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Formal Property Verification
• Inputs:

– Design under verification (DUV)
• IC design in RTL Verilog or VHDL
• Initial states or initialization sequences

– Assertion about the DUV
• Monitor in RTL Verilog or VHDL
• Property in property languages like OVA, PSL or SVA

– Assumption about the environment of the DUV 
and/or the DUV

• Monitor in RTL Verilog or VHDL
• Property in property languages like OVA, PSL or SVA

OVA: Open Vera Assertion language; PSL: Property Specification Language; SVA: SystemVerilog 
Assertion language



Formal Property Verification 
(cont.)

• Outputs:
– Falsified (bug is found)

• Counter example
– Error trace for debugging
– Best outcome for verification engineers

• Simulator ready or artificial VCD file
– Proven

• DUV satisfies the assertion against all input stimuli 
starting from the initial states under the assumptions

– Inconclusive
• Bounded proof of finite length
• Some coverage results



Design: RTL to Gate
a
b cp

g• Verilog or VHDL RTL

• input a,b; output c;
reg c; wire p, g;

assign g = a && b;
assign p = g || c; 
always @ (posedge clk)

c <= p;

• Logic synthesis converts 
RTL to gate-level netlist



Design: Gate to State Transition 
Graph

a
b cp

g• State: assignment to the 
inputs and registers
– (a=0, b=0, c=1), or (0,0,1)

• Transition: from state s1 to 
state s2 iff the design can 
go from state s1 to state s2 
in 1 clock cycle
– (1,1,0) -> (0,0,1)

• Finite state machine
• State transition graph:

– Vertices: states
– Arcs: transitions

0,0,0

1,1,0 1,0,0

0,1,0

0,0,1

1,1,1 1,0,1

0,1,1



Design: Initial States and Traces
a
b cp

g

0

• Initial states I: set of states 
from which the design start 
normal execution
– Reset states

• User provides initialization 
sequences (reset sequences) 
or initial states in HDL, HVL 
or VCD dump 

• Semantics of design
– Set of traces
– All finite and infinite paths 

(traces) from the initial states 
in the state transition graph



Properties
• Property

– Statement about the design
• Example: Whenever there is a request, there will be a 

grant in the next clock cycle
– Set of traces

• Design satisfies the property if
– Traces of design, T(D), is a subset of the traces of 

the property, T(p)
• Counter example (error traces)

– Traces that are in T(D) but not in T(p)
– Minimal error traces: error trace t is minimal if no 

prefix of t is an error trace



Properties (cont.)
• Safety properties

– Properties whose minimal error traces are finite
– Example: Whenever there is a request, there will 

be a grant in the next clock cycle
• Liveness properties

– Properties whose minimal error traces are infinite
– Example: Whenever there is a request, there will 

be a grant eventually
• Every property is a safety property, a liveness 

property or a conjunction of the two
• Will focus on safety properties in this tutorial



Safety Properties
• Properties in property languages

– Temporal formulas
• if request then #1 grant 

• Monitors in RTL Verilog or VHDL
– Designs that monitor the behavior of the DUV and assert a 

“bad” signal if and only if the DUV violates the property
– always @(posedge clk or negedge rst)

if (!rst) begin pre_req <= 0; 
bad <= 0; 

end
else begin pre_req <= request;

bad <= pre_req && !grant;
end

• Safety properties can be automatically converted into 
RTL monitors



Assertions and Assumptions
• Assertion

– Properties that we check to see if the DUV would 
satisfy during the verification

• Assumption
– Properties that we want to assume to be true for 

the DUV or the environment of the DUV during the 
verification



FV Model Under Verification
• DUV, assumption and assertion constitute the model 

under verification with an output that asserts iff the 
assertion is violated under the assumption

DUV

assertion

assumption

Design
Inputs

Design
outputs

assertion bad

assumption bad

assumption
has been bad

assertion
violated under

assumptionfail



Reduction to Reachability Problem
• Formal property verification problem is reduced to a 

reachability problem on the state transition graph:
– Are the fail states (F) reachable from the initial states (I)?

DUV

assertion

assumption

Design
Inputs

Design
outputs

assertion bad

assumption bad

assumption
has been bad

fail



Assume Guarantee Reasoning
• Properties can be used as either assertions or 

assumptions
• Assume guarantee reasoning

– DUV is block A
• assert pA; assume pB

– DUV is block B
• assert pB; assume pA

BA
No combinational loops allowed

McMillan, CAV98

pA

pB
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Outline
• Formal property verification basics
• Modern formal property verification engines

– Random simulation
– Reachable state set approximation
– Symbolic simulation
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– Inductive proof
– Structural subset-based abstraction

• Hybrid proof and disproof methods
• State-of-the-art formal property verification 

tools



Random Simulation
• Most effective engine for “simple” assertions

– Quickly find mistakes in model under verification
• Assertions, assumptions, initialization 

– Early design phase
• Assumption/assertion-based random simulation sometimes can be 

built faster than conventional simulation testbenches in 
HDL/HVL

• Random simulation with assumptions
– At each clock cycle, find an input vector that satisfies all 

assumptions
– Combinational assumptions

• Yuan,Shultz,Pixley,Miller,Aziz, ICCAD99
– Sequential assumptions

• Paper WIP



I

F

Symbolic Reachability Analysis
• Fixpoint computation

– State transition graph
– Starting from the initial states I



Symbolic Reachability Analysis
• Fixpoint computation

– Compute all states that are reachable in 1 clock 
cycle

– Image computation (forward)

I

F



Symbolic Reachability Analysis
• Fixpoint computation

– Compute all states that are reachable in 1 clock 
cycle

– Image computation (forward)

I

F



Unreachable
states!

Symbolic Reachability Analysis
• Fixpoint computation

– Reached a fixpoint!
– Identified unreachable states

I

F



Reachable States in 
Characteristic Representation

• Characteristic representation of sets of 
states and the model under verification
– State set S is represented as a Boolean function 

R: 2|V| -> B such that 
• State s is in the set S iff R(s)==1
• V: variables (inputs and registers)

• Example:
– State set {(x=0,y=1,z=0), (0,1,1), (1,0,1), (1,0,0)}
– Characteristic representation: !(x && y) && (x||y)



Characteristic Reachability 
Analysis Methods

• Methods
– BDD represents both the state set and model

• Burch,Clarke,McMillan,Dill,Hwang, LICS1990
– Clauses represent both the state set and model

• McMillan, CAV02 ? details in Ken’s session
– State set: interpolants; Model: clauses

• McMillan, CAV03 ? details in Ken’s session
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• Compact and canonical data structure for 
manipulating Boolean functions
– Example: 4 variables w, x, y and z

Boolean function:  w & ( x | y ) & (z | !z)
– Bryant, TCAD86

• Compact and canonical data structure for 
manipulating Boolean functions
– Example: 4 variables w, x, y and z

Boolean function:  w & ( x | y ) & (z | !z)
– Bryant, TCAD86



Characteristic Fixpoint 
Computation

• Fixpoint computation
– C(V,V‘): set of state transitions
– R0 = I;  Ri+1 = Ri ? Img(Ri,C)
– When Ri+1==Ri; F is unreachable iff (F ? Ri)==?

• Boolean operators for characteristic 
representation
– Union == disjunction ?
– Intersection == conjunction ?
– Img(Ri,C) == ? V'. ? V.  (Ri ? C(V,V‘))

• V: variables (registers and inputs)
• C(V,V’): the set of state transitions (transition relation)
• Ri(V): the set of states
• Existential quantification: ? V



Reachable States in Parametric 
Representation

• Parametric representation of sets of states
– State set S is represented as an array of Boolean 

functions (f0,… ,fn) such that 
• Each fi: 2|u| -> B
• State s=(s0,… ,sn) is in the set S iff there exists an 

assignment to the variables in U such that 
(s0,… ,sn) == (f0,… ,fn)

– Example:
• State set {(x=0,y=1,z=0), (0,1,1), (1,0,1), (1,0,0)}
• Parametric representation: (a, !a, b)



Parametric Reachability Analysis 
Methods

• Methods
– State set: BDD; Model: gate-level netlist

• Goel,Bryant, DATE03
• Parametric union, intersection, quantification



• Conventional (scalar) simulation
– Propagate constants

• Symbolic simulation
– Propagate parametric symbolic functions
a

b
a&b

0

1
0

Symbolic Simulation



• Initial state: !c & d & !e
• Bad states: fail ==1

0 1

0

a1

b1

Cycle 0

b

a

fail
(1&0)=0

Symbolic Simulation: Example

e

c d



• Symbolic simulation after 1st cycle
• Verified that the fail state not reachable in 1 cycle

a1 0

b1

(b1&0)=0a2

b2

Cycle 1

b

a

fail

Symbolic Simulation: Example

e

c d



• Hit the fail state ( fail==1 iff a1&b2 is 1 )!
– Generated input sequence

• @0, a=1
• @1, b=1

a2 a1

b2

a1&b2a3

b3

Cycle 2

b fail

Symbolic Simulation: Example

e

c d



• Applications
– Disproof
– Proof

• Recent work on disproof
– Set input variables to constants when BDD is getting too 

big
• Which input variable to under-approximate?

– Re-parameterization (to make the BDD smaller)
• Bertacco,Olukotun, DAC02
• Kwak,Moon,Kukula,Shiple, ICCAD02

– Approximate values and case splitting
• Wilson,Dill,Bryant, FMCAD02

– Handle embedded memories efficiently
• KÖlbl,Kukula,Antreich,Damiano, DAC02

Symbolic Simulation



• Recent work on proof
– Parametric symbolic reachability analysis as 

mentioned earlier
• Goel,Bryant, DATE03

– Generalized Symbolic Trajectory Evaluation 
(STE)

• Yang,Seger, FMCAD02
• Manual approximation/refinement is required

Symbolic Simulation



• Given Boolean function f(x1,x2,… ,xn)
• If it is possible to find assignment 

(a1,a2,… ,an) such that
– f(a1,a2,… ,an) = 1?

• Ken’s session will focus on this area of many 
recent breakthroughs

SAT (Satisfiability)



• Initial state: !c & d & !e
• Bad (goal) states: fail ==1

– Convert problem into a function: fail
– Find input assignment so that fail is 1

• No BDDs

SAT: Example

a1
b1

Cycle 0

c
d
e fail

0
1
0

fail=(1&0)

Function

0

0 1

b

a c

fail

d

e

Design



• SAT after 1st unroll
• Verified goal state not

reachable in 1 cycle

fail=(0&b1) 

a2
b2

Cycle 1

a1
b1

Cycle 0

c
d
e fail

0
1
0

0

0 1

b

a c
fail

d

e

SAT: Example



fail=(a1&b2) 

a3
b3

Cycle 2

a2
b2

Cycle 1

a1
b1

Cycle 0

c
d
e fail

0
1
0

• SAT after 2nd unroll
• Find assignment to inputs

a1=1 and b2=1 make fail=1
• Find input sequence

SAT: Example

0

0 1

b

a c
fail

d

e



• Applications
– Proof
– Disproof
– Ken’s session

SAT (Satisfiability)



• Original problem statement
– Wire of a circuit is stuck at 0 or 1
– Generate test so that

• Outputs of the good circuit and the faulty circuit differ
– Justification

• Generate a test that causes an opposite value at stuck-at wire
– Propagation

• Propagate the difference at the stuck-at wire to the output

ATPG (Automatic Test Pattern 
Generation)

h
d
f
e

a
b
c

jg

i

k

l
s-a-0



• Formal property verification only needs 
justification of the bad value
– If it is possible to find assignment 

(a1,a2,… ,an) to the inputs x1,x2,… ,xn such that y = 1?
• Sequential ATPG

– Does not explicitly unroll netlist
• Circuit topology determines decision-making 

schedule

ATPG (cont.)



ATPG Justification: Example
• ATPG value systems

– FV 3 value: 0, 1, X

11111

cba

1X1

1

gfed

d
c

a
b

ge

f

h

s-a-0



Comparison of Conventional ATPG 
and SAT technologies

ATPGLowHighNumber of sat. assignments
ATPGImplicitExplicitUnrolling for sequential 

problems

SATNoYesEfficient implications
ATPGYesSomeStructural information
sat: ATPG 
unsat: SAT

TopologyAppearance 
in clauses

Decision strategy

SATHighLowAlgorithm complexity

SATMinimalYesConflict-based learning
WinnerATPGSATFeature

• Iyer,Parthasarathy,Cheng, ICCAD03:



• SATORI [Iyer,Parthasarathy,Cheng, 
ICCAD03]
– ATPG decision strategy
– ATPG implicit unrolling
– ATPG partial assignments
– SAT conflict-based learning
– SAT implication

Hybrid ATPG-SAT Solver



• RACE [Mahesh Iyer, ITC03]
• Solves word-level arithmetic (datapath) and 

Boolean constraints (control)

Word-Level ATPG Solver



Inductive Prover
• Induction proof

– Use SAT or ATPG
– Will be covered in Ken’s session
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Outline
• Formal property verification basics
• Modern formal property verification engines
• Hybrid proof and disproof methods

– Disproof
– Proof

• Key ingredients for practical formal property 
verification tools



• Orchestrate simulation and multiple formal 
disproof engines

• Iteratively run random simulation and formal 
engines from “deep” states
– Ho,Shiple,Harer,Kukula,Damiano,Bertacco,Taylor,Lo

ng, ICCAD00

Hybrid Disproof Methods



Manually create input vectors to drive the 
design --- SLOW, LOW COVERAGE, MISS 
BUGS

Directed Simulation



Drive the design with random but legal input 
vectors --- MISS HARD-TO-FIND BUGS

Random Simulation



Short range semi-exhaustive search --- MISS 
DEEP BUGS

Formal Disproof



Collaborative simulation and formal engines 
searching far and wide

Hybrid Disproof [ICCAD00]

Where to start 
formal search?

Which formal 
algorithm?
How deep?

How to bias
random simulation?



• Goal: Make the size of the design almost 
irrelevant; Only proof complexity matters
– Model under verification with 10M gates
– Algorithm avoids building or analyzing whole design

• 3-value simulation
• ATPG in limited fashion

– ATPG model size is linear to the netlist, not depth*netlist
– Use hybrid engines to model check abstract model

• BDD-based symbolic reachability analysis
• ATPG

– Wang,Ho,Long,Kukula,Zhu,Ma,Damiano, DAC01

Hybrid Iterative Abstraction 
Refinement



Counter Example Guided 
Abstraction Refinement

2. Model check
abstract model C'

1. Choose initial abstract 
model C'

3. Can extend Cex
from C'to C?

4. Refine (extend)
abstract model C'

true, done

Cex

yes, Cex

no



Step 1: Create Abstract Model
• Task

– Create an abstract model 
• Abstract model

– A subset of registers
• Included registers, excluded registers

– Combinational fanin cones of included registers
• Included registers

– Initially include registers in the assertion
– Later refinement adds more registers



Abstract model

Inputs of the 
registers of N

Primary inputs
of N but register 
outputs of M
Primary inputs of N
and M

Outputs of the
registers of N

M: concrete model
N: abstract model

Rest of registers
and inputs of M



Step 2: Model Check Abstract 
Model

• Task
– Find an abstract error trace to reach the fail state
– Or declare the fail state unreachable (assertion 

proven)
• Find an error trace on the abstract model

– BDD based image computation
• Number of input variables is often an issue for backward 

image computation
– ATPG based search

• Length of the error trace sometimes is an issue



Find Abstract Error Trace
• Hybrid BDD-ATPG algorithm for abstract 

error trace:
– Forward image to reach the fail state

• Input variables are existentially quantified out, not an 
issue

– Backward image to find an abstract error trace
• Computes a min-cut abstract model with less number of 

inputs
• Backward image to get an assignment to the state 

variables and min-cut inputs with as many dashes as 
possible; e.g., (-,0,-,1,-,-,-)

• Use ATPG to generate an assignment to the original input 
variables with as many dashes as possible

• ATPG alone as the fall-back solution



Min-Cut and Original Abstract 
Models

Gates of N
and MC

Gates of N 
but not in MC

Inputs of MC

Inputs of N

Primary inputs
of N but register 
outputs of M

Primary inputs of 
N and M

Outputs of the 
registers of N

M: concrete model
N: original abstract model
MC: min-cut abstract model

Inputs of the 
registers of N



Hybrid Algorithm

Inputs of the 
registers of NGates of N

and MC
Primary inputs
of N but register 
outputs of M

Primary inputs of 
N and M

Outputs of the 
registers of N

M: concrete model
N: original abstract model
MC: min-cut abstract model

0
1
-
0 0

-

BDD-based backward image

ATPG          

1
-
0

1

1
-



Prove Assertion
• If error trace cannot be found on the 

abstract model (aborted after reaching 
resource limit)
– Apply symbolic reachability analysis to prove the 

assertion on the abstract model
• BDD
• Interpolant ? Ken’s session

• If proof is also aborted
– Increase the resource limit and resume error trace 

finding



Step 3: Try to Concretize 
Abstract Error Trace

• Task
– Check the validity of abstract error trace on 

concrete model
– Discover concrete error trace

• Challenge
– Must analyze the whole design

• Solution
– Use 3-value simulation to quickly identify abstract 

error traces that cannot be concretized
– Use guided ATPG to concretize the error trace



Check Abstract Error Trace 
Using 3-Value Simulation

• 3-valued simulation
– Simulate the abstract error trace on concrete 

model to see if there are conflicts on excluded 
registers

– Conflicts ? candidates to be included in the 
refined abstract model

– No conflicts ? Try to concretize the abstract 
error trace using ATPG



Identify Conflicts Using 3-Value 
Simulation

Primary inputs
of N but register 
outputs of M

Primary inputs of 
N and M

Outputs of the 
registers of N

M: concrete model
N: abstract model

Rest of registers 
and inputs of M

Abstract error trace

X
X
X
X

X
0
0
1
0

Conflict!

3-value simulation result

X
0

0

X
X
0
X

X

0
0
1
X
0

X
X
X
X



Step 3: Try to Concretize the 
Abstract Error Trace

• Conflict
– Yes ? conflict variables are good candidates to be 

included to refine the abstract model (in Step 4)
– No ? guided ATPG to find concrete error trace

• Guided ATPG
– Runs faster than unguided
– Gradually impose more constraints

• Increases the chance to find real error traces



Excluded 
registers of M

Primary inputs 
of M and N

Included 
registers of N

Abstract Error Trace Guided 
ATPG

Rest of 
registers and 
inputs of M

X
X
X
X

X
X
X
X

X
X
X
X

0
0

X
0

1
X

1
X

0
1

1
X

0 0 1

1
X



Step 4: Refinement
• Task

– Add “important” registers to refine the abstract 
model

– Intuition: add registers that invalidate the spurious 
error trace

• Key idea: 3-value simulation conflicts are good 
candidates
– Assignments required by the spurious error trace 

if the trace is minimal (true for BDD, not always 
true for ATPG, SAT is bad for this)

– Concrete model does not permit the assignments 
(conflicts)



Identify Conflicts Using 3-Value 
Simulation (Recall)

Primary inputs
of N but register 
outputs of M

Primary inputs of 
N and M

Outputs of the 
registers of N

M: concrete model
N: abstract model

Rest of registers 
and inputs of M

Conflict!

Abstract error trace

X
0

0

X
X
X
X

X
0
0
1
0

3-value simulation result

X
X
0
X

X

0
0
1
X
0

X
X
X
X



Candidate Minimization
• Find a smaller set of registers to be included
• Greedy minimization algorithm using SAT 

– Order all conflict registers according to heuristics
– Add one conflict register at a time to the abstract 

model
• Until the augmented abstract model and the error trace 

become unsatisfiable
– Try to remove previously added conflict registers 

one at a time
• A register is removed if the minimized model is still 

unsatisfiable



Minimization by SAT

Abstract 
Circuit Satisfiable

Abstract error 
trace



Minimization by SAT

Abstract error 
trace

SatisfiableAbstract 
Circuit



Minimization by SAT

Abstract 
Circuit

Abstract error 
trace

Unsat.



Related Work
• Clarke,Grumberg,Jha,Lu,Veith, CAV00

– Require building transition relation of whole design 
in BDD

– Refinement based on investigation of deadend 
states

• States in abstract error trace
– Can be reached by concrete error trace
– Cannot reach fail states by concrete error trace
– Closest to fail states

• Different than the deadend states that we mentioned 
about random simulation with assumptions

• But some states before the deadend states might reveal 
the key register



Related Work (cont.)
• Glusman,Kamhi,Mador-Haim,Fraer,Vardi, 

TACAS03
– Consider a sequence of BDDs to find refinement

• More expensive backward image computation than a 
sequence of cubes (multiple traces in both cases)

– Add gates or registers to refine the abstract 
model

• More expensive refinement process



Related Work (cont.)
• Wang,Li,Jin,Hachtel,Somenzi, ICCAD03

– Build synchronous onion rings (SORs) to represent all 
shortest error traces at once

– Score each input of the abstract model by the number of 
transitions that the input can potentially kill (if it is on our
side) in the SORs

• Pick the register that drives the input with the highest score to 
be included in the abstract model

• Register may not be on our side
• Register that can kill all shortest error traces may not get the

highest score
– Expensive computations are only done on the abstract model

• Scalable
• Many SAT-based abstraction refinement work

– Ken’s session
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Make Formal Property 
Verification Main-Stream

• Higher return for the user
– Handle bigger designs more efficiently

• Never choke on it; always do something
– Produce definitive results on more designs

• Lower investment from the user
– Reduce the effort and turnaround time for setting 

up the DUV, the assertions and assumptions
– Tool better be launch-and-forget
– Reduce debugging effort



Challenges
• Problem is intrinsically hard

– PSPACE complete, most likely exponentially harder 
than NP complete problems (place&route and logic 
synthesis)

• Assertions and assumptions have to be written 
in RTL or property languages
– Cannot accept high-level verification languages like 

Vera, e or C++
• Key ingredients that help



Key 1: Abstraction
• Goal: successful verification depends on the 

complexity of the proof/disproof rather than 
the size of the design
– Abstraction throughout
– Can produce definitive results for some assertions 

of designs with 10M gates
• May fail to do so for some assertions of designs with 1K 

gates (it’s all right)



Key 2: Tight Integration with 
Simulation Environments

• Handle initialization sequences in HVL, 
behavior HDL, C++ or VCD

• Help debugging and regression
• Most effective tool for refining the FV model 

(DUV, assertions, assumptions and reset)
• Reuse assertions and assumptions between 

simulation and formal property verification
• Identify and reduce synthesis-simulation 

mismatches



Key 3: Multiple Formal 
Technologies

• Already a must for main-stream formal 
equivalence checking tools

• Different technologies/tricks excel at 
– Different applications (proof vs. disproof)
– Different assertions (easy vs. hard)
– Different design constructs (control vs. data)

• No silver bullets
– The more technologies the more successes



Key 4: Proof vs. Disproof
• Prove and disprove deserve separate 

considerations
– Prove:

• Most effective abstraction is over-approximation of the 
model

– More traces than original model; no false positive
– False error traces

– Disprove:
• Most effective abstraction is under-approximation of the 

input stimuli
– Less traces than original model; no false negative
– Cannot give valid (unbounded) proof
– Bounded proof


