
Abstraction Refinement

Pei-Hsin Ho
Advanced Technology Group

Synopsys, Inc.

Formal Verification of Safety
Properties

• Problem:
– A gate-level design with an initial state and an

output signal fail
– Prove that fail is always 0

• Answer:
– True
– False, input sequence (error trace) that asserts fail
– Inconclusive

0

0 1

b

a c
fail

d

e

0

• Design may have 10M gates (~1M registers)
• Formal proof engines cannot handle

– BDD: ~200 registers
– Clause [McMillan02]: ~10K gates
– Interpolant [McMillan03]: ~100K gates

• How?
– Abstraction

Challenge

Subset Abstraction
• Prove the property on a subset

– True on subset True
– False on subset inconclusive
– Which subset?

10M gates

failfail

Abstraction Refinement
• Incrementally expand the abstract model

(subset) by analyzing the error traces

10M gates 2K gates

failfail

Abstraction Refinement
Algorithm

2. Model check
abstract model N

1. Choose initial abstract
model N

3. Can extend Cex
from N to M?

4. Refine (extend)
abstract model N

true, done

Cex

false, Cex

no

History (As Far As I Know)

• Kurshan introduced abstraction refinement
– Localization reduction
– R. Kurshan. Computer-Aided Verification of

Coordinating Processes: The Automata-Theoretic
Approach. Princeton University Press, 1994.

• High level

History (cont.)

• Clarke,Grumberg,Jha,Lu,Veith, CAV00
– Refinement based on investigation of deadend

states
• States in abstract error trace

– Can be reached by concrete error trace
– Cannot reach fail states by concrete error trace
– Closest to fail states

– Require building transition relation of the design in
BDD

• Not effective in real world

• Mang,Ho, DAC04
• Wang,Ho,Kukula,Zhu,Ma,Damiano, DAC01
• Goal: Make the size of the design almost

irrelevant; Only proof complexity matters
– 10M gates
– Algorithm avoids building or analyzing whole design

• 3-value simulation
• ATPG in limited fashion

– ATPG model size is linear to the netlist, not depth*netlist
– Use hybrid engines to model check abstract model

• BDD-based symbolic reachability analysis
• ATPG

This Talk

Abstraction Refinement
Algorithm

2. Model check
abstract model M

1. Choose initial abstract
model N

3. Can extend Cex
from N to M?

4. Refine (extend)
abstract model N

true, done

Cex

false, Cex

no

Step 1: Create Abstract Model

• Task
– Create abstract model N

• Abstract model
– A subset of registers and their combinational fanin

cones
– Initially “fail” and its combinational fanin cone

0

0 1
c d

e

0

The Abstract Model

Inputs of the
registers of N

Primary inputs
of N but register
outputs of M

Primary inputs of N
and M

Outputs of the
registers of N

M: concrete model
N: abstract model

Rest of registers
and inputs of M

0

0 1

b

a c
fail

d

e

0

e
d

a

c
b

Step 2: Model Check Abstract
Model

• Task
– Find an abstract error trace to assert fail
– Or declare that fail is always 0 (proven)

• Find an error trace on the abstract model
– BDD based image computation

• Forward image computation
• Number of input variables is often an issue for backward

image computation
– SAT/ATPG based search

• Length of the error trace sometimes is an issue

Find Abstract Error Trace

• Hybrid BDD-ATPG Simulation algorithm for
abstract error trace:
– Forward image to reach the fail state
– Backward image to find an abstract error trace

• Computes a min-cut abstract model with less number of
inputs

• … (next 2 slides)

Min-Cut and Original Abstract
Models

Gates of N
and MC

Gates of N
but not in MC

Inputs of MC

Inputs of N

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

M: concrete model
N: original abstract model
MC: min-cut abstract model

Inputs of the
registers of N

Hybrid Algorithm

Inputs of the
registers of NGates of N

and MC

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

M: concrete model
N: original abstract model
MC: min-cut abstract model

0
1
-
0

0
-

BDD-based backward image

ATPG

1
-
0

1

1
-

Prove The Property

• If error trace cannot be found on the
abstract model (after reaching resource limit)
– Apply symbolic reachability analysis to prove the

property on the abstract model
• BDD-based forward fixpoint
• Or SAT[McMillan02] or interpolant[McMillan03]

Step 3: Try to Concretize
Abstract Error Trace

• Task
– Check the validity of abstract error trace on

concrete model
– Discover concrete error trace

• Challenge
– Must analyze the whole design

• Solution
– Use 3-value simulation to quickly identify abstract

error traces that cannot be concretized
– Use guided ATPG to concretize the error trace

Check Abstract Error Trace
Using 3-Value Simulation

• 3-valued simulation
– Simulate the abstract error trace on concrete

model to see if there are conflicts on excluded
registers

– Conflicts candidates to be included in the
refined abstract model

– No conflicts Try to concretize the abstract
error trace using ATPG

Identify Conflicts Using 3-Value
Simulation

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

M: concrete model
N: abstract model

Rest of registers
and inputs of M

Abstract error trace

X
X
X
X

X
0
0
1

0

Conflict!

3-value simulation result

X
0

0

X
X
0
X

X

0
0
1
X

0

X
X
X
X

Step 3: Try to Concretize the
Abstract Error Trace

• Conflict
– Yes conflict variables are good candidates to be

included to refine the abstract model (in Step 4)
– No guided ATPG to find concrete error trace

• Guided ATPG
– Runs faster than unguided
– Gradually impose more constraints

• Increases the chance to find real error traces

Excluded
registers of M

Primary inputs
of M and N

Included
registers of N

Abstract Error Trace Guided
ATPG

Rest of
registers and
inputs of M

X
X
X
X

X
X
X
X

X
X
X
X

0
0

X
0

1
X

1
X

0
1

1
X

0 0 1

1
X

Step 4: Refinement

• Task
– Add “important” registers to refine the abstract

model
– Intuition: add registers that invalidate the spurious

error trace
• Key idea: 3-value simulation conflicts are good

candidates
– Assignments required by the spurious error trace

• if the trace is minimal
• true for BDD, not always true for ATPG

– Concrete model does not permit the assignments
(conflicts)

Identify Conflicts Using 3-Value
Simulation (Recall)

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

Outputs of the
registers of N

M: concrete model
N: abstract model

Rest of registers
and inputs of M

Conflict!

Abstract error trace

X
0

0

X
X
X
X

X
0
0
1

0

3-value simulation result

X
X
0
X

X

0
0
1
X

0

X
X
X
X

Rank Conflict Registers
• Conflict registers are ranked:

– Frequencies of conflict (high)
– Persistence (beg to be selected)
– Sequential Distances (close)
– Input Widths (small)

• Number of primary inputs in the support of transition
function

• Can we do better?
– Game based register selection

K-Cooperativeness

Input trace
c0, c1 … ck

is a counterexample

Trace
c0, c1 … ck

not valid
(not producible

by the additional logic)

Blue inputs are called k-cooperative

K-controllability

Given an abstraction and a partition {Alice, Bob}
of the inputs of the abstraction, the
abstraction is k-controllable by Bob if no matter
what input Alice chooses, Bob is able to choose
an input such that the fail signal is low for k
cycles.

Bob

Alice

fail

Controllable Predecessor

X

CPre(X)= ∀A ∃ B . (Tabs ∧ next(X))

CPre(X)

Alice/Bob

K-controllable by Bob if initial state is in Xk

X2 =
cpre(X1)

ˆX0

X1 =
cpre(X0)ˆX0

Xk =
cpre(Xk-1)ˆX0

X0 = !fail

fail

CoreShield

Abstract Model
= (Shield, Core)

Find a K-controlling input of the
Core and give it to the Shield;

Move registers from the Shield
to the Core one-by-one until the

loop invariant holds again

Loop invariant: Core is not
controllable by Shield

Find and Rank the
k-cooperative

inputs

Find and Rank the
k-cooperative

inputs

Search for the
k-controlling

inputs

Find and Rank the
k-cooperative

inputs

Search for the
k-controlling

inputs

Add the fanin of
k-controlling

inputs

Add the fanin of
the first k-

cooperative input

No

Yes

Find and Rank the
k-cooperative

inputs

Search for the
k-controlling

inputs

Add the fanin of
k-controlling

inputs

Move some
fanins of the
shield inputs
into the core

Add the fanin of
the first k-

cooperative input

No

Yes

Rank k-Cooperative Variables
• Conflict registers that are inputs of shield are

removed from the list
• Remaining conflict registers are ranked

– Frequencies of conflict (high)
– Persistence (beg to be selected)
– Sequential Distances (close)
– Input Widths (small)

• Number of primary inputs in the support of transition
function

• Try to find k-controlling variable in the top 3
ranked registers
– Found Use it
– Not found Use the top register

• What is functional verification?
• What is formal property verification (FPV)?
• FPV techniques
• Abstraction refinement for FPV
• Experimental results

Outline

Comparisons

• Technologies
– Old RFN [WHL+01]
– GRAB [WLJ+03]

• All the inputs are scored according to a game-theoretic
formula

– Highest scored does not imply k-controlling
– k-controlling does not imply highest scored

– Interpolant [McM03]
• SAT-based

• Testcases
– 7 properties for 6 industrial designs
– 750 MHz SPARC, 4GB memory, Solaris 5.8

Results – Runtime

>10hr>10hr340.7s230.3s137365/4494P7

>10hr>10hr10920.5s8311.6s127261/4895P6

>10hr>10hr10027.2s10004.9s127229/4891P5

>10hr>10hr1049.0s202.8s77545/2122P4

194.2s>10hr310.2s737.0s61552/4986P3

65.1s>10hr13555.6s1091.9s8372/697P2

>10hr3333.9s3826.6s2246.3s481/60P1

INTmGrabRFNGame RFN#gates/#rgtrs

Number of Registers in Abstract
Model

132313p7

326054P6

345151P5

103410P4

71721P3

287562P2

385751P1

K-cntrl & k-coop RFNGame RFN

Conclusion

• Complexity is less correlated to design
complexity
– Only perform expensive computation on abstract

model
– More scalable than interpolant
– Much more efficient than GRAB

• Can use interpolant or SAT as proof engine
for abstract model

• Apply similar scheme to verify timed or hybrid
systems?

