M_Lib Library Manual

Version: 3.2b
Author: Anatoly Kardash

Table of Contents

IO 11T [1 o o S 1
2. OVEBIVIBIN. ...ttt sttt ettt e st e b e bt e bt e bt e st e st e e e b e e b e e be e bt e bt e Rt e se et e aeneenbenbeerennenneans 2
3. HOW tO USE M _LID TIBIaIY ... 2
3.1. Message FOrmatS DICHIONAIYcc.ecveiieieeiececcie et ee e ste e st ae s et e e te e e s neenesnnennens 2
311 DICHONGNY FOMMBL.....c.eiueeeeieeeieseest ettt sttt e et st b e b e e e ene e e eneas 2
3.1.2. ASCIH/UNICODE.......ccctiiiieiiesiesiesie sttt sttt esaesaesbesbesbessesseeneeneas 3
3.1.3. Loading of the message diCtioNaryccooeeeienerene e 3

3.2. Use of the Messages in the SOUrCe COE..........ccvierieeiieiiecece et 4
At I = - = o S 4
I = T- 'S Tol 1 7= e 010 (=== o £10] 1 o] o I 4
3.2.3. How to handle more frequently used MESSAgE?cccevererererieiesiesie e 5
3.2.4. Requirements to the message arguments and IOSTREAM libraryccccovvveeivennenne. 5

3.3, TriCKS @Nd PrECAULTIONS.c.ceueeieeeriesie sttt ettt st bt e sb bbb b sneene e e e 6

4, IMPlIEMENLALION NOLES.........coivieiecieceee e s e e et e et e eaeesreene e e e saeenreennenns 7
A1, CONCUIMEICE. ... e euteeteeeteesteeeteesieeebeesateeseesseeesbeeaaeeabeesaeeeabeesaseaabeesabe e beeamseeseesabeeabeasnseansenas 7
4.2. Backward & Forward Compatibilitycccoieeiieiiiicse e e 7
5. Copyright and DiSCIAIMENccoiiiiieeee et 7

1. Introduction

The M_Lib is a mechanism allowing:

- to have all the messages that an end-user can see out of the program source code, so it is much simpler
to maintain them and to have them in a unified format, also it is easy to ensure that all the messages
with the same meaning look the same (i.e. there is no set of messages like "Can't open file", "Could not
open file", etc. but a single message only);

- to make much easier internationalization of the system (e.g. to change the application language will
mean just another file with messages);

- to have such a mechanism unified for all platforms (or at least as many platforms as possible);

- to change the messages without any application build procedure involved (unlike so called "resource"
files).

Ideally such a system has to provide the following functionality:

- easy-to-use, clear and robust end-programmer interface;

- external dictionary of the message formats allowing easy manual editing;

- fast access of the messages at run-time (i.e. there must not be significant performance gap by use of
such a message coding system);

- effective use of memory, including optional loading of messages "on demand" only (as it is necessary by
various constrained platforms);

- possibility to change the set of messages on run-time without rebuild or restart of the system.

The current version of M_Lib library provides all the abovementioned functionality.
The latest update of the library can be obtained anytime from:
http://www.geocities.com/SiliconValley/Peaks/8778/p ubdom.html

or
http://www.kardash.com/pubdom.html

M_Lib Library Manual (v3.2b) 1

2. Overview

Some of other existing tools provide a C-like message formatting design, i.e. the externally stored messages
are something like "printf() " format strings, thus it is the end-programmer’s responsibility to place
arguments of correct types and in the correct order when using the formats to create the real messages.

This is not too handy by several reasons:

- in case of wrong number of arguments or wrong types of arguments the system generates garbage
messages in the best case or (usually) just crashes;

- editing of the message formats dictionary must be done very carefully — changing of order, types or
number of the arguments is crucial for the system.

While the first lack of this approach is just an inconvenience for the end-programmer, the second
disadvantage may be unacceptable at all in case you have to change order of arguments (e.g. if you have a
message showing values of physical constants, which takes 3 arguments — name of the constant, its value
and the units of measure, and you have to change all messages like "The light speed is 300000

km/h " to something like "The value 300000 km/h is the light speed "). Unfortunately sometimes
this requirement is inevitable — for example, switching to another language may require changing the order
of words (a-ka arguments) in the message — just by the language grammar.

Fortunately using the facilities of C++ it's possible to build some mechanism avoiding these disadvantages.
M_Lib library does that.

In M_Lib the externally stored message formats have just fields for the arguments, the real types and values
of them are taken at build-time (or even at run-time) from the program source code. Thus for the example
from above the message format

"The <$1> is <$2> <$3>"
will simply be changed to
"The value <$2> <$3> is the <$1>"
while all the source code using this message will remain unchanged (and the binaries not rebuilt).

M_Lib library's API is a set of macros accepting message ID, and pairs “argument type” — “value” (number of
arguments can be from zero to five). E.g. to output the message from the example above it's enough to write
something like:

double constant_value = 300000.;

char* constant_name = "light speed";

char* constant_units = "km/h";

cout << M_MSG3(MSG_PHYSICAL_CONSTANT, char*, cons tant_name,
double, constant_value, char*, constant_units);

and the binary built from this source will work for any message format.

Moreover if the source code attempts to create a message with insufficient set of arguments or extra
arguments (i.e. the use of the message format in the source does not corresponds the format itself) — such
errors will not cause any crash of the system, they will be treated somehow safely (although the resulting
message will look somehow ugly ©). And such problems can be solved by fixing the format only with no
modifying/rebuilding of the program source code.

3. How to use M_Lib library
3.1. Message Formats Dictionary

3.1.1. Dictionary format

The message formats dictionary is a plain ASCII or UNICODE file that has a very simple structure. Each line
of the file is parsed separately. The lines can be one of the following:

- empty line - such a line is ignored;

- line beginning with the '# character - this is a comment line and is safely ignored as well;

M_Lib Library Manual (v3.2b) 2

- line with message ID and message format. Such a line looks like:

MSG_PHYSICAL_CONSTANT "The value <$2> <$3> is the <$1>"

Here is an example of a real message formats dictionary:

--- begin of message dictionary

Memory problems messages
fatal error - new/malloc/strdup/etc. returns 0:

CANT_ALLOCATE_MEMORY "Can't allocate memory - <$1> failed."

internal error - somebody passed 0 pointer where must be alive one:
NULL_ARGUMENT "Function [<$1>] accepted illegal ze ro arg [<$2>]."
File problems messages

NOT_EXISTING_FILE "Can't access file [<$1>]."

CANT_OPEN_FILE "Can't open file [<$1>]."

CANT_READ_FILE "Error reading file [<$1>]."

CANT_WRITE_FILE "Error writing file [<$1>]."

CANT_DELETE_FILE "Can't delete file [<$1>]."

Processes interaction problems

CANT_START_PROCESS "Can't launch process [<$1>]."

PROCESS_FAILED "Link with process [<$1>] lost."

--- end of message dictionary
It is not too complicated, isn't it?

M_Lib doesn’t limit the number of entries in a dictionary. Each entry can be up to 4096 characters (either
ASCII or UNICODE) - this is just a size of buffer for reading a line from the file.

3.1.2. ASCII/UNICODE

M_ Lib supports either plain ASCII or UNICODE messages: depending on compilation settings - _UNICODE
pre-processor macro must be defined to work with UNICODE.

The message formats dictionary file must correspond to the M_Lib build, i.e. if M_Lib is built to use
UNICODE, then the dictionary must be a UNICODE text file, otherwise the results are unpredictable.

M_ Lib supports both UNICODE text byte orders - "normal” and "illegal”.

3.1.3. Loading of the message dictionary

There can be only 1 message formats dictionary in the process at any moment (the dictionary can be
switched to another file at run-time — see below). By default it is a file named "messages.txt " in the
current directory (with 2 exceptions: on WiIinCE it is “\messages.txt ", on Symbian OS it is
“c:\messages.txt "). There are 2 ways to change the default:

1. On platforms supporting environment variables (UNIX, MSWin, etc.) it is possible to define MLIB_FNAME
environment variable to point to the dictionary file. This setting will override the default. E.qg. if your
dictionary resides in the file C:\my_prog\my_config\msgs then you have to perform something like

set MLIB_FNAME=C:\my_prog\my_config\msgs

(The syntax depends on the shell used: MSWin Control Panel or command.com/cmd.exe , UNIX sh, csh, etc.)
or to call

putenv("MLIB_FNAME=/usr/local/etc/my_app/msgs");
before any use of M_Lib (e.g. in the first lines of your main() function).

2. M_Lib provides a macro, which may be used BEFORE any other use of M_Lib only:
M_SET_MESSAGE_FILHEf you put in the source, e.g.

M_SET_MESSAGE_FILE("C:\\my_prog\\my_config\\msgs");
then this setting will override both the default and the environment variable MLIB_FNAME setting.

M_Lib Library Manual (v3.2b) 3

Please note that the macro M_SET_MESSAGE_FILEs not declarative but executive, i.e. it causes cleaning
of the currently used formats (if any) and starting to use a new dictionary. Thus is allows easy switching to
another dictionary at run-time, e.g. in case you want to change the language of your application GUI.

M_Lib can work in 2 modes:

1. "Normal", when all message formats are loaded into memory. In this mode M_Lib works very fast, but if
your dictionary is large then it will take a plenty of memory to store it during the lifetime of the process.

2. "Just-in-time" (JIT), when the message IDs are loaded into memory, but a message format itself is read
from the file only when it is really needed (used by the program).

By default, M_Lib is built to work in "normal” mode, but if "JIT" is necessary then M_Lib has to be built with
M_JIT_MODEpre-processor macro defined.

The first loading of the message IDs (along with formats in "normal” mode) from a dictionary is done on the
1* call of any M_Lib macro (if it is not M_SET_MESSAGE_FILEhen either the default dictionary file or the file
pointed by MLIB_FNAME environment variable is loaded).

3.2. Use of the Messages in the Source Code

3.2.1. Basics
The use of the messages is quite simple. First of all, it's necessary to include the M_Lib header file:

#include <m_lib.h>
(and, of course, to add M_Lib to the list of libraries linked with the EXE/DLL).
Then you can write in the source code something like:
A_c* a=please_create_A();
ifta==0)
cerr << M_MSG(CANT_ALLOCATE_MEMORY) << endl;
The above message is very simple as it has no arguments. OK, let's take a look at this:
char* fname = "aaa.txt;
FILE* fp = fopen(fname, "r");
if(fp ==0)
cerr << M_MSG1(CANT_OPEN_FILE, char*, fname) << endl;

That's all for the beginning!

3.2.2. Basic macros description
M_Lib library provides a set of macros to create the messages. Each macro has format:

M_MSG(msgID, argl_type, argl, ..., arg n_type,arg n)
(and the macro for a message without arguments is M_MSG(msgID)). Thus, for example, you can write:

cout << M_MSG3(MSG_WITH_3_ARGS_ID, int, 5, float, 3.14,
char*, "aaa") << endl;

It's quite clear that this line will print to standard output stream message with format MSG_WITH_3_ARGS_ID
substituting substrings "<$1>", "<$2>" and "<$3>" in the format string by "5", "3.14 " and "aaa"
correspondingly.

Thus, if our message dictionary contains somewhere line:

MSG_WITH_3 ARGS_ID "argl=<$1>, arg2=<$2>, arg3=<$3 >"

then the line from the example above will print to the standard output stream:

M_Lib Library Manual (v3.2b) 4

argl=5, arg2=3.14, arg3=aaa

M_Lib library provides built-in support for standard "ostream " output mechanism. In this case it creates a
text from a format with inserted arguments.

In addition, when a message formats dictionary is loaded M_Lib assigns to each format a unique number,
which can be used, for example, to generate IDs of error messages.

3.2.3. How to handle mor e frequently used message?
Imagine a situation when you have to produce the same message from many places of source, e.g.:

FILE* fp = ...;

char line[256];

while(fgets(line, 255, fp) = NULL)
{

switch(line[0])
{

case 'a"
... some actions...
cerr << MMSGL(|LLEGAL_LINE, char*, line) << endl;
break;
case 'b"
... Some more actions...
cerr << MMSGL(|LLEGAL_LINE, char*, line) << endl;
break;
case 'c".
... something else...
cerr << MMSGL(|LLEGAL_LINE, char*, line) << endl;
break;
...and so on

}

(In other words - a reading of a text file and reporting illegal lines in it but the handling of such lines depends
on their content.)

This code can be written in a more readable manner. M_Lib library provides for such cases a special form of
the M_MSG() macros - M_MS@ DECL() macros. In these macros there is (in addition) name of some
variable that a programmer can use afterward instead of the whole M_MSG() macro. This means that the
example above may be written in this way:

FILE* fp = ...;

char line[256];

M MSGL_DECL(ill_line_nsg, |LLEGAL_LINE, char*, line);
while(fgets(line, 255, fp) != NULL)

switch(line[0])
{

case 'a"
... Ssome actions...
cerr << ill_line_nmsg << endl;
break;
case 'b":
... some more actions...
cerr << ill_line_nmsg << endl;
break;
case 'c:
... something else...
cerr << ill_line_nmsg << endl;
break;
...and soon

}

(I.e. before use of the loop we create an instance containing the message and use it instead of the M_MSG()
macro.)

3.2.4. Requirementsto the message argumentsand | OSTREAM library

The type of a message argument must have:
- copy constructor

M_Lib Library Manual (v3.2b) 5

- assignment operator
- well-defined output to the standard "ostream " (on platforms supporting standard iostream library).

(Note that all the base C++ types like int , float , etc. have such things predefined.)

M_Lib works on some platforms where iostream library is not provided, e.g. MS Windows CE and
Symbian OS. In this case both M_Lib itself and sources using it should be built with M_NO_IOSTREAM
define, and M_Lib will use built-in processing of the base C++ types.

There are 2 versions of iostream library existing today: the “classic” one (used by #include

<iostream.h>) and the new template-based one included in the standard C++ library (used by #include
<iostream>). By default M_Lib uses the classic iostream library. If your program use the new one, then
build both M_Lib itself and the sources using M_Lib with M_STD_IOSTREAMEefine.

3.3. Tricks and precautions

1) As it was mentioned above, M_Lib library's message instances use the copy constructors and assignment
operators to store arguments. So the following code is bugged:

char* fname = "aaa.txt";
FILE* fp = 0;
M_MSG1_DECL(cant_open_msg, CANT_OPEN_FILE, char*, fname);
if((fp = fopen(fname, "r')) == 0)
cerr << cant_open_msg << endl;
...
fname = "bbb.txt";
if((fp = fopen(fname, "r')) == 0)
cerr << cant_open_msg << endl;

This is illegal due to default copy operation for the "char* " type is not "strcpy() " or something like that
but just assignment, so after the "cant_open_msg " instance contains the original value of the "fname "
variable, and when this variable is changed after the line

fname = "bbb.txt";

the message in the "cant_open_msg " becomes meaningless - it still remembers the "old" value

"aaa.txt ". (Moreover if the "fname " is not just assigned from constant string but reallocated and the
previously used memory is freed then use of the "cant_open_msg " instance becomes dangerous - it points
to memory already freed.)

To avoid this problem you can use in the message instance creation "char*& " instead of "char* ", i.e. to
write:

M_MSG1 DECL(cant_open_msg, CANT_OPEN_FILE, char*& , fname);
Now all the changes of the "fname " variable will be reflected in the "cant_open_msg " instance.

2) The type of the message argument not necessarily must be the same as the type of the argument itself, it
is enough than the argument itself has conversion operation to the declared type. l.e. if you are using the
RogueWave's SourcePro C++ (former Tools.h++) library with its RWCString class than both following
pieces of code will do the same:

1) RWCString fname("aaa.txt);
cerr << M_MSG1(CANT_OPEN_FILE, RWCString, fname) << endl;

2) RWCString fname("aaa.txt);
cerr << M_MSG1(CANT_OPEN_FILE, const char*, fname) << endl;

So if one sunny day you decide to use RWCString instead of char* it is not necessarily causes changing
of all the uses of such variables. Nevertheless you should know what you are doing (as usually though ©).

M_Lib Library Manual (v3.2b) 6

3) Important to understand: all M_MSGQGnacros create a temporary instance of an M_Lib class. The lifetime of
such temporary instances depends on the specific C++ compiler you use! So the code

char* msg = M_MSG1(CANT_OPEN_FILE, const char*, f name);
/... some actions
show_err_message(msg);

has good chances to crash your program, as at the moment you intent to use the string itself, the instance
may not be existing anymore, thus "char* msg " may point to illegal memory. Thus the messages created
by M_MSGnacros must be used immediately, e.g. either:

show_err_message(M_MSG1(CANT_OPEN_FILE, const ch ar*, fname));
or

char msg[256];

strcpy(msg, M_MSG1(CANT_OPEN_FILE, const char*, fname));
/... some actions

show_err_message(msg);

In case it is really needed to use the message with a "delay", it is necessary to use M_MS@_DECLmacros
instead of M_MSG

4. Implementation Notes

4.1. Concurrence

M_Lib library is tread-safe (multithreading support is implemented for MS Windows9x/NT/CE,
EPOC/SymbianOS and POSIX-threads on UNIXes only).

4.2. Backward & Forward Compatibility

The future versions of M_Lib library may integrate new features. In any event this will happen step-by-step
and the backward compatibility of the library APl will be kept as much as possible, thus the future
enhancements should not require changes in the end-programmer source code.

5. Copyright and Disclaimer
Copyright © 1996-2006 Anatoly Kardash, akardash@hotmail.com

Permission to use, copy, modify, and distribute, this software and its documentation for any purpose is
hereby granted without fee, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that the name of the
copyright holders be used in advertising or publicity pertaining to distribution of the software with specific,
written prior permission, and that no fee is charged for further distribution of this software, or any
modifications thereof. The copyright holder makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

THE COPYRIGHT HOLDER DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA, PROFITS,
QPA OR GPA, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

M_Lib Library Manual (v3.2b) 7

