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Abstract

This paper presents a parallel �le object environment to support distributed array store on shared-

nothing distributed computing environments. Our environment enables programmers to extend the

concept of array distributions from memory levels to �le levels. It allows parallel I/O that facilitates the

distribution of objects in an application. When objects are read and/or written by multiple applications

using di�erent distributions, we present a novel scheme to help programmers to select the best data

distribution pattern according to minimum amount of remote data movements for the store of array

objects on distributed �le systems. Our selection scheme, to our best knowledge, is the �rst work to

attempt to optimize the distribution patterns in the secondary storage for HPF-like programs with

inter-application cases. This is especially important for a class of problems called multiple disciplinary

optimization (MDO) problems. Our testbed is built on an 8-node DEC Farm connected with an ethernet,

FDDI, or ATM switch. Our experimental results with scienti�c applications show that not only our

parallel �le system can provide aggregate bandwidths, but also our selection scheme e�ectively reduce

the communication tra�cs for the system.

1 Introduction

High-performance distributed computing environments, which consist of a collection of high-performance

machines connected via a high-speed network, can provide the aggregate computing powers necessary for

large-scale scienti�c applications. One of the critical issues in e�ectively using these systems is the e�cient

transfer of data to and from secondary storage. In this paper, we investigate the parallel I/O issues on

a shared-nothing architecture from the viewpoints of languages and programming environments. Figure 1

shows an architecture of a shared-nothing high-performance distributed computing environment that we

are dealing with in this paper. In the architecture, each processor is associated with a local disk, and the

information exchange between disks of di�erent processors has to go through an interconnection network.

*The correspondence author's e-mail address is jklee@cs.nthu.edu.tw. This paper is submitted to Journal of Parallel and

Distributed Computing. A preliminary version of this work appeared in the Proceedings of the Seventh SIAM Conference on

Parallel Processing for Scienti�c Computing, S.F., Feb. 1995.
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Figure 1: Architecture for Shared-Nothing Environment

Recent research e�orts in parallel programming languages have been concentrated on specifying regular

dimension-wise data distribution patterns for arrays among parallel machines with distributed memories.

Languages supporting the distributed array and data distribution concepts include F90-D[10], HPF[13],

PC++[14][3], and up-coming HPC++[22]. The data distribution concepts and SPMD programming model

deliver scalable performance on parallel machines for the computational part. It however does not solve

the problem with I/O part. The lack of parallel I/O supports creates two problems. First, I/O is executed

serially, which results in performance bottlenecks according to Amdahl's law[1]. Second, in parallel languages

such as HPF and PC++, the array is distributed among di�erent processors. Due to the lack of support of

distribution in the �le level, each processor has to read the whole set of data from disk to memory and store

them in a temporary bu�er, and then assign the data into the distributed array it owns. This creates extra

burdens on programmers to keep two set of data structures, and results in extra storage uses and program

codes.

In this paper, we extend the concept of array distributions in HPF[13] and pC++[14][21][3] frommemory

levels to �le levels. There are three key elements in this work. First, we support parallel �le objects with

random access. There is a unique name for each array object in a parallel I/O unit. A parallel I/O unit can be

either a �le or a pipe in the conventional Unix sense, but now it is a parallel �le or pipe and has to be accessed

by parallel �le operators provided by our libraries. (For example, we now need to use pcat to cat names and

contents of all array objects in a parallel I/O unit.) The access of array objects in a parallel I/O unit is no

longer by sequential order but instead by the name of objects. The use of a unique name for object in the

secondary storage environment helps us to track down the access patterns to a particular object and allows us

to do e�cient implementation of parallel array object I/O. Second, when objects are read and/or written by

multiple applications using di�erent distributions, we provide an interactive environment for programmers to

specify the inter-application I/O dependence, represented as a graph. We further provide a novel scheme to

select the best data distribution pattern for array store in disk according to the minimum amount of remote

data movements calculated from the I/O dependence graphs. This optimization is particularly important for

a class of problems called multiple disciplinary optimization problem (MDO) in which various discipline codes

interacting with one another to analyze the data[24]. For example, a realistic multidisciplinary optimization

of a full aircraft con�guration would require a number of discipline codes including aerodynamic analysis,

structural design analysis, controls, performance analysis, etc, to interact with each other. Various discipline
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codes can be executed as a pipeline or executed asynchronously with data �le being exchanged at various

points in the code. The data distribution pattern of grid data that various discipline codes are using might be

di�erent from each other, so it's crucial to select a good disk distribution pattern to optimize total execution

time for a full set of applications. Our selection scheme, to our best knowledge, is the �rst work to attempt to

optimize the distribution patterns in the secondary storage for HPF-like programs with multiple disciplinary

optimization problems. The third key element of our work is to support an implementation of parallel I/O

libraries which can be used e�ectively on shared nothing storage environments. This set of libraries can

support array object with described distribution patterns for both disks and memories. When programs

want to read/write array object with di�erent distribution patterns between disk and memory, the system

provides a collective communication library to e�ciently support the functionalities. In addition, our system

is capable of supporting a situation we call \out of con�guration" execution, which can be described by

an example as follows. Suppose we have an application running with 4 processors. Let the processor set

be P = fP0; P1; P2; P3g. After the execution, the application uses our parallel write operator to write an

data X[:] into the disks of processor set P . At a later time, another application is again running but with

processor set Q = fP0; P1g, and is reading the data X[:] fromdisks of processor set P . We call the parallel I/O

operations beyond the processor set of the current SPMD programs as \out of con�guration" operations. In

such an environment, the set of processors running in a traditional SPMD mode have di�culties in accessing

the disks of the processor set which are not in the current running processor set. Our system solves this

problem by installing a disk server on each processor, and providing a three phase protocols. This kind of

\out of con�guration" support is crucial for parallel �le systems on shared nothing environments.

Our parallel I/O system is currently incorporated into experimental HPF[19][11] and parallel C++ pro-

gramming environments[14][15] based on a 8-node DEC Farm system. The parallel I/O system and program-

ming environment is currently being used in a joint work with Power Mechanics Department, Tsing-Hua

university to develop scalable methods to model three-dimensional gas turbine combustor model[17][27]. Our

experimental results with these applications show that not only our parallel �le system can provide aggregate

bandwidths, but also our selection scheme e�ectively reduces the communication tra�cs for the system.

The remainder of the paper is organized as follows. Section 2 describes the related work. Section 3

presents the parallel I/O operations of our �le system for distributed arrays. Section 4 describes a framework

to select distribution patterns for arrays stores in the secondary storage. Next, Section 5 gives the design

and implementation of parallel I/O libraries. Finally, Section 6 discusses experimental results, and Section

7 concludes this paper.

2 Related Work

The concept of extending the data distribution patterns from memory levels to �le levels is �rst pioneered

by Brezany et al.[4]. Their work supports concurrent �le operations on Vienna FORTRAN. The system in

supporting data distribution for �les can be basically classi�ed into two categories: shared-storage system

and shared-nothing environment. Brezany's work is based on a shared storage system, and is supported by

concurrent �le System (CFS) on Intel Paragon machines, while our work in this paper supports a parallel �le
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system on shared nothing environments. The support of data distribution of a parallel �le in a shared nothing

environment is generally considered more di�cult than that in a shared storage system, as more e�orts are

needed to enforce data sharing on shared-nothing storages. Follow-up work in supporting data distributions

on shared-storage systems can also be seen in the work[2][7][8][26] by Choudhary et al. Choudhary's work

provides the store of distributed array in the �le system with a two phase access strategy scheme on CFS

and has an extensive performance analysis of the �le system. Both Brezany and Choudhary work are based

on Fortran languages. The extension of parallel I/O with a C++ language on shared storage environment is

proposed by Gotwals[9]. Gotwals's work provides a parallel stream for a parallel extension of C++ language

on Intel Paragons. Gotwals's work is done in parallel with our mechanism[16] which can be used in both

HPF and parallel C++ languages. However, in contrast to Brezany, Choudhary, and Gotwals work, the

access of array objects in our parallel I/O unit is not by sequential order but instead by the name of objects.

The use of a unique name for an object in the secondary storage environment helps us to track down the

access patterns to a particular object among a set of applications and allow us to do optimizations of parallel

array object I/O.

Related work in shared-nothing storage system includes IBM's Vesta[5], a scalable parallel I/O system at

Argonne National Laboratory[23], and PIOUS[25] systems. Our work also falls into the category of shared

nothing environments. IBM Vesta puts all the disks on the IO nodes so that their system is nonsymmetrical

compared to our system. Vesta has two layer partitions. Programmers not only have the global view of the

�le but also specify these two layer partition patterns. If programmer uses these two layer partition properly,

system can get better performance. Argonne's system is also built based on IBM SP2 system. This system

provides a communication library helps applications to manage hundreds of I/O streams and to checkpoint

and restart with di�erent number of processors. PIOUS is a parallel �le system provide by Steven A. Moyer

and V. S. Sunderam. This system consists of a set of data servers, a service coordinator and library routines.

PIOUS directly works compatibly with PVM environments, and does not support to the higher level of �le

distributions of HPF programs.

Our system supports the data distribution of objects in the �le level on shared nothing environment, and

work compatible with experimental HPF and parallel C++ compilers. In addition, we address the issues of

multiple disciplinary optimization problem. When objects are read and/or written by multiple applications

using di�erent distributions, we provide a novel scheme to select the best data distribution pattern for the

array store. The pattern is chosen with the minimum amount of remote data movements calculated from the

I/O dependence graphs. This optimization is particularly important for a class of problems called multiple

disciplinary optimization problem (MDO) in which various discipline codes interacting with each other to

analyze the data �les[24]. None of the existing work attempts to optimize the distribution patterns in the

secondary storage for HPF-like programs with multiple disciplinary optimization problems.

3 Parallel Object I/O for Distributed Array

In this section, we present parallel I/O operations for distributed array objects. We will deal with the

selection of I/O distributions for inter-application cases in the next section.
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Function Name Functionality

PARALLEL-OPEN Open a parallel I/O unit for reading or writing

PARALLEL-READ Read from the named parallel I/O unit

PARALLEL-WRITE Write from the named parallel I/O unit

PARALLEL-PIPE Create an inter-application communication channel

PARALLEL-CLOSE Close a I/O unit of the current application

PCAT Cat the names and contents of array objects in a parallel I/O unit.

PARALLEL-RESHAPE Explicitly reshape the array distributions in a parallel �le

Table 1: Parallel Operators and their Functionalities for a Parallel I/O Unit

A parallel write is demonstrated in the following extended HPF programs,

REAL A(64,128),B(32,16),C(24,24),D(36,36)

!HPF$ PROCESSORS MESH(4,4)

!HPF$ DISTRIBUTE (BLOCK,*) ONTO MESH:: A,B,C,D

!HPF$ PARALLEL-FILE-OBJECT A,B,C

PARALLEL-WRITE (u;0A0;0B0) A,B

A read operation to one or more distributed arrays is speci�ed by a statement of the following form:

!HPF$ PARALLEL-FILE-OBJECT A,B,C

PARALLEL-READ (u;0A0;0B0;0C0) A,B,C

where u is a parallel I/O unit, and A,B,C,D are array identi�ers. In a parallel I/O unit, an array declared as

a PARALLEL-FILE-OBJECT can be uniquely identi�ed and accessed by its name. The name tag is given

in the parenthesis following the parallel I/O unit in an I/O statment. A parallel I/O unit can be either a

parallel �le or a pipe. If it is a pipe, the reader of the pipe has to use the unique name to access the object. If

the named object in the pipe is not stored yet, the reader will be pending until the object is stored. Similarly,

the access of array objects in a parallel I/O �le is no longer by sequential order but instead by the name of

objects. Only those arrays declared as "PARALLEL-FILE-OBJECT" can be used in operations of a parallel

I/O unit. Table 1 gives a complete list of operators for a parallel �le. These parallel I/O operators can be

extended to parallel C++ language constructs in a similar way. The code segments shown later in Section

6 with our experiments will demonstrate the use of parallel I/O operators in a parallel C++ program.

4 Select Distributions on Inter-Applications Environments

4.1 I/O Models for Inter-Application Environments

Suppose we have three applications, F1, F2, F3, and each application accesses a distributed array A and

is reading or writing A from/to the same I/O unit using the parallel I/O operators. Suppose A is of
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Figure 2: Three Di�erent Data Distribution Patterns of Array Objects Using READ/WRITE in Di�erent

Applications.

size 16 � 16, and is distributed as (BLOCK, *), (*, BLOCK), and (BLOCK, BLOCK) respectively in the

memory in applications F1, F2, and F3. Figure 2 shows these three di�erent distributions with 4 processors.

The question is with what distribution should the array A reside in secondary storage. Our system helps

programmers to select the best data distribution pattern for the store of array objects on distributed �le

systems according to the minimum amount of remote data movements. If (BLOCK, *) is chosen as the

distribution scheme, application F1 incurs no remote data movements. However, there will be 192 remote

data movements for (*,BLOCK) distribution in application F2, and 128 for (BLOCK,BLOCK) distribution

in F3, and totally there are 320 data movements from remote disks. Similarly, there will be 384 remote data

movements for the store of A in secondary storage if we select (*,BLOCK) as the distribution pattern, and

320 remote data movements for (BLOCK, BLOCK) distribution.

Figure 3 shows the programming environment that we have for the selection of I/O distribution patterns

for multiple applications. When a set of applications that access an array object are ready to be executed,

a programmer �rst goes through an interactive I/O control panel (ICP), where they can describe the inter-

application I/O dependence graphs. These dependence graphs are then solved by a solver to select the best

data distribution schemes for the store of the array object on secondary storage. These distributions schemes

are then fed to a compiler to generate e�cient I/O codes. After the execution, pro�ling information can be

sent back to ICP to update the inter-application I/O dependence graphs if necessary.

Currently, the solver is able to select the best data distribution schemes for two types of inter-application

I/O dependence graphs:

� Independent Event Model

Each application is annotated with a frequency to denote how frequently the application is invoked.

Also each application is associated with a distribution pattern in which the distributed array object

is distributed among processor memories. The inter-application I/O dependence graph in Figure 4

is an example of the Independent Event Model. The read/write access patterns to an �le object are

independent events in this model.

� Multiple-Stage Precedence Model

The inter-application I/O dependence graph in Figure 5 is an example of the multiple-stage precedence
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Figure 5: Multi-stage Model for Inter-Application Stores

model. Each round node in the graph represents an application. The rectangular node represents

the data distribution of an object at each stage. The multiple stage model represents a temporal

relationship, and at each time step, there is an set of applications accessing an array object in the �le

level. The multi-stage graph models the I/O graphs at each stage also as an independent event model.

Each application at each stage is associated with a distribution pattern in which the distributed array

object is distributed among processor memories. Multiple-stage precedence graph represents a static

precedence relation between applications. It is useful for applications running for a particular order of

procedures.

4.2 Solvers

A solver selects the best data distribution scheme for the store of the array object on secondary storage

according to the speci�ed I/O graphs. Here, we �rst introduce the solver for the Independent Event Model.

For simplicity, we �rst assume that there is only one parallel I/O unit in the system. Our scheme works

under the assumption that the processor allocation scheme is statically decided, and our goal is to �nd a

distribution � such that

Minimize : �m

i=1 fi ��(�;Di) 8� 2 Dd

where fi is the execution frequency of ith Application, Di is the memory distribution pattern of the

object in the ith application, m is the number of applications, and

� = (�1; �2; :::; �d) 2 D
d:

where D is the domain of all possible distribution schemes, d is the number of processor dimension, and

�(�;Di) is the amount of remote data movements for a given distribution � under the condition that the

application is using Di at the memory distribution scheme, and it can be calculated by
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�(�;Di) = �
#P
p=1 NumOfRemoteRefp(�;Di):

The function NumOfRemoteRefp calculates the number of remote references for any given processor p.

The function NumOfRemoteRefp can be calculated as follows. Suppose the distribution of an array on a

dimension is BLOCK or CYCLIC, and then the element in processor p can be described as begin1 : end1 :

stride1 and similarly the elements resided in the disk of node p can also be described as begin2 : end2 : stride2.

The number of local references is equivalent to the number of non-negative integer pairs (x, y) such that

begin1 + stride1 � x = begin2 + stride2 � y; where begin1 + stride1 � x � MIN (end1; end2):

The equation can be converted into a form of diophantine equation as

a � x+ b � y = c; where a = stride1; b = �stride2; c
0 = begin2 � begin1

This equation can be solved with standard diophantine equation solver[28] to get x = uc=g + t � b=g; y =

vc=g � t � a=y, where g = gcd(a; b) = a � u + b � v. The variable u and v can be calculated by an extended

form of Euclid's algorithm[6] as follows

Extended-Euclid(a,b)

if b = 0 then return(a; 1; 0)

(d0; x0; y0) Extended-Euclid(b; a mod b)

(d; x; y) (d0; y0; x0 � j a=b j � y0)

return(d; x; y)

END-Euclid

Procedure Extended-Ecluid takes as input an arbitrary pair of integers and return a triple of the form

(g; u; v), where g = a�u+ b� v. The complexity of the Extended-Ecluid algorithm is the recursive depth of

the algorithm, which is O(log MIN(a,b)). a and b are strides and will be 1 in the case of BLOCK distribution

and equal to the number of processor in the case of CYCLIC distribution.

Thus �(�;Di) can be computed in O(p�Log(p)) time, where p is the number of processors in the system.

The above complexity is certainly true for the one-dimension case. For multiple dimensional array, we need

further explanation below.

Suppose we have a d dimensional array, and the processor array in the memory and disk is (p1; p2; :::; pd)

and (p
0

1; p
0

2; :::; p
0

d
), respectively.

p = p1 � p2 � ::: � pd

p = p
0

1 � p
0

2 � ::: � p
0

d

Assume the complexity is h, then

h < � pi � log(Max(pi; p
0

i
))

Therefore,
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h < � p � log(Max(pi; p
0

i
)) = p �� log(Max(pi; p

0

i
))

= p � log(� Max(pi; p
0

i
))

< p � log(� pi � p
0

i
)

< p � log(p2)

= 2 � p � log(p)

Thus �(�;Di) can be computed in O(p� Log(p)) time for arbitrary dimensional arrays.

In the case that the distribution is a Block-Cyclic distributions, we need extra e�orts to calculate the

function NumOfRemoteRefp. Suppose that we have memory distribution B(N1) and disk partition as B(N2),

we will try to �nd x, y, i, j, such that

begin1 + stride1 � x+ i = begin2 + stride2 � y + j; where 0 � i < N1; 0 � j < N2

Therefore,

begin1 + stride1 � x = begin2 + stride2 � y+ (j � i); where 0 � i < N1; 0 � j < N2

We need to solve the diophantine equation MAX(N1; N2) times. Assume N1 is bigger than N2, �(�;Di)

can be computed in O(p � N1 � Log(p) ) time, where p is the number of processors in the system.

Solver for Multiple-Stage Precedence Model

Now let's develop the solver for Multiple-Stage Precedence Model. In this model, we have an adaptive

distribution scheme for then array object in di�erent stages. Our goal is to �nd an arbitrary sequence of

(x1; x2; :::; xk), to

Minimize �k

j=1 
(j; xj) + �(xj; xj+1)

where 
(j; xj) is the amount of remote data movement at stage j, given the distribution pattern xj , k is

the number of stages, xi 2 Dd; 1 � i � k, and � is a reshape cost from one shape to another shape.


(j; � ) = �m

i=1 fi;j ��(�;Di;j) 8� 2 Dd

where fi;j is the execution frequency of ith application in the jth stage, Di;j is the distribution pattern

of the object in the ith application of the jth stage, and � and � can be calculated in the same way as those

in the Independent Model.

4.3 Extended Frameworks for Solvers

Figure 6 shows a standard three level data mapping models in the processing of an array object in a HPF

language. Our work in the previous section can only work with distribution directives, and here we extend

our framework to work with alignments.

Assume that array A is aligned with B, and B is distributed by \BLOCK" distribution as shown in the

program code segment below.
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REAL A(N)

!HPF$ ALIGN A(i) with B(a*i+ d)

We represent the index set of the elements of array A resided in processor pid as

IndexA(pid) = fi j ai is a member ofA and ai is stored on processor pidg

IndexA(pid) can be described by a triplet, [begin : end : stride], when the array B aligned by A is

distributed by \Block" or \Cyclic" distribution. For example, assume that the array B is distributed by

\Block" distribution, we have

a � i + d = pid �BS + j; 0 � i < N; 0 � j < Bs

where Bs is the block size of elements on each processor. The above equation can be transformed into an

diophantine equation as shown below.

�a � i + j = d� pid �BS ; 0 � i < N; 0 � j < Bs

By solving the diophantine equation, we get

i = u � c=g + b=g � t; 0 � i < N;

where c = d� pid �Bs; g = gcd(�a; 1); (�a) � u+ 1 � v = g; b = 1.

Therefore we have the triplet [begin : end : stride] as below:

begin = u � c=g + b=g � ceil(u � c=g); stride = 1; end = u � c=g + b=g � floor((N � g � u � c)=b)

Similarly, when array B is distributed by \Cyclic" distribution the IndexA(pid) can be described by a

triplet, [begin : end : stride]. We can get the triplet by solving the diophantine equation below

a � i+ b = pid+ j �NPROC; 0 � i < N; 0 � j < N=NPROC

Since the element index in the processor pid can be described as a triplet, we can calculate the function

NumOfRemoteRefp by the method used in Section 4.2. Suppose the distribution of an array on a dimension
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is BLOCK or CYCLIC, and the element in processor p can be described as begin1 : end1 : stride1 and

similarly the elements resided in the disk of node p can also be described as begin2 : end2 : stride2. The

number of local references is equivalent to the number of non-negative integer pairs (x, y) such that

begin1 + stride1 � x = begin2 + stride2 � y; where begin1 + stride1 � x � MIN (end1; end2):

In the case that the distribution is a Block-Cyclic distribution, we need extra e�orts to calculate the

function NumOfRemoteRefp. Suppose that array B is distributed by block-cyclic distribution, say B(k1).

Then IndexA(pid) can no longer be described a a triplet, but instead it can be described by k1 triplets,

c � i+ d = pid+ j �NPROC + offset

0 � offset � k1

Suppose that we have memory distribution B(k1) and disk partition as B(k2). Then the element in

processor p can be described as k1 triplet, begini : endi : stridei; 0 � i < k1 and similarly the elements

resided in the disk of node p can also be described by k2 triplet, begin
0

j : end
0

j
: stride0j ; 0 � j < k2. The

intersection of the elements can be calculated by solving k1 � k2 diophantine equations. The number of local

references is equivalent to the number of non-negative integer pairs (x, y) such that

begini + stridei � x = begin
0

j
+ stride

0

j
� y

where begini + stridei � x � MIN (endi; end
0

j
); 0 � i < k1; 0 � j < k2:

The complexity in �nding �(�;Di) in this case is O(p � k1 � k2 � Log p ).

Finally, our scheme works well with or without the optional mapping between abstract processor array

and physical array described in Figure 6. If the abstract processor array is the physical array, our scheme can

be applied immediately. If the optional mapping exists, we only need to do a mapping between the physical

processor number and the abstract processor number when calculating the remote reference numbers. All of

our frameworks can be applied directly.

5 Design of Parallel I/O Libraries

5.1 File Structure Design

In our parallel �le system, each parallel �le is distributed among disks of machines. In the disk of each

machine, we have a parallel �le structure and a data set of distributed array objects for each �le. The

parallel �le structure records the information of a parallel �le. The information includes the type of the �le,

the number of objects in the �le, the distribution con�guration for each object in the �le, the disk address

to denote where the object is located, the name tag for each object, the processor con�guration, and the

size of each object. These information can be used to locate the positions of the data set of objects among

processors and disks.

When users want to create a parallel �le in our system, the system creates an ordinary unix �le on

each node named as user speci�ed parallel �le name and appended node number as post�x. Then each
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corresponding �le of each processor will have only partial data set of distributed array objects. This �le

structure is used as the basis of our parallel �le system.

5.2 Collective Communication Library

In the case that we want to read an array object from disks, the system �rst pack data from local disks

into memory bu�ers. If the distribution of the object in the memory is the same as that in the disk, each

processor read the data from the memory bu�ers with SPMD mode. On the other hand, if the distribution of

the object in the memory is di�erent from that in the disk, our system provides a collective communication

library to exchange data into its correct positions. The collective communication library will compute the

sending set and receiving set. Sending set is the set of data that that each local processor will send to other

processors, and receiving set is the set of data that each local processor will receive from other processors.

When the collective communication is done, data is then placed into the correct memory addresses from the

memory bu�ers. A parallel write operation can be done similarly.

The sending set and receiving set in our collective communication library for parallel I/O operations can

be modeled by extending the concepts in the data movements in the memory level on distributed memory

environments[12]. We will explain our revision as follows. Suppose A is an array, and p and q denote processor

numbers. The essential set operations involved in a collective communication library implementation are

described as follows.

localA(p) which represents the set of data owned by processor p is de�ned as follows.

localA(p) = fa j a is a member ofA and a is stored on pg

send set(p; q) that represents the set of data processor p will send to processor q is de�ned as follows.

send setA(p; q) = fa j a is a member of A; and must be sent from p to qg

recv setA(p; q) which represents the set of data processor p will receive from processor q is de�ned as

follows.

recv set(p; q) = fa j a is a member of A; and p must receive a from qg

We then have the following two basic properties.

Lemma 1 Assume that the owner computing rule is used, and let A be the array object to be written from

memory to a �le, and denoted by DiskA[:] = MemoryA[:]. Then

recv set(p; q) = localMemoryA
(q) \ localDiskA

(p)

send set(p; q) = localMemoryA
(p) \ localDiskA

(q)

Lemma 2 Assume that the owner computing rule is used, and let A be the array object to be read from a

�le to the memory, and denoted by MemoryA[:] = DiskA[:]. Then
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recv set(p; q) = localDiskA
(q) \ localMemoryA

(p)

send set(p; q) = localDiskA
(p) \ localMemoryA

(q)

The local functions for \Block" and \Cyclic" distributions are

localblock(p) = fi j (p� 1) � dN=P e + 1 � i � p � dN=P eg

localcyclic(p) = fi j i � (p mod #P )g

The above form can be further simpli�ed as a triplet. Let's assume that A(N) is with Block distribution

and distributed on #P processors. Then we can get

local setA(pid) = (L : U : S)

where L = B �#P; U = B � (#P + 1)� 1; B = N=#P; and S = 1.

Similarly, if A(N) is with Cyclic Distribution and distributed on #P processors, the elements on processor

pid can also be described by a triplet.

We will give an example in calculating send set and recv set below:

Example 1 Assume that the owner computing rule is used, and let A(10) be the array object to be read from

�le to memory, and denoted by MemoryA[:] = DiskA[:]. Let MemoryA is distributed by block distribution

and DiskA is distributed by cyclic distribution. Furthermore, we assume that we have only two processors

in a system. Then

recv set(0; 1) = localDiskA
(1) \ localMemoryA

(0)

= (1 : 9 : 2) \ (0 : 4)

= (1 : 3 : 2)

send set(0; 1) = localDiskA
(0) \ localMemoryA

(1)

= (0 : 8 : 2) \ (5 : 9)

= (6 : 8 : 2)

5.3 Out of Con�guration Support

Suppose we have application A running with 4 processors. Let the processor set be P = fP0; P1; P2; P3g.

After the execution, application A uses our parallel write operator to write an data X[:] into the disks of

processor set P . Later, application B is running but with processor set Q = fP0; P1g, and is reading the

data X[:] from disks of processor set P . Figure 7 illustrates the data movements of such an environment.

We call the parallel I/O operations beyond the processor set of the current SPMD programs as \out of

con�guration support". In such an environment, the processors running in traditional SPMD mode have

di�culties in accessing the disks of the processor set outside the current running processor set. Our system
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solves this problem by installing a disk server on each processor and providing a protocol to support out of

con�guration operations.

Figure 8 describes our three phase protocols, OCP (Out of Con�guration Protocols) between the program

and the server when a parallel read operation is issued. The program �rst check if a \out of con�guration"

parallel read operation is invoked. If an out of con�guration read operation does happen, processor 0 then

sends a parallel read request to the server of each processor which is not in the current con�guration, but

possesses data. This daemon in the server site �rst waits and listens to request. Upon receiving the parallel

read request, it does handshake with processor 0 to get the con�guration and object information. In the

second phase, the server reads the local collection of the array object from the disk, and waits to receive

the sending set and receiving set information from each process running SPMD program. Finally after the

server receives the sending set, it then sends data to each of the SPMD program according to the sending

set it receives.
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Similarly, when a parallel write operation is issued, a program �rst checks if a \out of con�guration"

parallel write operation is invoked. If an out of con�guration write operation does get invoked, processor 0

then sends a parallel write request to the server of each processor which is outside the current con�guration,

but the data will be written to. This daemon in the server site �rst waits and listens to request. Upon it

receives the parallel write request, one of the SPMD processor continues to send the con�guration and object

information to each of the servers. In the second phase, the server receives receiving set and the data from

each of the SPMD processors. Finally in the third phase, it stores the data into local disk according to the

receiving set.

6 Experimental Results

Our parallel �le system is currently being incorporated with an experimental parallel C++ and High-

Performance Fortran compiler on a 8-node DEC Farm. Figure 3 in Section 4.1 showed the full system

view for the parallel programming environments. This system is also used for the development of com-

putational 
uid dynamic applications in a joint e�ort with scientists in the Power Mechanics Department,

Tsing-Hua university[17][27]. In the remainder of this section, we will present three sets of experiments done

on our parallel �le systems.

Experiments with Primitive Operations

The �rst set of our experiments is conducted to evaluate the basic functionalities of our parallel I/O operators.

Table 2 shows the time spent and the speedup �gures for parallel write operations. The experiment is done

with the memory and disk having the same distribution patterns. The size of the array in the experiment is

128 by 128 with each element of the array having 64 bytes. We experiment with basic distribution patterns

including (Block,Block), (Block,Cyclic), (Cyclic,Cyclic), (Cyclic,Block), and (Block,*). All of them exhibit

close to linearly speedup and deliver aggregate bandwidth as processor number grows. The time listed is

measured by running the parallel read and write operations over 100 times. We observe their behavior similar

to each other in spite of di�erent distribution patterns used. Similarly, parallel-read operations also exhibits

similar performance speedup in our experiment.

The experiment listed above is done when the data distribution pattern of the object in the memory

is the same as the distribution in the disk. Our system also supports the parallel I/O operator when the

memory object has di�erent distribution from the disk object. In the following, we conduct an experiment

in our system with such cases. In our experiment, we have an array object stored in the disk with (Block,

Block) distribution, and has to be read from the disk into the memory with (Block, Cyclic) distribution

pattern. The array sizes listed used are 256 by 128, 128 by 128, and 128 by 64, respectively. The size

of each element is again 64 bytes. The disk data is �rst fetched into the local processor, and then our

collective communication library described in Section 5 is invoked to exchange data elements between di�erent

processors. The collective communication time is bound by the total number of remote references and the

network bandwidths. Table 3 shows the communication time spent with our collective communication library

in such cases. Out system works on an 8 node DEC Farm with both Ethernet and FDDI connections. Our
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Pattern W(B,B),R(B,B) W(C,C),R(C,C) W(B,C),R(B,C) W(C,B),R(C,B) W(B,*),R(B,*)

NPROC time speedup time speedup time speedup time speedup time speedup

1 node 40.74 1.0 41.16 1.0 42.22 1.0 41.37 1.0 40.90 1.0

2 nodes 23.12 1.76 23.09 1.78 23.04 1.83 22.76 1.82 23.10 1.77

4 nodes 13.93 2.92 13.72 2.99 13.74 3.07 14.12 2.93 13.86 2.95

8 nodes 6.72 6.06 6.64 6.19 6.72 6.28 6.82 6.06 6.80 6.01

Table 2: Time (Seconds) Spent When Parallel-Write with the Same Data Distribution Pattern.

Network/ ArraySize 256x128 128x128 128x64

EtherNet 171.7 93.9 62.2

FDDI 52.8 29.7 24.8

Table 3: Communication Time with Data Moved From (Block,Block) into (Block, Cyclic) Distribution on

an 8 Node DEC Farm

collective communication library is improved with a factor of 3 when we move from Ethernet to FDDI

network. In these experiments, our parallel �le system can not only provide aggregate bandwidths when the

data distribution pattern of an object in the memory is the same as the distribution in the disk, but also

provide e�cient supports of a collective communication library on high-speed networks when the memory

object is associated with a di�erent distribution from that of the disk object.

Scienti�c Applications Using Parallel I/O

In our second set of experiments, our parallel �le system is being used for actual software development

with parallel computational 
uid dynamic applications to reduce I/O bottlenecks. This is a joint work with

the Power Mechanics Department, Tsing-Hua university. Currently, two 
uid dynamic codes are employing

the parallel I/O operations to parallelize the original serial part of I/O statements. These codes are being

developed by using a parallel C++ language[14][15] with our parallel I/O library.

The �rst application in our experiment is a gas-turbine-combustor model for simulating dilution jets[17].

The 3D grid is partitioned among processors and the data distribution scheme is illustrated in Figure 9.

Two of the three dimensions are distributed among processors while the dimension along the k direction is

not distributed. The data distribution is [Block,Block,*]. The data structure represented in a parallel C++

programs is shown below.

class SubGrid {

double U1[NZ],V1[NZ],W1[NZ],P[NZ],VIS[NZ],DEN[NZ], . . .

. . .

};

DistributedArray<SubGrid> Volume([MAXPROC],[NX,NY],[Block,Block]);

The above is an extended syntax of an experimental parallel C++ language[14]. We declare a distributed

array of \SubGrid" with the array being distributed by [Block,Block] distribution. The element of an array
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is a SubGrid consisting a vector of grid points. The information in a subgrid includes positions, velocity,

pressures, viscosity, densities, etc.

The algorithm is basically divided into three steps. In the �rst step, a �nite di�erence scheme (QUICK

scheme) in a 3D plane with 32 points in the stencil pattern is used. After the �nite di�erence scheme is

completed, we need to solve a group of linear systems using ADI methods. At this point in each iteration,

the 
uid data of the three-dimensional grids are written out by our parallel I/O operators. The periodical

output of the 
uid data can make the checkpoints to restart the program in case the machine is down and

can be used for programmers to observe (or visualize) the progress of a program. Using the parallel I/O

library we can parallelize both the read of the initial grid data and the output of the grid data in each

iteration. The parallelization of I/O statements can reduce the time with I/O statements, simplify program

coding e�orts, and reduce the storage consumptions. Without using a parallel write operations, the program

originally had to collect all the data of the distributed array into one processor and then write the data to a

disk from one processor. Table 4 compares the time spent between a parallel and sequential write operation

with the gas-turbine-combustor model. In this experiment, the size of the distributed array is 32 by 16, and

the size of each SubGrid is 3296 bytes, as it contains the third dimension of the structures and many essential

information for 
uid computations. The total size of the distributed array is around 1.68MB. With parallel

write operations, it only takes 0.10 seconds on a 8 processor DEC ALPHA Farm with Ethernet connections

to write the data into the disk in parallel. With sequential write operations, all of the processors has to �rst

move the data through network into processor 0, which takes 3.40 seconds. And then it takes 0.62 seconds

to �nish the disk write operations. A parallel write operation signi�cantly out-perform a sequential write

operation.

The second application in using our parallel I/O libraries is a parallel vortex method to simulate the

turbulence of a three-dimensionally evolving jet. Vortex method[20] is widely used to simulate vortex induced


ow problems, and is adopted to simulate the evolution of three-dimensionally periodical jet under axial

perturbations. The global interaction of all point vortexes is a typical N-body problem with an operation
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Write/Time Write Operations Communication Total(seconds)

Parallel Write with 8 Nodes 0.10 0.0 0.10

Sequential Write with 8 Nodes 0.62 3.40 4.02

Table 4: Parallel Write v.s. Sequential Write in the Combustion-Chamber CFD Application.

cost proportional to N*(N-1). Our whole data structures are composed by a group of rings distributed among

three dimensional spaces, with each ring consisting of a collection of vortexes. Figure 10 shows a system of

six rings distributed among four processors. There are four fragments in this system, one for each processor.

Each fragment consists of two sub-rings, with one being a complete ring and the other being a half ring.

The whole algorithm is then carried out by each fragment computing the interactions among each other,

stretching the vortexes, and saving the data on every M iterations, for some constant M. The main program

loop looks like

class Fragment {

double pos1[m+1][4],vel[m+1][4],cir[m+1],nber[mnr+1], . . .

. . .

};.

DistributedArray<Fragment> Volume([MAXPROC],[MAXPROC],[Block]);

main() {

pfp=pCreate("/pfs/user/local/project/vortex.iof","w+r");

for (iter=1; iter<max_iteration; i++){

calculate velocity (0); calculate velocity (1);

stretch();

Volume.pWrite(pfp,"Volume"); /* parallel I/O to save data */

}

pClose(pfp);

}

Similar to the �rst application, this application is using parallel I/O to read the initial vortex data and

output the vortex data in each iteration. In this experiment, there are 16 rings and each ring can hold up

to 1000 vortex elements. The total size of the structure is around 1.1MB. With parallel write operations, it

only takes 0.07 seconds on a 8 processor DEC ALPHA Farm with Ethernet connections. With sequential

write operations, it �rst moves the data into one processor which takes 2.13 seconds, and then it takes 0.42

seconds to �nish the disk write operations. Totally, a parallel write operation is almost 36 times faster than

a sequential write operation after adding the factor of network tra�cs. This is calculated from the formula

below.

Speedup = (TSequentialWrite + Tcommunication)=TParallelWrite = (0:42 + 2:13)=0:07 = 36
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Write/Time Write Operations Communication Total(seconds)

Parallel Write with 8 Nodes 0.07 0.0 0.07

Sequential Write with 8 Nodes 0.42 2.13 2.55

Table 5: Parallel Write v.s. Sequential Write in the Parallel Vortex Method.
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Figure 11: An Example of Multidisciplinary Optimization Application

Experiments on Selecting Distribution Pattern

The selection of a data distribution pattern for the store of array object in the �le system is particularly

useful in a multiple disciplinary optimization problem (MDO) in which various discipline codes interacting

with each other to analyze the data. Figure 11 shows the I/O precedence graphs in our model for a simpli�ed

sample of MDO applications[24] with an aircraft design. A realistic multidisciplinary optimization of a full

aircraft con�guration would require a number of discipline codes including aerodynamic analysis, structural

design analysis, control system analysis, performance analysis, etc, to interact with each other. Various

discipline codes can be executed as a pipeline or executed asynchronously with data �le being exchanged

at various points in the code. In the sample application in Figure 11, optimizer, �nite element solver, and


ow solver all access the surface geometry information object which is stored in a parallel �le. The data

distribution pattern of the surface geometry information used in the optimizer, �nite element solver, and


ow solver might be di�erent. In this case, selecting a good disk distribution pattern by using our proposed

scheme in Section 4 can decrease total execution time of a full system.

Figure 12 plugs in a template data set to model MDO problem. Suppose the optimizer, 
ow solver, and

�nite element solver uses the grid object with (Block,Block), (Block,Cyclic), and (Cyclic,Cyclic) distribution

patterns, respectively and there are totally four processors in use. Figure 12 shows the basic data movement

ratio between di�erent distributions. The number associated with the edge represents the data movement

ratio frommemory to disk for the two di�erent distributions. The number such as 1/2 represents the amount

of remote data movement over the size of the array object. Let's assume that each application has the same

frequency in accessing the object in disk. By employing our dynamic programming algorithm in selecting

the best data distribution pattern, a selection of (Block,Cyclic) as the disk distribution will minimize the
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Disk/Memory Pattern (Block,Block) (Block,Cyclic) (Cyclic,Cyclic) Total

(Block,Cyclic) remote move ratio 1/2*N 0 1/2*N N

communication time 25.8 0 27.3 53.1

(Block,Block) remote move ratio 0 1/2 *N 3/4*N 5/4*N

communication time 0 25.7 56.5 82.2

(Cyclic,Cyclic) remote move ratio 3/4*N 1/2*N 0 5/4*N

communication time 54.5 26.9 0 81.4

(Block,*) remote move ratio 1/2*N 1/2*N 3/4*N 7/4*N

communication time 26.6 25.6 52.7 104.9

Table 6: Predicted Data Movement Ratio vs. Experimented Performance on 4 Nodes

remote references. The optimization is based on the formula in Section 4 as shown below.

Minimize : �m

i=1 fi ��(�;Di)

where fi is the execution frequency of ith application, and �(�;Di) is the amount of remote data move-

ments for a given distribution � under the condition that the application is using Di at the memory distri-

bution scheme.

Similarly, Figure 13 illustrates the same idea but with 8 processors. The diagram shows the remote data

movement from memory to disk with di�erent distributions. The (Block, *) distribution is to distribute the

�rst dimension of the array by block, but there is no distribution for the second dimension of the array.

It's used as one extra reference point to show the data movement rate with di�erent distribution pattern.

Suppose we still use the same assumption with the four processor case, and apply the selection algorithm in

Section 4, we will �nd the (Block,Cyclic) distribution is the best distribution.

Focus is now directed to Table 6, where we compare the predicted performance by our selection scheme

with actual performance results. The left hand side of the table represents the disk patterns of the objects

if chosen. The �rst row of the table represents a template data set of the MDO problem. Suppose the

21



Disk/Memory Pattern (Block,Block) (Block,CYclic) (Cyclic,Cyclic) Total

(Block,Cyclic) remote move ratio 1/2*N 0 3/4*N 5/4*N

communication time 39.5 0 79.9 119.4

(Block,Block) remote move ratio 0 1/2 *N 7/8*N 11/8*N

communication time 0 40.4 110.8 151.2

(Cyclic,Cyclic) remote move ratio 7/8*N 3/4*N 0 13/8*N

communication time 109.2 82.2 0 191.4

(Block,*) remote move ratio 1/2*N 1/2*N 7/8*N 15/8*N

communication time 41.0 40.3 111.1 192.4

Table 7: Predicted Data Movement Ratio vs. Experimented Performance on 8 Nodes

optimizer, 
ow solver, and �nite element solver uses the grid object with (Block,Block), (Block,Cyclic), and

(Cyclic,Cyclic) distribution patterns in the memory respectively, and let N be the size of the array object.

The predicted smallest remote movement ratio is N if we choose (Block,Cyclic) as the disk distribution. The

actual execution time is more than 30% improvement over the next best selection. The array size in this

experiment is 64 by 64, and each element of the array is again of size 64 bytes. The time measured in the

table is in the unit of 10�2 second. Note that due to CSMA/CD behavior in the ethernet, the movement

ratio is not linearly proportional to the actual execution time. In one instance in our experiment, when the

data movement ratio increases from one 1/2*N to 3/4*N, the actual communication time increases nearly

100 percents. This observation further underlines the importance of pattern selections. Table 7 shows a

similar result, but experimented on an 8-node DEC Farm.

Finally, our solver for selecting proper distributions for parallel �le system is very e�cient in our ex-

periments. For example, in one of the test run, with array size 4000 � 4000, processor array size 4 � 4,

array object distribution scheme [B(10), B(10)], and �le array distribution [Cyclic,Cyclic], it only takes 0.034

seconds at a SUN Sparc 10/30 machine to decide the number of remote references needed.

7 Conclusion

This paper describes a parallel �le object environment to support distributed array store on shared-nothing

distributed computing environments. Our environment enables programmers to extend the concept of array

distribution from memory levels to �le levels. It allows parallel I/O according to the distribution of objects

in an application. Currently, our parallel I/O library is incorporated into an experimental parallel C++ and

a subet set of HPF compiler on a 8-node DEC Farm with Ethernet or FDDI connections. In addition, this

paper proposes a selection scheme to help programmers to select the best data distribution pattern according

to the minimum amount of remote data movements for the store of array objects on distributed �le systems,

when objects are read and/or written by multiple applications using di�erent distributions. This selection

scheme, to our best knowledge, is the �rst work to optimize the distribution patterns in the secondary storage

with HPF-like programs for multiple disciplinary applications. Our experimental result shows that not only

our parallel �le system can provide aggregate bandwidths, but also our selection scheme e�ectively reduce

the communication tra�cs for the system.
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