E_Lib Library Manual

Version: 3.1b
Author: Anatoly Kardash

Table of Contents

I 1 gL 0o (1T 1 o o PP P VRPN 1
A @< VT T USRS 2
pZN I g (o g = oo 11 o PP 2
2.0 0. SEVENILY ettt sttt Rt b e Re Rt Rt et et e tenbeebeereeneeneeneeneas 2
2.1.2. Error reporting iNterface (AP ..o 2
2.1.3. Unification of error handling USE...........cooeeiiiiiiieie e s 2

P N = = = o 7= T o 2
2.0.5. MESSAGE FOMMEL.......c.eeeieeitieieee ettt sttt b et sre e sre e e e e st e s beeeeeneeses 3
2.1.6. ASCIHUNICODE.......ccctiiiieiiesie sttt sttt e et st sbe b sbe e e e e 3

2.2. C++ EXCEPtON HANAIINGooeieieieeie ettt st ne s 3
2.2.1. DOWe Want t0 USE EXCEPLIONS?.......cccueieeieeeieeeesteeiesieesteeeesseessaessesseesseessesseesseessesneesnes 3
2.2.2. Exception handling UNITICAION.c.oiieieriiieseeie e e 3

3. HOW tO USE thE E_LID [TBIary.....cceeeie ettt nne s 3
TNt I g o g = oo 11 0o SRR 3
TN I = - ot PSPPSRSO 3
3.1.2. HOW tO Print My OWN CIaSS?cooiiiiiierieeeseeee et 5
3.1.3. SOUrCE MANIPUIBLIONc.veeieeeieeeiesieeieseeste e e e e te e e see e eaeeseesseeeesseesseenseaneesneensesneesnes 6
3.1.4. How to redirect the messagesto afil€?.......v i 7
3.1.5. How to redirect the messages to a standard Stream?...........cccceveevevceveerecceeseesie e 7
3.1.6. How to redirect the messages to @WINAOW?.........oovieiiirnieneesee e 8
3.1.7. How to redirect the messages to wherever | Want?..........ccceeeveeveneeveesesceeseese e 8

3.2, EXCEPION HANAIING ...ttt st nne s 9
N T = T s RSSO PRURRRRN 9
3.2.2. HOW tO CatCh @VErYthiNg?........ooiiiieieceeseee et 9
3.2.3. HOW tO €Xit from Program?........cccueeeeieeeseesieeeesieesieeeessee e sseesseessessaesseensesneesseenseens 10
3.2.4. How to create a SpeCial EXCEPLIONT........cccuiieerienie e et 10

3.3 ASSENtION HANAIING ...ccuveeieiiee ettt n e e ae e e e e sneenee e 11
3.4. How to Get the E_Lib Library WOrking?..........cooerinennenesiesesee e 11
3.5. TNE USE GUIEIINES.....ccueiiieiiieiesie ettt bbb enes 11
3.6. Integration WIth M _LiD.......coouiiei e e 12
4, IMPlEMENLALION NOLES.........ccoieieeseeie et este e e sreense e e e sreeteeneesneenseens 12
A1, CONCUIMTEICE.eeueeeteeeuteeateaateesseesaeeeaseaaseeeaseeaaeeeaseeaaseesseeaaseeaaeeemseeabeeeaseeaneeamseenseesnreenneaannan 12
4.2. Work before main() @and after if........ccoeceieeieiesiese e 13

5. Copyright @anNd DISCIAIMEYcc.oiiiiieieeie e ettt sb et e seesre e e e 13

1. Introduction

The E_Lib library provides a unified mechanism to handle various situations requiring notification — either
externally (end-user or maintainer) or internally (program itself). Thus E_Lib supports the following parts of
error handling:
- Error reporting - how to inform a user about something happened in the program (thus in fact this is not
necessarily error reporting only, it includes warnings, etc. as well);
Exception handling - how to inform a programmer (a-ka a program module written by the programmer)
about something happened in the program (and subsequently how to ensure that all possible C++
exceptions are caught).

E_Lib is a powerful and flexible error handling tool with a simple API for the end-programmer.

E_Lib Library Manual (v3.1b)

The latest update of the library can be obtained anytime from:

http://www.geocities.com/SiliconValley/Peaks/8778/p ubdom.html
or
http://www.kardash.com/pubdom.html

2. Overview

2.1. Error Reporting

2.1.1. Severity

There are the following levels/types of messages:
- information - just to report to user about something normal (e.g. successful completion of an operation,
like "file has been copied "

- warning - to warn user about something (e.g. "disk is 90% full "
- error - to report to user about some recoverable error (e.g. "cannot open file "
- fatal error - to report to user about non-recoverable error (e.g. "cannot connect to server "). Such an

error usually causes exiting from the program.

- internal error - to report to user about something wrong happened in the program but not caused by any
external reason (e.g. "memory is corrupted, further behaviour is unpredict able "). By
default such an error is reported but the program execution is continued and thus it must be carefully
handled by the programmer.

The E_Lib library provides a proper way for a programmer to give such kinds of messages to user. Moreover
the programmer just uses the provided methods and does not worry how they work (i.e. where are the
messages printed, etc.). On other hand there is a possibility to turn on/off various "levels" of the reporting at
run-time (excepting fatal and internal errors - they should be reported always).

2.1.2. Error reporting interface (API)

In fact there are 3 possibilities (at least) to design such an API:

- to use C-like mechanism, i.e. functions like printf() with format and arguments; or
- to use C++-like mechanism, i.e. output stream; or

- to use something unusual (that obviously does not make sense).

C-like mechanism looks error-prone and therefore refused. So a C++'s iostream -like interface was chosen
to follow conventions accepted in the C++ world. (If it is really necessary to output something in formatted
manner then either just use sprintf() standard function before sending to the stream or — strongly
recommended! — use M_Lib messaging.)

2.1.3. Unification of error handling use

If a programmer writes a function (or class) he/she does not know in which context the function/class will be
used (and he does not have to know). In case the programmer uses the E_Lib error reporting interface, this
interface does know how to behave. This is implemented using some class with virtual methods, and these
methods are used through some single instance of the class (Eerr - see below). If another programmer
that uses the function/class wants to redefine the behaviour of error handling then he can do it with no
interception of the original function/class code (thus it should not be even rebuilt).

2.1.4. Fatal error handling

A fatal error causes an error message output and a special exception throwing. E_Lib provides a pre-defined
macro to catch such an exception — it simply exits from the program (using the exit() standard function).
Anyway sometimes even fatal error may not be fatal, and programmer may want not to exit in such a case,
e.g. if the function is used in some GUI program that just MUST NOT exit without explicit user command,
then the program can either restart itself, or jump to some top-level execution point, or whatever else. In
E_Lib this can be easily implemented by catching of ExitException_c exception.

E_Lib Library Manual (v3.1b) 2

2.1.5. M essage format

It is quite clear that all the messages should have the same unified format. E_Lib uses the following format
of the messages (this is true for error reporting mechanisms that "print" the message, but if the current error
reporter does not "print" messages and does something else, for example, shows them in a window, then
the convention may differ):

[from]msg_type: msg_body<NL>

where:
from - name of the program/logical module (it should be set by a end-programmer to be
shown)
msg_type - type of the message (may be one of: Info , Warning , Error , Internal Error ,
Fatal Error)
msg_body - the message itself
<NL> - new line character(s), thus end-programmer does not have to add '\n ' to the end

of the message unless additional line feedings are needed.

2.1.6. ASCII/UNICODE

E_Lib supports either plain ASCII or UNICODE messages: depending on compilation settings - _UNICODE
pre-processor macro must be defined to work with UNICODE.

2.2. C++ Exception Handling

2.2.1. Do we want to use exceptions?

The answer for this question is simple today: yes. ANSI C++ provides powerful mechanism of exceptions
that is supported by most of the contemporary C++ compilers. On other hand there may be 3rd-party
libraries (including the standard C++ library) that do throw exceptions. So we have no choice beside of to
use exceptions.

2.2.2. Exception handling unification

To provide proper and robust exception handling all the exceptions thrown in the programs must be
instances of classes inherited from one base exception handling class. In such a way we can catch always
this base class in the main() function and be sure that if an exception is not handled inside the program
then it will be caught here (in the main()).

ANSI C++ provides such a standard class (named "exception ") assuming that all other exception classes
are derived from it. Unfortunately not all C++ compilers (and even less 3rd-party libraries) support and use it.
Thus E_Lib provides its own base class (Exception_c) for this purpose (it will inherit from the standard
"exception " class if compiler provides support of it). The interface of E_Lib Exception_c class complains
with the standard "exception " class.

The only case when we throw something not inherited from the base class is a special exception class
(ExitException_c) used to provide a proper way to exit from a program (instead the exit() function).
An exception of this special type usually causes exit but may be caught and handled in another way if
needed. (Please note that the catch of ExitException_c should be the only place in the system where
the exit() function is called. If a programmer wants to interrupt the program execution he/she should
throw this special exception only.)

3. How to use the E_Lib library

3.1. Error Reporting

3.1.1. Basics
First of all — please look at a very simple example. Does it look familiar?

#include <iostream.h>

...
FILE* fp = = fopen("myfile.txt", "r");

E_Lib Library Manual (v3.1b) 3

if(fp == 0)
{

cerr << "Fatal error: Can't open file myfile.txt" <<
endl << flush;
exit(1);
}

Now compare it with;

#include <e_lib.h>

...

FILE* fp = = fopen("myfile.txt", "r");
if(fp == 0)

{

Eerr << fatal << "Can't open file myfile.txt" << eom;

}

The advantages of the latter one are:

more elegant and readable code;
it will work whenever this piece of code is executed (even before cerr /cout are initialized);

once written this line will never be changed even if one day all the error messages will be showed to

a GUI's window, moreover such a change will not require even recompilation of this code;

no worrying about formatting of the message, i.e. all the necessary prefixes (like "Fatal error:
and suffixes (like end of line) will be added automatically and in the unified manner;

the reaction on this not-proper situation is also transparent for the end programmer - by default a
fatal error causes exit from the program but if one day it will be undesired (e.g. in GUI) then the
behaviour will be changed transparently; the only thing guaranteed here is that execution will not
return to the point after the fatal error reporting.

Thus by default the following code:

Eerr << info <<"I'm here" << eom;
Eerr << warning << "l warn you!" << eom;

Eerr << error << "I'd like to report an error" << eom;
Eerr << internal << "We can fail also..." << eom;
Eerr << fatal << "Something terrible happened!" << eom;

will print to the standard error (again: by default — it can be changed!):

<my_program> Information: I'm here

<my_program> Warning: | warn you

<my_program> Error: I'd like to report an error

<my_program> Internal error: We can fail also...

<my_program> Fatal error: Something terrible happe ned!

(a fatal error reporting will automatically throw a special exception as well).

")

As you can see each message must begin from a "keyword" specifying the message type and must end with
"eonT" (stands for "end of message").

In fact all available types of message were used in this example. They are as follows:

Type Explanation Behaviour Severity
info Information Report yes
warning Warning Report yes
error Regular error | Report yes
internal Internal error Report no
fatal Fatal error Report and throw exit exception no

Hopefully everything in this table is self-explanatory and clear beside of the last column. The “Severity”
means that some types of the messages may be silently ignored (at run-time) depending on the current
severity level. l.e. if you don't want to produce info-messages then it is enough to write in the program:

E_Lib Library Manual (v3.1b)

Eerr.SetSvrLevel(ErrReport_c::warnings);

and starting this moment all the information messages will not be shown. The possible severity levels are:

Level What is reported
ErrReport_c::all Everything
ErrReport_c::warnings Everything beside of info-messages
ErrReport_c::errors All kinds of errors only (no info/warning)
ErrReport_c::nothing Fatal and internal errors only

Please note that the severity level is set for the current message handler (either default or set by call to
ErrReport_c::SetErrReport() or alike — see below), and thus the severity level is set per-thread. The
default value is ErrReport_c::all , i.e. everything is printed.

Finally, the last basic thing that is necessary to explain is how to set the very first field in the message
format, i.e. if the line

Eerr << error << "I'd like to report an error" << eom;
causes the output

<my_program> Error: I'd like to report an error

then from where the "<my_program> " is taken? It is very simple - the following line should be executed
before:

Eerr.SetFrom("<my_program>");

If there was no call to SetFrom() than no source will be shown (i.e. the message will start from “Error: "
or alike).

That's all. So the full source code of the example above is:
#include <e_lib.h>

void main()
Eerr.SetFrom("<my_program>");
Eerr << info << "I'm here" << eom;
Eerr << warning << "l warn you!" << eom;

Eerr << error << "I'd like to report an error" << eom;
Eerr << internal << "We can fail also..." << eom;
Eerr << fatal << "Something terrible happened!" < < eom;

}

3.1.2. How to print my own class?

The answer is natural for everybody familiar with the concepts of the standard C++ "iostream" library. Please
pay attention to the following example. Suppose you have a class:

class File_c

{

public:
/... some methods

private:
char * fname; // file name
int *_fd; // file descriptor

h
If you want to print it to an ostream like:

File_c file(...something...);

E_Lib Library Manual (v3.1b) 5

cout << "Working with file [" << file << "]" << en dl << flush;
then you add a function:
friend ostream& operator <<(ostreamé& ostr, const File_c& o)

{

ostr << 0._fname << "' << 0. fd;
return(ostr);

}
Now the line above will print something like:

Working with file [aaa.txt:5]

Exactly the same approach works with E_Lib — if you add:

friend ErrReportStream_c& operator <<(
ErrReportStream_c& estr, const File_c& 0)
{

estr << 0._fname;
return(estr);

}
then the code

File_c file(...something...);
if(...something...)

Eerr << error << "Can't open file " << file << eo m;
return;

}
will print something like:

<my_exe> Error: Can't open file aaa.txt

Please note that these 2 kinds of the streams (the standard ostream and the E_Lib's
ErrReportStream_c) are completely independent. So you can print different information about your
classes for different purposes (as it is in our example).

3.1.3. Source manipulation

As was mentioned above each message is preceded by string specifying source of the message. This string
must be set by the call:

Eerr.SetFrom("my_program - ");
(If there was no such a call, then the source will not be printed at all.)
It's OK while there is no need to distinguish some sources. Such a necessity may appear when several well-
defined software domains are linked in the same executable. The E_Lib library provides a special

mechanism to manipulate with this — class ErrSource_c . In fact it calls SetFrom() in its constructor and
destructor, so

void my_module()

{

ErrSource_c err_src("my module - ");

}

sets the source for all the time while the instance err_src is “alive”, i.e. in this case — until end of the
function execution. On destruction of the instance the source will roll back to its previous value.

E_Lib Library Manual (v3.1b) 6

Please note that the source is set for the current message handler (either default or set by call to
ErrReport_c::SetErrReport() or alike — see below), and thus the source is set per-thread.

3.1.4. How to redirect the messagesto afile?
Just to write somewhere in the program:

ErrReport_c::SetFileErrReport("myerrors.txt");

That's all. From the moment this line has been executed all the messages will go to the file
"myerrors.txt ". When you want to return back to the previous message handling (i.e. that was before this
line had been executed) then just to write:

ErrReport_c::UnsetErrReport();
That's all. Actually there is more general way:

FileErrReport_c* file_Eerr = new FileErrReport_c("aaa.txt");
ErrReport_c::SetErrReport(file_Eerr);

In such a way the deletion of the instance of the FileErrReport_c class will not be performed automatically by
call of the ErrReport_c::UnsetErrReport() - this is responsibility of the programmer to manage the reporting.

Another form of this class instance creation is:

int fd = open("aaa.txt", ...some flags...);
FileErrReport_c* file_Eerr = new FileErrReport_c(fd);

This is especially helpful when reporting should be sent to a C standard stream (stdout or stderr). In this
case not only deletion of the instance but also the file closing is responsibility of the end-programmer.

Please note that functions ErrReport_c::SetErrReport() , ErrReport_c::SetFileErrReport()
and ErrReport_c::UnsetErrReport() work per thread; nevertheless if they are not called, the default
error message handler (from the main thread) will be used.

3.1.5. How to redirect the messagesto a standard stream?

This is very similar to the previous example with files (actually the file error reporting is enough to build such
one to ostream but the E_Lib library provides better facility).

In order to redirect the messages to a standard (meaning inherited from the "ostream ") stream it is enough
to write:

ErrReport_c::SetStreamErrReport(); // to cerr
or

ErrReport_c::SetStreamErrReport(cout); // to cout
or something like this.

To reset the previous direction (as in the example with files):
ErrReport_c::UnsetErrReport();

If it is desired to keep the stream opened and to use it as the destination of the messages from time to time
then use:

StreamErrReport_c* str_Eerr = new StreamErrReport_ c(cout);
/I instead of "cout” you may use an instance of a ny
/I stream derived from the standard "ostream"
ErrReport_c::SetErrReport(str_Eerr);

In this case the call of the ErrReport_c::UnsetErrReport() will not delete the "str_Eerr" instance - the
programmer must do it by himself.

E_Lib Library Manual (v3.1b) 7

Please note that functions ErrReport_c::SetErrReport() ,
ErrReport_c::SetStreamErrReport() and ErrReport_c::UnsetErrReport() work per thread;
nevertheless if they are not called, the default error message handler (from the main thread) will be used.

3.1.6. How to redirect the messagesto a window?
A redirection to window can be done in the same manner as to a file or a stream.

In order to redirect the messages to a standard diagnostics window it is enough to write:

WindowErrReport_c* win_Eerr = new WindowErrReport_ c();
ErrReport_c::SetErrReport(win_Eerr);

and everything will go to the standard window.

Please note that functions ErrReport_c::SetErrReport() and
ErrReport_c::UnsetErrReport() work per thread; nevertheless if they are not called, the default error
message handler (from the main thread) will be used.

(Please note: "standard diagnostics window" here means the really standard one for MSWin95/NT/2K/XP/...
platforms. Currently this functionality is not implemented for other platforms.)

3.1.7. How to redirect the messagesto wherever | want?

If the possibilities to redirect the messages to a file, a stream and a window do not satisfy you, then you can
write some extension to the E_Lib library. Don't worry - it's quite simple. Assuming that you are familiar with
programming, there is very simple example instead of a long explanation. The example below implements a
class that prints the messages both to a file and to the standard error stream.

#include <stdio.h>
#include <e_errreport.h>

class LogErrReport_c : public ErrReport_c

{
public:
LogErrReport_c(const char* fname)
{ fp = ::fopen(fname, "w"); }
~LogErrReport_c()
{if(fp) ::fclose(fp); }
private:
virtual void errPrint(const char* msg)
{
:fprintf(stderr, "%s", msg);
:fflush(stderr);
if(fp)
{
::fprintf(fp, "%s", msQ);
::fflush(fp);
}
}
FILE* fp;
h
That's all! Now you can use it:
LogErrReport_c* log_Eerr = new LogErrReport_c("aa a.txt");

ErrReport_c::SetErrReport(log_Eerr);

and all the messages will be saved to the "aaa.txt" file (if it was opened correctly) and printed to the standard
error until the line

ErrReport_c::UnsetErrReport();

E_Lib Library Manual (v3.1b) 8

is executed.

In few words the rules are:
1) to inherit your error reporting class from ErrReport_c
2) to redefine "void errPrint(const char* msg) " method — this is the must!
3) optionally you can redefine methods:
void errPrintBegin(error_message_ctrl type)
virtual void errPrintEnd()
that are called on the beginning of the message and on the end of it correspondingly. It can be useful if
you have to collect all the elements of the message before to flush/show/etc. the whole message. An
example of their use may be seen in the implementation of the WindowErrReport_c class.

Please note that functions ErrReport_c::SetErrReport() and
ErrReport_c::UnsetErrReport() work per thread; nevertheless if they are not called, the default error
message handler (from the main thread) will be used.

3.2. Exception Handling

3.2.1. Basics

The main rule is: all the exceptions thrown in the system must be instances of the base exception class or a
class inherited from it.

The base exception handling class is called Exception_c¢ and may be used by itself in the following
manner:

void func()

{

|f(...something...)
throw(Exception_c("cannot do an action"));

}
void gunc()
try { func(); }
catch(Exception_c& exc) {
ErrR << error << exc << eom;
}
}

3.2.2. How to catch everything?

The E_Lib library provides a special macro E_CATCH_ALL The purpose of this macro is to catch as much
as possible and to perform some reasonable action for any exception. Please the macro does not perform
the work that a programmer should do to handle exceptions, it just ensures that all possible exceptions will
be caught and reported in an appropriate way. Therefore the reasonable place to write this macro is main()
function and constructors of static instances. The usage of the macro is:

int real_main(int argc, char* argv[])

{
... all the work...
}
int main(int argc, char* argv[])
{
intres =0;
try{ res = real_main(argc, argv); }
E_CATCH_ALL;
return(res);
}

E_Lib Library Manual (v3.1b)

It is not too clever choice to rely on the E_CATCH_ALLmacro only - e.g. almost always exceptions coming
from third-party libraries require additional handling, etc.

3.2.3. How to exit from program?
In case of something fatal happened the proper way to exit is to use "fatal " error reporting:

Eerr << fatal << "Shit! | have to exit!" << eom;
This will print a string like:
<my_program> Fatal error: Shit! | have to exit!

and throw a special exception (instance of the ExitException_c class). By default (i.e. the class is not
caught on the way) the exception will cause exit. If the macro E_ CATCH_ALLwas used then it will call the
exit() function by itself. If it is necessary to perform different actions (instead of exit from the program)
then the exception can be caught and handled in a needed way. Anyway there may be a necessity to exit
from the execution block without error message at all - in this case the exception must be thrown by the end-
programmer directly. It can be done with:

throw ExitException_c(_ FILE_ , _ LINE_),
or (much more simple) using a macro (doing exactly the same):
throw EXIT_EXC();

This should be the only allowed form of exiting from the program!

3.2.4. How to create a special exception?

As usually - via inheritance. If we, for example, want to have a special kind of exceptions happening in work
with files then it can be done as follows:

class FileException_c : public Exception_c

{
public:
FileException_c(const char* excmsg) :
Exception_c(excmsg) {}
virtual ~FileException_c() {}
private:
FileException_c() {} // no instance w/o message
friend ErrReportStream_c& operator<<(
ErrReportStream_cé& errstr,
FileException_c& exc)
{
errstr << "file exception - " << exc.what();
return(errstr);
}
h

Now this class may be used as:

void func()

if(_write(fd, buffer, sizeof(buffer)) == -1)
throw FileException_c("write failed");

}

void gunc()

E_Lib Library Manual (v3.1b) 10

try{ func(); }
catch(FileException_c& exc) {

Eerr << error << exc << eom,

}
In case of the exception a message like:

<my_program> Error: file exception - write failed

will be printed. Due to our FileException_c is derived from E_Lib base Exception_c class the macro
E_CATCH_ALLwill catch this exception as well (of course, if they were not caught by more exact catch()
previously).

3.3 Assertion Handling

There is another tool used often by programmers, which may cause immediate exit from the program - the
assert() macro. It is even worse: the behaviour of this macro differs for different platforms. E_Lib provides
a substitution for the assert() macro with a unified behaviour - the E_ASSERT() macro.

Thus instead of:
assert(smth);

a programmer MUST use:
E_ASSERT(smth);

For example:

MyClass* p = new MyClass;
E_ASSERT(p !=0);

In case of "new" returns O (a rare case, but...) the macro will throw a special exception (an instance of
AssertException_c class), which in turn will print an internal error message, like:

<My program> Internal error: assertion of [p != 0] failed in [a.cpp:25]

and then exit form the program. The main advantages of the E_ASSERT() macro (comparing with the

standard assert()) are:

- this behaviour remains the same for all platforms/compilers/etc.

- if there is a need to set up another behaviour - it is enough to catch this type of exceptions and to handle
it in the appropriate way.

3.4. How to Get the E_Lib Library Working?

All the functionality of the E_Lib library becomes available after placing
#include <e_lib.h>

in the source code and putting the library "e_lib" into list of used libraries. That's all.

3.5. The Use Guidelines

So the main guidelines are:

- All error/warning/information messages should be sent to a special stream Eerr behaving like standard
cout /cerr streams.

- Any message must begin with sending a "keyword" (one of info /warning /error /internal /fatal)
and end with sending eom

- To get something in prefix of the message the end-programmer have to set this using
Eerr.SetFrom() call.

E_Lib Library Manual (v3.1b) 11

- ltis possible to catch everything using macro E_CATCH_ALLand not to worry about exceptions
anymore. Anyway it is always recommended to do it in main() function of program (see the example
above).

3.6. Integration with M_Lib
M_Lib is a very powerful and flexible tool to work with textual strings that are viewable by an end-user.

Obviously the messages outputted by E_Lib are such. Naturally using E_Lib in conjunction with M_Lib has
many advantages.
1) First of all, the format of messages will look slightly differently:

[from]msg_type msg_ID: msg_body<NL>

l.e. the unique number of message generated by M_Lib will be outputted after the message type, e.g.

<my_exe> Error 123: Can't open file aaa.txt

The look of message prefix (“msg_type msg_ID: ") can be changed even more — please see below for
details.

2) The argument “source of messages” of SetFrom() and constructor of the ErrSource_c class will be not
the text itself, but an ID of the string in M_Lib format dictionary (see “M_Lib Library Manual” document for
details). In other words instead of writing

Eerr.SetFrom("my_program - ");
it will be necessary to have in M_Lib format dictionary a line

MY_PROGRAM_SRC "my_program - "

and to write

Eerr.SetFrom("MY_PROGRAM_SRC");

3) The strings of message types (msg_type in message format above) must be specified in M_Lib format
dictionary as well. Their IDs are predefined. The simplest way is to copy the following lines into your format
dictionary and to modify if needed:

ELIB_INFO_TYPE "Info <$1>: "
ELIB_WARNING_TYPE "Warning <$1>: "
ELIB_ERROR_TYPE "Error <$1>:"
ELIB_FATAL_TYPE “Fatal error <$1>: "
ELIB_INTERNAL_TYPE "Internal error <$1>: "

The argument “<$1>" will be replaced by the unique message number.

The advantages of the combination of M_Lib and E_Lib are so obvious that by default E_Lib is built to use
M_Lib. In order to cancel it, build E_Lib with C++ pre-processor define E_NO_MLIB_USE

4. Implementation Notes

4.1. Concurrence

There are 2 kinds of concurrence problems:

- parallel reenterability - when the same function is called from different threads simultaneously

- nested reenterability - when some function calls another function and the called function again calls the
1st one. This is especially relevant for error handling because it is easy to imagine error reporting class
that causes some exception that in turn calls the error reporting, etc.

First of all, all implementations of the error reporting and exception handling classes should be as simple as
possible. Try to avoid to throw exceptions inside of error reporting methods and functions and to catch all
possible exceptions from the used functions. If an error condition happens then report it via

E_Lib Library Manual (v3.1b) 12

ErrReport_c::Intrinsic() static method that uses very simple standard way, namely stderr (not
cerr as it may be not initialized yet) currently.

The parallel reenterability is supported in means that the E_Lib library is thread-safe (for MSWin95/NT/...
only currently), so no other thread can enter into E_Lib's functions if another thread uses them already.
Anyway there may be problems if several processes will try to write to the same file - the E_Lib library
leaves this problem to the end-programmer.

4.2. Work before main() and after it

The ErrReportStreamClass has a global instance that can be used anywhere including
constructors/destructors of static instances. In order to have it in a working state at any time, the class is
designed "empty", i.e. without neither data members nor virtual functions. So constructor does not perform
any work and all calls to the instance are resolved at compile-time (at least by all compilers known to me).
All the public methods of the ErrReportStreamClass 's instance call some initialization function in their
beginning. This initialization function performs the actual work just once - on the first call, and this work is to
initialize the pointer of ErrReport_c by default error reporting class's instance. Currently the default is
FileErrReport_c initialized with stderr

5. Copyright and Disclaimer
Copyright © 1996-2006 Anatoly Kardash, akardash@hotmail.com

Permission to use, copy, modify, and distribute, this software and its documentation for any purpose is
hereby granted without fee, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation, and that the name of the
copyright holders be used in advertising or publicity pertaining to distribution of the software with specific,
written prior permission, and that no fee is charged for further distribution of this software, or any
modifications thereof. The copyright holder makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

THE COPYRIGHT HOLDER DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA, PROFITS,
QPA OR GPA, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

E_Lib Library Manual (v3.1b) 13

