be ignored without significantly distorting the reconstructed image.
By truncating or removing these small coefficients from the representation introduces only small
errors in the reconstructed image. Thus, the sparse data coding makes wavelets an excellent
lossy solution to image compression.

The wavelet image compressor, Minlmage, is designed for compressing either 24-bit true color
or 8-bit gray scale digital images. It is a lossy compressor, which means that the decompressed
image is not quite the same as the one before compression.

MinImage is designed to exploit known limitations of the human eyes. The wavelets are
intended for compressing images that will be looked at by humans. If the image is to be analyzed
by machines, it may be not proper to use the wavelets to compress the images, because the small
errors introduced by the wavelets may cause big problems in the occurrence of machine based
recognition, even if these errors are invisible to the human eye.

A very useful property of Minlmage is that the degree of compression, as well as the quality
of the image, can be varied by adjusting the compression parameters through the interface of the
program. One major advantage of this compression engine is that the user can trade off between
the compressed image file size and the image quality. A very small image file size can be achieved
if relatively poor image quality is acceptable, such as in applications like indexing image archives.
Conversely, the user can also enhance the image quality by allowing lesser compression. The
flexibility of fine tuning the compression parameters is another goal, as it makes Minlmage a
very useful tool to teach and study wavelets applications in image compression.



Minlmage is also one of the state of the art practical wavelets applications in image compres-
sion. Wavelets are likely to be the basis of the next generation of image compression standards,
but they are perhaps ten years behind JPEG in the standardization pipeline. The follwoing
diagram (Figure 1) gives the baseline schema of MinImage.

Preprocessor — | DWT| — |Quantizer| — |Encoder
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Uncompressed Compressed
Image Data Image Data

Figure 1. The Baseline Schema of Minlmage

2 Preprocess

The main purpose of the preprocess is to generate the wavelet transform blocks from the raw
image data. Omne possible optimization, in order to achieve better compression ratio, is to
downsample (resample an input signal at a lower rate) the true color image data. Figure 2 and
3 describe the preprocess schemas in both compression and uncompression stages.
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Figure 2. The Preprocess In The Compression

| wavelet transform block

is image type
24-hit true color

| color compensation |

v

| color space transform |
I

4

| reconstract original image |

Figure 3. The Preprocess In The Uncompression Stage



2.1 Color Spaces Transform

MinImage takes advantage of the fact that small color changes are perceived less accurately than
small changes in brightness. The human eyes are much more sensitive to brightness variations
than to hue variations. Therefore, the hue data can be compressed more heavily thsn the
brightness data [1]. RGB is a way that a computer defines a color in terms of the extensions of
red, green, and blue components on CRT. Y'C,C, color space (see [10]) was used internally in
the MinImage. The following are the RGB to YC,C, and Y C,C,. to RGB conversion equations.

Y =0.2989R + 0.5866G + 0.1145B
C, = —0.1688R —0.3312G + 0.5B (1)
C, =0.5R—0.4184G — 0.08168

R =Y +1.4022C,
G =Y —0.3456C, — 0.7145C, (2)
B =Y + 1.7710C,

The color space transform is necessary for compressing the true color images since the Y
space contains more information than the C} and the C, spaces. Thus, the compressor can treat
these color spaces differently in order to get greater compression ratio. By comparing the three
color spaces, we conclude that the C and C,. color spaces are easier to be compressed than the
Y color space. The C and C,. color spaces contain less important information.

Table 1. The Down Sample Modes

Total
Sample Compression
Mode Description Ratio

In the Y, C, and C). color spaces, the ratio of the original image
resolution to the sampled image resolution is 1 : 1, both
H1V1 horizontally and vertically. No downsample is performed. 1:1
Downsample is only applied in the Cb and Cr spaces horizontally.
In the Cb and Cr color spaces, the original image horizontal
H2V1 resolution: the sampled image horizontal resolution = 2 : 1. 2:3
Downsample is only applied in the Cb and Cr spaces both
horizontally and vertically. In the Cb and Cr color spaces, the
original image resolution: the sampled image resolution = 2 : 1,
H2V2 both horizontally and vertically. 1:2

2.2 Resolution Reductions

When dealing with true color images, in order to reduce the image source data, downsampling is
implemented in the Cb and Cr color spaces. There are three different sampling schemas: H1V1,
H2V1 and H2V2, which were studied by Steinmetz and Nahrstedt in [10]. They are described
in Table 1. The total compression ratio in Table 1 is defined as the original image data size to
the compressed image data size.

2.3 Image Extensions

Image extension is the last step in the image preprocessing. After the image data are extended,
the data can be divided into blocks, which are ready to be wavelet transformed. The advantage
of using wavelet transform blocks is to make the wavelet transform process independent of the
source data context, so that the wavelet transform code can be reused in other applications.



The wavelet transform block is defined as a square data block with the width of a power of
two. The two dimensions are required by the two-dimensional wavelet transforms. Even if a
one-dimensional wavelet transform is used, this data block can be regarded as a one-dimensional
stream of data. However, in the image compression applications, a two-dimensional wavelets
transform is preferred because the data in an image are not only horizontally correlated but also
vertically correlated. The square shape of a block is required to implement exactly the same
wavelet transforms on both dimensions. The advantage is the efficient and easy implementation
of the two-dimensional wavelet transforms based on the symmetry in both dimensions. The
disadvantage is the extensions of source image data are necessary because of the random original
image sizes that Minlmage supports. In the worst case, the compression ratio is reduced as the
wavelet transform block is defined as a very large square, but the original image is a narrow
line. However, the defect is not so significant, because the user can always adjust the wavelet
transform block size in order to make it match the image size as well as possible.

Given the size of the wavelet transform block, the whole image is divided into the blocks by
doing extensions on the boundary blocks if needed. See Figure 4.
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Figure 4. Image Divisions And Extensions

With the flexibility in assigning the size of the wavelet transform block, a special case occurs
when an image can be defined in just one block, if the width and the height of the image do not
exceed the domain of the block sizes, which can be adjusted by the end user.

The image extension algorithm is shown below. The following is a boundary wavelet trans-
form block, which needs to be extended. The block is divided into four areas. The shaded area
is defined as area S, which has all the sampled pixel values in the original image. The white area
A, B, and C have all the extended pixel values. See Figure 5.
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Figure 5. Boundary Wavelet Transform Block

The image extension algorithm is defined as follows. Figure 6 describes the data structures
in Minlmage used to represent the wavelet transform blocks.



PROCEDURE Image extension in the boundary wavelet transform block
IF the pixel is in area A

The value of pixel = the value of the right most sampled pixel
ELSE IF the pixel is in area B

The value of pixel = the value of the top most sampled pixel
ELSE IF the pixel is in area C

The value of pixel = the value of the right bottom sampled pixel
END IF
END PROCEDURE
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~ 1] » wavelet transform block
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a-1 o wavelet transform block
» 0 » wavelet transform block
1
Cy 2
m-1 > wavelet transform block
- 0 .
L » wavelet transform block
1
G 2
m-1 > wavelet transform block

Figure 6. The Data Structure Of The Wavelet Transform Blocks

3 DISCRETE WAVELET TRANSFORM

The wavelet transform is a projection of a signal onto a series of basis functions called the wavelet
basis. The DWT (Discrete Wavelet Transform) is the kernel part of MinTmage. Tt is applied to
the wavelet transform blocks generated by the preprocessor.

The simplest form of wavelets, the Haar basis, is used as an option in Minlmage and is
discussed here to demonstrate the application of wavelets in image compression. The discussion
will first focus on how a one-dimensional function can be decomposed by using the Haar wavelets
and their application to decompose and compose a one-dimensional signal. Then, the two- di-
mensional Haar basis functions and the two dimensional wavelet decomposition and composition
algorithms will be explored. Finally, the coefficient reduction method is represented as a real
compression stage in the wavelet image compressor. In this paper, the wavelet transform is also



called the wavelet decomposition. The inverse wavelet transform equals wavelet composition.
We use the following notation:
(1) ¢ is defined as the scaling function. ¢; = ¢(x —i),7 € Z expand the vector space V' and
¢! = ¢(2°x —i),i € Z expand the vector space V7.
(2) ¢ is defined as the wavelet function. v; = ¥(x —1),7 € Z expand the vector space W and
! = ¢(27x —i),i € Z expand the vector space W7.
The Haar scaling function ¢ = ¢9 is defined as

1, 0<z<1;
0 _ ’ = )
do(z) = { 0, otherwise.

The Haar wavelet function ¥ = vJ is defined as

1, 0<z<g;

0 1
Yolz) =9 -1, 5<z<1;
0, otherwise.

The scaling functions satisfy the following dilation equation
o(z) = Z ckd(2z — k),
k=0

where [0,n] is the support of the scaling function ¢. For Haar scaling function, cp = ¢; = 1 and
c, =0 for k#0,1.
Usually, the wavelet function is generated by the scaling function as following:

Uo(x) = D (=1)*e1_pgd (22 — k).

For the Haar wavelet, we have
(o) = ¥(22) — (22 —1).
Notice that the vector spaces V7, j =0,1,--- ,n are nested:
Volcvicvic...cvm

Let W7 be the orthogonal complement of the V7 in the space V7T, Then W7 can be used to
represent the parts of functions in V7t that cannot be represented in the space V7. Using the
direct sum notation, we have

vr=vrlgwrl=vr2gw 2w l=..=VogaWlaeW' ... w1,

3.1 The 1D Haar Wavelets Decomposition and Composition

An operator L is defined to perform the smoothing operations. By operator L, the original
signal is smoothed and scaled by % The resolution of the new signal is reduced. In Haar wavelet
transform, the operator L:

Ve £>Vn71
is defined as L = diag[[1/2 1/2],---,[1/2 1/2]].



While the operator L calculates the averaged signal in the specified level, operator H com-
putes the wavelet amplitude, resulting in the wavelet coefficients at that level. The new signal
given by the operator H is the difference between the original signal and the expanded version
of the new smoothed signal from the L operation. The resolution of the result from the operator
H is also reduced by 1/2 in Haar wavelet transform:

v & -1
where H = diag[[1/2 —1/2],---,[1/2 —1/2])].

3.1.1 1-D Haar Wavelet Decomposition

The operators L and H comprise the wavelet decomposition. By rolling together the matrix
operations of L and H, a single interleaved matrix can be defined to compute the wavelet
decomposition. For wavelets with two nonzero coefficients ¢y and ¢, the wavelet decomposition
matrix W is defined as following;:

W= dlag[cv Ca T 70]7

co O
[&] —C

where C = <

). The wavelet decomposition can be computed by
0

(80 do Sq d] ...... 87_21_] d%_])t =W (LEO fr o BRI ‘T’nfl) ,

where A? is the transpose matrix of A.
In the Haar wavelet decomposition, the wavelet coefficients are ¢g = 1 and ¢; = 1. In order
to simplify the wavelet composition (the inverse wavelet transform), the transform matrix is

adjusted by a scale factor of %, so that the normalized Haar wavelet coefficients are cqg = %

1
and ok

3.1.2 Haar Wavelet Composition

Because c2 + ¢2 = 1, the decomposition matrix is orthogonal. The inverse matrix is the same as
the transpose. Therefore, the wavelet composition matrix is W~! = W?,
The wavelet composition can be computed by

(xo €Ty e xnil)t = I/I/TL_;TL (50 dO S1 dl ...... 5%71 du,l)t .

The one-dimensional wavelet composition can be described as Figure 7.
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Figure 7. THE 1-D WAVELET COMPOSITION



3.2 1-D Haar Wavelet Decomposition and Composition Algorithms
Figure 8 is the pyramid wavelet decomposition algorithm (see [9] for example).
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Figure 8. The Pyramid Wavelet Decomposition Algorithm

The 1-D Haar wavelet decomposition algorithm is represented in Figure 9. The nMazDe-
compositionStep is defined to control when the wavelet decomposition should be stopped. For a
complete wavelet decomposition of the signal X™ with 2™ entries, the nMazDecompositionStep
can be defined in the domain of [1,n]. DecompositionStep implements one step of the wavelet
decomposition in an array of data. The 1-D Haar wavelet composition algorithm is defined as
Figure 10. The nStart determines the start point of the wavelet composition.
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Figure 9. The 1-D Haar Wavelet Figure 10. The 1-D Haar Wavelet
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3.3 The 2D Haar Wavelets Decomposition and Composition

There are two different methods of decomposing a two-dimensional image. The two methods yield
coefficients that correspond to two different sets of basis functions. The standard decomposition
of an image gives coeflicients for a basis formed by the standard construction of a two-dimensional
basis. The nonstandard decomposition gives coefficients for the nonstandard construction of basis
functions. The standard construction of the basis consists of all the possible tensor products
of one-dimensional basis functions. The nonstandard construction of a two dimensional basis
proceeds by first defining a two dimensional scaling function.

3.3.1 The 2D Standard Wavelet Decomposition

In order to implement the standard decomposition of an image, the one-dimensional wavelet
decomposition is applied first to each row of the pixel values. This operation gives an average
value along with the detail coefficients for each row. Next, these transformed rows are treated as
if they were themselves an image and the one-dimensional transform is applied to each column.
The resulting values are all detail coefficients except for a single overall average coefficient.

PROCEDURE StandardDecomposition(ImageData[0..n — 1,0..n — 1])

FOR row = 0 TO n-1 DO

OneDimensionalDecomposition(ImageData[row, 0..n — 1])

END FOR

FOR col =0 TO n—1 DO

OneDimensional Decomposition(ImageData[row, 0..n — 1])

END FOR

END PROCEDURE

Figure 11 illustrates each step of the standard two-dimensional decomposition. The shaded
parts are wavelet coefficients.

¥
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Figure 11. The 2d Standard Wavelet Decomposition Of An Image
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3.3.2 The 2D Nonstandard Wavelet Decomposition

The nonstandard wavelet decomposition alternates between operations on the rows and columns.
First, one step of horizontal wavelet decomposition is performed on the pixel values in each row
of the image. Next, one step of the vertical wavelet decomposition is performed to each column
of the previous result. The process is repeated to perform the complete wavelet decomposition.

PROCUDURE NonStandardDecomposition(ImageDatal0..n — 1,0..n — 1])

FOR row =0 TO n—1 DO

FOR col =0 TO n—1 DO

ImageData[ row, col | / =n h=n

WHILE A > 1 DO

FOR row = 0 TO h—1 DO

DecompositionStep(ImageData[row, 0..h — 1])

END FOR

FOR col =0 TO h—1 DO

DecompositionStep(ImageData[0..h — 1, col])

END FOR

h=h/2

END WHILE

END FOR

END FOR

END PROCEDURE

Figure 12 illustrates each step of the nonstandard two-dimensional decomposition. The
shaded parts are wavelet coefficients.
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Figure 12. The 2D Nonstandard Wavelet Decomposition Of An Image
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3.4 Other Wavelet Transforms

The 1D wavelet transform and 2D wavelet transform algorithms described in the previous sections
are applied not only to the Haar wavelet transform but also to the other wavelet transforms, such
as Daubechies. The only difference exists in the 1D wavelet transform. In the Haar transform,
only two signals are involved in the calculations of smooth and difference values. In the DAUB4,
for example, four signals should be calculated because of the number of wavelet coefficients in
the DAUB4 is four. In the same way, six signals should be calculated together in the DAUBG,
and eight signals are needed in one wavelet transform step in the DAUBS.

The following matrix (3) illustrates the wavelet transform matrix for the DAUB4. The
transform matrix (in this case DAUB4) is applied to the input (z4,---,216) yielding smooth
data (s1,--- ,ss) interleaved with detail data (di,--- ,dg). The results are permuted to separate
the smooth and detail data. The detail data are simply stored while the transform matrix is
applied to the smoothed data. The final output is the same number of data points as the input
and could be used to reconstruct the original data. Note the pattern of coefficients used for
the diagonal of the transform matrix in the matrix (3). The rows consist of identical pairs of
coefficients. The odd rows are smoothing filters while even rows yield the detail data. The
values wrap in the last two rows, if DAUB4 is used because it is assumed that data represent a
repeating waveform.

[Co €1 C2 €3 T
€3 —C2 €1 —Co
€o €1 C2 C3
€3 —C2 C1 —Co
Co €1 C2 C3
€3 —¢C2 €1 —Co
Co €1 C2 €3
€3 —C2 €1 —Co
W — Co €1 C2 €3 (3)
€3 —C2 C1 —Co
Co €1 C2 C3
€3 —C2 €1 —Co
Cco €1 €2 C3
€3 —C2 €1 —Co
co ¢C1
€3 —C2
c2 €3
LC1 —Co

The wavelet transform matrix in matrix (3) is a generic one. The Haar wavelet transform
can be considered a special case with the two wavelet transform coefficients. Therefore, by
implementing a more generic 1D wavelet transform algorithm, Minlmage can handle not only
Haar, but also DAUB4, DAUBG6, DAUBS and other wavelet transforms.

3.5 Wavelet Coefficients Reductions

The goal of the compression is to express an initial set of data using some smaller set of data,
probably with some loss of information. The compression can be applied by ignoring the wavelet
coefficients below some magnitude threshold. The percentage of the coefficients needed to be
kept of each color spaces can be specified by the user in Minlmage. This threshold can be
calculated by the following formula:

threshold = the kth element of the coefficients in the current color space, which is sorted by
the absolute values. k = (1-fKeepPercent) x total number of coefficients in the current color
space.

The coefficient reduction algorithm is illustrated as follows:

PROCEDURE ReduceCoefficients( float threshold )

FOR EACH coefficients in the current color space DO
IF | coefficient | < threshold
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coefficient = 0
END IF
END FOR
END PROCEDURE

4 Wavelet Coefficients Quantizations

After the two-dimensional wavelet decomposition, the wavelet transform blocks contain the
wavelet coefficients, which are real numbers. The task of the quantization stage is to quan-
tize these coefficients to integers by using designated bits. The length used to represent each
coefficient can be defined from one bit to eight bits. There is a trade- off between the precision
and the compression ratio. The more bits used in quantizing each coefficient, the more informa-
tion can be kept. However it will result in the lower compression ratio. Therefore, the design
of the quantizer is important in MinImage. A block of the two-dimensional wavelet coefficients
can be divided into subbands as Figure 13.

subband 0 [s 1 d id & id d 4 o —
=l x ! Subband Coefficients
subband 1 did di1d d & d Numbers
------- ! 0 T
subband 2 - d d d a | a d 4 d 1 3
d d d did d d d ] 1z
d d 4 d 4 4 d d 3 a2
d d d d d 4 d d ]
subband 3
d d 4 4 d 4 4 d
d d d d d d d& d

Figure 13. Subbands In A Wavelet Transform Block After The 2-D Wavelet Decomposition

Therefore, if the number of coefficients in the block is n x n, the number of subbands is
logyn 4+ 1. Given the subband k,k = 0,1, ...,log, n, the number of coefficients in the subband &

is defined as:
1, k=0
Ix 4kt B =1,2,--- logyn

4.1 Quantization Precision

In MinImage, all the wavelet transform blocks are quantized together, but each subband is
quantized separately. The QuantizePrecision is defined as the maximum quantized value of
the signal, so the domain of the quantized value will be [0, QuantizePrecision ]. The different
quantization precision can be set by the user in the different subband and in the different color
space.

4.2 Standard Uniform Scalar Quantization and Dequantization

A scalar quantizer @ approximates the source signal X by X = Q(X), which takes its values over

to finite set. Suppose that X takes its values in the domain [MinCoefficient, MaxCoefficient],

which is defined in the whole real axis. The [MinCoefficient, MaxCoefficient] is decomposed in

QuantizePrecision intervals {(Xk — 1, Xk]},1 < k < QuantizePrecision of the same size, with

Xo = MinCoefficient and XquantizePrecision = MaxCoefficient, X — X1 = A, for 1 < k <

QuantizePrecision. The uniform quantizer approximates VX € [X;_1, Xj) by Q(X) = Y;. The
A

average quadratic distortion for this uniform quantizer is D = 122 , see [8] by Mallat (1998). It is

13



independent of the probability density of the source signal values. Suppose the QuantizePrecision
is defined by

QuantizePrecision 40
MaxCoefficient — MinCoefficient =

QuantizedValue = (int)( (Oringinal Value—MinCoefficient) x

For example, the QuantizePrecision = 8, Figure 14 is the standard uniform scalar quantization
schema. The minimal and maximal coefficients of each subband in the specific color space should
be stored after the quantization process in order to dequantize the coefficients later.

QuantizedValue
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Figure 14. The Standard Uniform Scalar Quantization Method

4.3 The Optional Quantization Algorithm

The most important feature of the wavelet coefficients is the possible existance of a large number
of zeros in some subbands, especially after the coeflicient reductions. The disadvantage of the
standard uniform scalar quantization is that the zeros in the different subbands are quantized
to different values. The reason is that the QuantizePrecision in the different subbands may be
different as defined by the user. These factors result in generating different quantized values for
the same original value in the different subbands and color spaces, which has negative effect on
the coefficients entropy coding.

The optimized quantization schema is applied to improve the compression ratio in the entropy
coding by quantizing these coefficients according to their absolute value. The key point is to
keep the original small value still small after being quantized. Therefore, at the same time, the
number of zeros in the original coefficients will not be changed after being quantized. See Figure
15.
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Figure 15. The Optimized Quantization Method
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4.4 The Compression Ratio before the Entropy Encoding

The compression ratio can be calculated before the entropy encoding. This compression ratio
is a theoretical value, because only the nonzero values are defined as the useful data. All the
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zeros are ignored in this case. There are several reasons for calculating the compression ratio
at this stage. One reason is the entropy encoding is not the major research topic in this paper
and the entropy-encoding program we will use was written by others. The second reason is
the entropy-encoding actually influences the compression ratio significantly. Therefore, by just
ignoring the zeros, a reasonable evaluation can be done on the wavelet transforms in the image
compression applications, even though the practical compression ratio will be definitely reduced
because of extra spaces storing those zero coeflicients. See Appendix C for the compression ratio
analysis in Minlmage.

4.4.1 Grayscale Images

nwidth and nHeight are defined as the pixel width and the height of the original image. nBlock is
defined as the width of the wavelet transform block. Wavelet TransformBlockNumbers is defined
as the number of the wavelet transform blocks in the whole image. OriginallmageDataSize
is defined as the byte size of the original image data. It does not including the image header.
NewlmageDataSize is defined as the byte size of the compressed image data. It does not including
the image header. The compression ratio can be calculated by the following equations:

nVVidthW » [nHeight
nBlock nBlock

OriginallmageDataSize = nWidth x nHeight

Wavelet TransformBlockNumbers = | |

NewlmageDataSize = log, (QuantizePrecision[0][0] + 1) x 1+

log, nBlock
+ Z (log, (QuantizePrecision[0][i] + 1) x 3 x 471)) x WaveletTransformBlockNumbers
i=1

NewlmageDataSize

CompressionRatio = .
P OriginallmageDataSize

4.4.2 True Color Images

nwidth and nHeight are defined as the pixel width and the height of the original image. nBlock
is defined as the width of the wavelet transform block. Wawvelet TransformBlockNumbersinY is
defined as the number of the wavelet transform blocks in the Y color spaces of the whole image.
Wavelet TransformBlockNumbersInCrCb is defined as the number of the wavelet transform blocks
in the Cr and Cb color spaces of the whole image. OriginallmageDataSize is defined as the byte
size of the original image data. It does not including the image header. NewlmageDataSize is
defined as the byte size of the compressed image data. It does not including the image header.
The compression ratio can be calculated by the following equations:

nWidth nHeight

Wavelet TransformBlockNumbers = | Block 1x[ —Blok 1
[-oWidth ] _nHeight
Wavelet TransformBlockNumbersInCrCb = | n;g?:;‘: 1 x f";gizlg{e} X 2

NewlmageDataSize = (log,(QuantizePrecision[0][0] + 1) x 1+

log, nBlock

+ Z (log, (QuantizePrecision[0][i] + 1) x 3 x 4°71))x
i=1
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x Wavelet TransformBlockNumbersInY + (log, (QuantizePrecision[1][0] + 1) x 1+

log, nBlock

+ Z log, (QuantizePrecision[1][i]+1) x 3x4°~") x Wavelet TransformBlockNumbersInCrCb
i=1

NewlmageDataSize

CompressionRatio = .
P OriginallmageDataSize

5 Entropy Encoding

The wavelet coefficients are now ready to be encoded. Each coefficient may be considered as
a symbol. The domain of these symbols is [0, 255]. It may be different on the different color
spaces and subbands. The goal of the entropy encoding stage is to minimize the average bit
rate required to store all these symbols. This stage is lossless. Let X be a quantized wavelet
coefficient, that takes its values among a finite set of QuantizePrecision + 1 symbols. The easiest
way to store X is to use the fixed length encoding method. In this method, X can be coded
by [(logs(QuantizePrecision + 1)) bits. However, this simple encoding schema ignores one of
the most important features of the quantized wavelets coefficients: lots of zeros and symbols
with small values. To take advantage of this feature, traditional entropy encodings like the Run
Length Encoding and Huffman encoding are applied. A special scan algorithm is implemented
to optimize the entropy encoding.

5.1 Entropy-Encoding Schemas

Three entropy-encoding schemas can be applied. They are defined as ALLDATA, SUBBAND,
and SPACE_SUBBAND in MinImage. The ALLDATA schema encodes the whole image data
in one step. If the QuantizePrecision specified for each space and subband are the same, it is
efficient to encode all these wavelet coefficients in one step. As the domains of these wavelet
coefficients are the same, the SUBBAND schema divides the wavelet coefficients into subbands
and encodes these subbands separately. The SPACE_SUBBAND schema encodes the every
color space and every subband separately. The SPACE_SUBBAND encoding schema is suited
in the condition that every QuantizePrecision is different for each color space and subband.

5.2 Scan The Wavelet Coefficients by Peano Curve

In each wavelet transform block, the coefficients are decompressed into several subbands. In
order to entropy encode them efficiently, these coefficients are scanned by the Peano curve. An
8 x 8 wavelet transform block, scanned by the Peano curve is shown as Figure 16.

subband: 0 1 2 8

[ B B I A E E
I

Figure 16. A Third Order Peano Curve
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5.3 Entropy-Encoding

Figure 17 shows the entropy encoding schema in Minlmage. A Run Length Encoding algorithm
is used to compress the zeros in the current encoding unit if the entire elements in the unit are
quantized by no more than six bits.

Z1ib is a free compression library written in C and downloaded from the Internet. It com-
presses the source data by LZ77(Lempel-Ziv1977) and/or Huffman entropy encoding. Its defla-
tion algorithms are similar with those used by PKZIP(an MSDOS based software by PKWARE,
Inc.). A wrapped class is written to apply Zlib compression engine as the last stage of MinImage
to compress all the wavelet coefficients to a final wavelet image file with the extension LET.

| the encoding unit |

v

The maximum JuanfizeFrecision < 63

| Fun Length Encoding |
T

¥
| Zlih Compression Engine |

v

| coded ithage data |

Figure 17 The Entropy Encoding Schema In MinImage

6 Constraints

Minlmage is a complete wavelet image compression tool. There are some constraints of MinIm-
age.

(1) The wavelets applied in MinTmage are very basic ones. Hubbard noted in [6] that more
complicated wavelets have already been proved to be more powerful to compress an image.
Multiwavelets, wavelet packets, and multivariate wavelets are studied recently (see [2] — [5], [11],
and the references therein). Minlmage is coded in an object-oriented way so that it is relatively
easier to implement the additional wavelets in the specific object.

(2) The entropy encoding is not the emphasized part of this paper. Therefore, traditional
entropy encoding methods are used. An existing entropy-encoding library, Zlib, is imported
to Minlmage. There are two drawbacks. First, Zlib compressing engine may not be suited to
compress the wavelet coefficients. Zlib is created as a general compressor. Consequently, it
can not make all the advantages of the characteristics of the wavelets coefficients. Second, the
entropy encoding is actually essential in the image compression applications. The efficiency of the
entropy-encoding influences the final results in a significant way. Therefore, more sophisticated
encoding strategies, such as the zero-tree encoding, studied by Hussain and Farvardin [7], or the
vector quantization encoding, studied by Zhao and Yuan [12], should be implemented.

7 Conclusions
This paper represents wavelet applications in image compression, with the focus on the imple-

mentation details of Minlmage as a wavelet image compressor. The three major components of
Minlmage are preprocessor, wavelet transform processor and the quantizator. Compared with
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the JPEG image compression standard, MinImage is a little better in some cases. In order to
make MinImage a more powerful image compressor, entropy encoding methods can be improved
greatly. As useful software, Minlmage gives the user an easier way to do varieties of tests about
the wavelet image compressions. Wavelets will be likely one of the best image compression
standards in the future.
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Appendix. Interface, Specification, and Analysis of MinImage

A Interface of Minlmage

Here is the main window of MinImage.

The following is the compress interface. The user can easily preview the compressed result
of a particular area in the original image without compressing the whole image.

Wavelet Compress Options
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B Specification Of The Wavelet Compression Parameters

The parameters in the following table can be adjusted to compress the images in Minlmage.

Parameter Description Domain
The mode of sampling the 0= H1V1
original image in the 1 =H2V1
SampleMode preprocessor. 2 = H2V2

Log2WaveletTransformBlock
Width ( pixel width )
This parameter decides the size
WaveletBlockBase of the wavelet transform blocks. [1,11]

0 = Standard Haar
1 = Nonstandard Haar

2 = Standard Daub4
The type of wavelets used in 3 = Standard Daub6
Wavelet Type the discrete wavelet transform. 4 = Standard Daub8

The percentages of wavelet
coefficients needed to be kept
KeepCoefficientsPercent in each color space. [0.1%, 100%]

Each element in this vector
defines the quantization

precision of the wavelet
coefficients in the specified

QuantizePrecision color space and subband. [1,255]
The strategy applied to 0 = ALLDATA
entropy-encode the quantized 1 = SUBBAND
EncodingStrategy wavelet coefficients. 2 = SPACE_SUBBAND

C Analysis

The analysis is focus on the fine tuning of wavelet transform parameters and the wavelet trans-
form algorithm in MinImage.

The object image used in the tests is a star image, which is a 128 x 128 true type color image
with 196,662 bytes. The default setting of the wavelet transform parameters are in the following
Table.

THE DEFAULT SETTING OF WAVELET COMPRESSION PARAMETERS

Parameter Default value
SampleMode H2V?2
Wavelet BlockBase 7
Wavelet Type DAUB4

Grayscale: 2%,
Colorspacel:0.5%

KeepCoefficientsPercent Colorspace2:0.5%
QuantizePrecision 63 for all subbands in all color spaces
EncodingStrategy ALLDATA

(1) The Optimization of the Wavelet Pyramidal Algorithm

In the pyramid wavelet decomposition algorithm, each repetition of the process divides the
smooth data in half. The process, by theory, is proceeds until there are only two data points left.
However, this process can be terminated at any point. The final output of the wavelet transform
is the same number of data points as the input and could be used to reconstruct the original
data, no matter how many step the wavelet transform is applied. One of the most important
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optimization of the Minlmage is to terminate the wavelet transform in four steps. The setting of
the wavelet transform parameter values is: WaveletBlockBase = 8. The rest wavelet transform
parameters are set to the default values. When the wavelet transform is applied as the original
pyramid algorithm, which involves log, n steps (full steps), the comparison ratio is 1.312When
the wavelet transform is optimized, the transform terminates in four steps. The comparison ratio
is 1.305%. It has much better image quality than the original result. The artificial effects are
obvious in the original result. The conclusion is that less transform steps is better than full steps.
The exact number of the step depends on different images and different wavelets. Experiments
show that four or five steps are enough. Minlmage implements four wavelet transform steps
because four steps of wavelet transform schema works fine in most cases.

(2) Image Quality Minlmage uses a popular image error measurement, PSNR (peak signal
to noise ratio). It is based on the sum of the squared differences between corresponding pixels
of two images. The exact formula is given in the following equation. P, . is a pixel value in row
r column c of image P and Q. . is a pixel value in row r column c of image Q.

255
\/ SN SOl (P = Qr)?

rowsXcols

PSNR =20 x log,,

PSNR measures the difference between two images. A bigger PSNR value usually means that
two images compared have more similar pixels. Under normal circumstances PSNR is a good
indicator of image quality, but both objective PSNR measurement and subjective observation
measurement are needed to compare the image quality accurately.

(3) Choices of Wavelet

The default wavelet transform parameter values are set for the test. The results are repre-

sented in the following.
TESTING OF THE INFLUENCE OF WAVELET

WaveletType PSNR | CompressionRatio | Subjective Quality
Standard Haar 30.688 1.076% Non-acceptable
Non-standard Haar | 30.728 1.072% Not acceptable
Daub4 31.355 | 1.109% Acceptable
Daub6 30.929 1.035% Acceptable
Daub8 30.856 1.037% Acceptable

There is little difference between standard and non-standard wavelet transforms, according
to both the compression ratio and the image quality. The Daubachies wavelets are smoother
than the Haar wavelet, therefore, Daubachies wavelets cause better compression ratio than the
Haar wavelet.

(4) Reduce the Wavelet Coefficients

The default wavelet transform parameter values are set for the test.

underlineReduce the Grayscale Information

KeepCoefficientsPercent. For Colorspacel =100% and Colorspace2=100%, the results are rep-
resented in the following.

TESTING OF THE INFLUENCE OF REDUCE THE GRAYSCALE INFORMATION

KeepCoefficientsPercent
Grayscale: PSNR | CompressionRatio | Subjective Quality

5% 34.997 6.240% Acceptable
4% 34.371 5.883% Acceptable
3% 33.644 5.500 % Acceptable
2% 32.760 5.066% Acceptable
1% 31.424 4.523% Non-acceptable

0.5% 28.353 4.250% Non-acceptable
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Reduce Both Colorspacel and Colorspace2 Information
KeepCoefficientsPercent. For Grayscale=100%, the results are represented as the following.
TESTING OF THE INFLUENCE OF REDUCE THE COLOR INFORMATION

KeepCoefficientsPercent Compression
Corlorspacel, Corlorspace2 | PSNR Ratio Subjective Quality

5% 41.301 9.601% Acceptable

4% 40.988 9.452% Acceptable

3% 40.563 9.305% Acceptable

2% 39.874 9.113% Acceptable

1% 38.309 8.894% Acceptable
0.5% 35.932 8.758% Acceptable
0.3% 33.282 8.698% Acceptable
0.2% 28.902 8.674% Non-acceptable

The color information can be compressed more than the grayscale information. This is
reasonable because human eyes are more sensitive of brightness than of colors.

(5) Wavelet Coefficients Quantization

The settings of the wavelet transform parameter values are: QuantizePrecision parameters are
set to the same value to all color spaces and subbands. KeepCoefficientsPercent= Grayscale:4%,
Colorspacel:1%, Colorspace2:1%. The rest wavelet transform parameters are set to the default
values. The results are represented below.

TESTING OF THE INFLUENCE OF WAVELET COEFFICTENTS QUANTIZATION

QuantizePrecision | PSNR | CompressionRatio | Subjective Quality
255 (8bits) 33.663 2.731% Acceptable
127 (7bits) 33.610 2.508% Acceptable

63(6bits) 33.394 1.970% Acceptable
31(5bits) 31.899 1.768% Non-acceptable
15(4bits) 27.839 1.506% Non-acceptable

Assigning 8 bits to quantize the wavelet coefficients will disable Run Length Encoding in
Minlmage. It is not necessary to use more than six bits to quantize the coefficients. The
advantage of assigning the same quantization precision values to all the subbands in all color
spaces are to enable entropy encoding all these coefficients in one step by ZLib compression
Engine. By experiments, six bits are usually optimal to quantize the wavelet coefficients.

(6) Entropy Encoding Schema

The settings of the wavelet transform parameter values are: KeepCoefficientsPercent=
Grayscale:4%, Colorspacel:1%, Colorspace2:1%. WaveletBlockBase = 6 The rest wavelet trans-
form parameters are set to the default values.

Case 1: The QuantizePrecision parameters are set to the same default value to all color
spaces and subbands. The results are represented in the table below.

It is better to compress all the wavelet coefficients in ALLDATA because the data in different
subbands and spaces are quantized by the same number of bits.

Case 2: The QuantizePrecision parameters are set to the different value to the different
subbands.

QuantizePrecision [subband0] = 255.

QuantizePrecision [subband1] = 127.

QuantizePrecision [subband2] = 63.

QuantizePrecision [subband;] = 31 (any subband; > 2 ).

See the table below for the results.

In this case the SUBBAND entropy encoding strategy is the best option, because different
QuantizePrecision values are set to different subbands, while the same QuantizePrecision values
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are set to different subband with same color space.
Case 3: The QuantizePrecision values are set to the different value to both the subbands and
the color spaces. The grayscale space:

QuantizePrecision [subband0] = 255
QuantizePrecision [subbandl] = 127
QuantizePrecision [subband2] = 63

QuantizePrecision [subband;] = 31 (any subband; > 2)

The color space:

QuantizePrecision [subband0] = 31
QuantizePrecision [subband1] = 63
QuantizePrecision [subband2] = 127
QuantizePrecision [subband;] = 255 (any subband; > 2)
The results are represented in the following together with the previous cases.
In this case the SPACE_SUBBAND entropy encoding strategy is the best option, because

different QuantizePrecision values are set to both different subbands and different spaces.

TESTING OF THE INFLUENCE OF ENTROPY ENCODING SCHEMA

| | Case 1 | Case 2 | Case 3 |
EncodingStrategy CompressionRation | CompressionRation | CompressionRation
ALLDATA 2.001% 2.230% 2.328%
SUBBAND 2.002% 1.836% 2.285%
SPACE_SUBBAND 2.112% 1.959% 2.081%

(7) Conclusion of the Analysis

Different wavelet transform parameters are used under different conditions. The final com-
pression ratio and image quality depends on not only the set of all these parameters, but also
depends on the image itself. Therefore, there is no best solution to the setting of these wavelet
transform parameters. The design of the Minlmage is to make all these wavelet compression
parameters easy to tune. By previewing the result of the compressed image, the user can always
generate the image with particular quality and compression ratio. The flexibility of Minlmage
makes it a good tool to compress different image in different way.

23



