State-of-The-Art Formal
Property Verification
Technologies for 1C Designs

Pei-Hsin Ho
Advanced Technology Group
Synopsys, Inc.

Outline

Formal property verification basics
Modern formal property verification engines
Hybrid proof and disproof methods

State-of-the-art formal property verification
tools

Outline

Formal property verification basics

— Methodology
— Terminology
— Formalism

Modern formal property verification engines
Hybrid proof and disproof methods

State-of-the-art formal property verification
tools

Formal Property Verification

e Inputs:

— Design under verification (DUV)

e 1C design in RTL Verilog or VHDL

e Initial states or initialization sequences
— Assertion about the DUV

e Monitor in RTL Verilog or VHDL

e Property in property languages like OVA, PSL or SVA
— Assumption about the environment of the DUV

and/or the DUV

e Monitor in RTL Verilog or VHDL
e Property in property languages like OVA, PSL or SVA

OVA: Open Vera Assertion language; PSL: Property Specification Language; SVA: SystemVerilog
Assertion language

Formal Property Verification
(cont.)

e Outputs:
— Falsified (bug is found)

e Counter example

— Error trace for debugging
— Best outcome for verification engineers

e Simulator ready or artificial VCD file
— Proven

e DUV satisfies the assertion against all input stimuli
starting from the initial states under the assumptions

— Inconclusive
e Bounded proof of finite length
e Some coverage results

Design: RTL to Gate

e Verilog or VHDL RTL a

@)

e input a,b; output c;
reg c; wire p, g;

assign g = a && b;

assignp=g || c;

always @ (posedge clk)
C<=p;

e Logic synthesis converts
RTL to gate-level netlist

Design: Gate to State Transition
Graph

e State: assignment to the

Inputs and registers
— (a=0, b=0, c=1), or (0,0,1)

e Transition: from state sl to
state s2 iff the design can
go from state sl to state s2
In 1 clock cycle

- (1,1,0) -> (0,0,1)
e Finite state machine

e State transition graph:
— Vertices: states
— Arcs: transitions

Design: Initial States and Traces

e [Initial states I: set of states a
from which the design start b

normal execution
— Reset states

e User provides initialization

seguences (reset sequences)
or initial states in HDL, HVL
or VCD dump

e Semantics of design
— Set of traces

— All finite and infinite paths
(traces) from the initial states
In the state transition graph

Properties

e Property

— Statement about the design

e Example: Whenever there is a request, there will be a
grant in the next clock cycle

— Set of traces
e Design satisfies the property if
— Traces of design, T(D), is a subset of the traces of
the property, T(p)
e Counter example (error traces)
— Traces that are in T(D) but not in T(p)

— Minimal error traces: error trace t is minimal if no
prefix of tis an error trace

Properties (cont.)

Safety properties
— Properties whose minimal error traces are finite

— Example: Whenever there is a request, there will
be a grant in the next clock cycle

Liveness properties
— Properties whose minimal error traces are infinite

— Example: Whenever there is a request, there will
be a grant eventually

Every property iIs a safety property, a liveness
property or a conjunction of the two

Will focus on safety properties in this tutorial

Safety Properties

e Properties in property languages
— Temporal formulas
e If request then #1 grant
e Monitors in RTL Verilog or VHDL

— Designs that monitor the behavior of the DUV and assert a
“bad” signal if and only if the DUV violates the property

— always @(posedge clk or negedge rst)
If ('rst) begin pre req<=0;

bad <= 0O;
end
else begin pre_req <= request;

bad <= pre_req && !grant;
end

e Safety properties can be automatically converted into
RTL monitors

Assertions and Assumptions

e Assertion

— Properties that we check to see if the DUV would
satisty during the verification

e Assumption

— Properties that we want to assume to be true for
the DUV or the environment of the DUV during the
verification

FV Model Under Verification

e DUV, assumption and assertion constitute the model
under verification with an output that asserts Iff the
assertion is violated under the assumption

Design
Inputs

assertion bad

/

assertion

>

A

DUV

A 4

assertion
violated under

Design

outputs
o UtP

assumption
_»@—bfall

assumption

)

A

assumption
has been bad

\

assumption bad

Reduction to Reachability Problem

e Formal property verification problem is reduced to a
reachability problem on the state transition graph:
— Are the fail states (F) reachable from the initial states (1)?

Design
Inputs

assertion bad

/

assertion

>

A

DUV

A 4

Design

outputs
o UtP

_,@—»fail

assumption

)

A

assumption

has been bad

\

assumption bad

Assume Guarantee Reasoning

» Properties can be used as either assertions or

assumptions

e Assume guarantee reasoning

— DUV is block A

e assert p,; assume p;g

— DUV is block B

 assert pg; assume py,

Pa

A

Ps

B

No combinational loops allowed
McMillan, CAV98

Bibliography (1/3)

K.L. McMillan, "Verification of an implementation of Tomasulo®s algorithm by
compositional model checking,"” CAV98

OpenVera Assertions (OVA), http://www.open-vera.com/
PSL/Sugar, http://www.haifa.il.ibm.com/projects/verification/sugar/psl.html
SystemVerilog Assertions (SVA), http://www.eda.org/sv-ac/

Outline

Formal property verification basics

Modern formal property verification engines
— Random simulation

— Reachable state set approximation

— Symbolic simulation

— SAT

— ATPG and ATPG-SAT hybrid

— Inductive proof

— Structural subset-based abstraction

Hybrid proof and disproof methods

State-of-the-art formal property verification
tools

Random Simulation

e Most effective engine for “simple” assertions
— Quickly find mistakes in model under verification
e Assertions, assumptions, initialization

— Early design phase

e Assumption/assertion-based random simulation sometimes can be
built faster than conventional simulation testbenches in
HDL/HVL

e Random simulation with assumptions

— At each clock cycle, find an input vector that satisfies all
assumptions
— Combinational assumptions
e Yuan,Shultz,Pixley,Miller,Aziz, ICCAD99
— Sequential assumptions
e Paper WIP

Symbolic Reachability Analysis

e Fixpoint computation
— State transition graph
— Starting from the initial states 1

O\T/O\O
583,

Symbolic Reachability Analysis

e Fixpoint computation

— Compute all states that are reachable in 1 clock
cycle

— Image computation (forward)

Symbolic Reachability Analysis

e Fixpoint computation

— Compute all states that are reachable in 1 clock
cycle

— Image computation (forward)

g
W0 g,

Symbolic Reachability Analysis

e Fixpoint computation
— Reached a fixpoint!
— ldentified unreachable states

Q Unreachable
states!

Reachable States In
Characteristic Representation

e Characteristic representation of sets of
states and the model under verification

— State set S is represented as a Boolean function
R: 2IVl -> B such that
e State s is in the set S Iff R(s)==1
e V: variables (inputs and registers)
e Example:
— State set {(x=0,y=1,z=0), (0,1,1), (1,0,1), (1,0,0)}
— Characteristic representation: (X && y) && (X|ly)

Characteristic Reachability
Analysis Methods

e Methods

— BDD represents both the state set and model
e Burch,Clarke,McMillan,Dill,Hwang, LICS1990

— Clauses represent both the state set and model
e McMillan, CAV0O2 & details in Ken’s session

— State set: interpolants; Model: clauses
e McMillan, CAVO3 & details in Ken’ session

Binary Decision Diagram (BDD)

e Compact and canonical data structure for
manipulating Boolean functions

— Example: 4 variables w, X, y and z
Boolean function: w& (x|y) & (z | !2)

- Bryant, TCAD86

Binary decision tree BDD

o O 1 W,
X/ y
N N
ARRRRR AR N

Characteristic Fixpoint
Computation

e Fixpoint computation
— C(V,V): set of state transitions
- Ro= 1, Ry =R; ? Img(R;,C)
— When R;,;==R;; F is unreachable iff (F ? R;)==7
e Boolean operators for characteristic
representation
— Union == disjunction ?
— Intersection == conjunction ?
— Img(R;,C) ==?V".? V. (R, ? C(V,V))
e V: variables (registers and inputs)
e C(V,V): the set of state transitions (transition relation)

e Ri(V): the set of states
e Existential quantification: ?V

Reachable States in Parametric
Representation

e Parametric representation of sets of states

— State set S Is represented as an array of Boolean
functions (f,,..,T,,) such that
e Each f;: 2l -> B

e State s=(s,,..,S,) IS Iin the set S iff there exists an
assignment to the variables in U such that

(Sgr»Sn) == (Fo,.. 1)
— Example:
e State set {(x=0,y=1,z=0), (0,1,1), (1,0,1), (1,0,0)}
e Parametric representation: (a, !a, b)

Parametric Reachability Analysis
Methods

e Methods

— State set: BDD; Model: gate-level netlist
e Goel,Bryant, DATEO3
e Parametric union, intersection, quantification

Symbolic Simulation

e Conventional (scalar) simulation
— Propagate constants

0
0
1

e Symbolic simulation
— Propagate parametric symbolic functions

a
a&b
b

Symbolic Simulation: Example

e Initial state: lc & d & le
e Bad states: fail ==

(1&0)=0
fail

Symbolic Simulation: Example

e Symbolic simulation after 1st cycle
e Verified that the fail state not reachable in 1 cycle

Symbolic Simulation: Example

e Hit the fail state (fail==1 Iff al&b2 i1s 1)
— Generated Input sequence
e @0, a=1
- @1, b=1

Symbolic Simulation

e Applications
— Disproof
— Proof

e Recent work on disproof
— Set input variables to constants when BDD is getting too
big
e Which input variable to under-approximate?

— Re-parameterization (to make the BDD smaller)
e Bertacco,Olukotun, DACO2
 Kwak,Moon,Kukula,Shiple, ICCADO2

— Approximate values and case splitting
e Wilson,Dill,Bryant, FMCADOZ2

— Handle embedded memories efficiently
e Kolbl,Kukula,Antreich,Damiano, DACO2

Symbolic Simulation

e Recent work on proof

— Parametric symbolic reachability analysis as
mentioned earlier
e Goel,Bryant, DATEO3

— Generalized Symbolic Trajectory Evaluation
(STE)
e Yang,Seger, FMCADO2
e Manual approximation/refinement is required

SAT (Satisfiability)

e Given Boolean function f(x;,X,,..,X,)

e IT it is possible to find assignment
(a;,a,,..,a,) such that
- f(a,,a,,..,a,) = 1?

e Ken’ session will focus on this area of many
recent breakthroughs

SAT: Example

e Initial state: lc& d & le

e Bad (goal) states: fail ==
— Convert problem into a function: fail
— Find input assignment so that fail is 1

e No BDDs
©vele 0 Eunction
al —p
1> fail=(1&0)
0
- |
ol—ey fail

SAT: Example

e SAT after 1st unroll

e Verified goal state not
reachable in 1 cycle

Cycle O Cycle 1

a2
b2

fail=(0&b1)

fail

SAT: Example

e SAT after 2nd unroll

e Find assignment to inputs
al=1 and b2=1 make fail=1

e Find input sequence

Cycle 0 Cycle 1 Cycle 2

fall=(al&b2)

fail

SAT (Satisfiability)

e Applications
— Proof
— Disproof
— Ken% session

ATPG (Automatic Test Pattern

Generation)
e Original problem statement

— Wire of acircuitis stuck at O or 1

— Generate test so that
e Outputs of the good circuit and the faulty circuit differ

— Justification

e Generate a test that causes an opposite value at stuck-at wire
— Propagation

e Propagate the difference at the stuck-at wire to the output
g J
Nl

—~(DOO T QD

ATPG (cont.)

e Formal property verification only needs
justification of the bad value

— If 1t is possible to find assignment
(a,,a,,..,a,) to the inputs X;,X,,..,X, such that 'y = 1?

e Sequential ATPG
— Does not explicitly unroll netlist

e Circuit topology determines decision-making
schedule

ATPG Justification: Example

e ATPG value systems
— FV 3value: 0, 1, X

g a|b|c |d|e |F
a e
b (
1 | X
C
d 1 |1 1 |1
h

Comparison of Conventional ATPG

and SAT technologies
e lyer,Parthasarathy,Cheng, ICCADOS:

Feature SAT ATPG Winner
Conflict-based learning Yes Minimal SAT
Efficient implications Yes No SAT
Structural information Some Yes ATPG
Decision strategy Appearance | Topology sat: ATPG
In clauses unsat: SAT
Algorithm complexity Low High SAT
Number of sat. assignments | High Low ATPG
Unrolling for sequential Explicit Implicit ATPG

problems

Hybrid ATPG-SAT Solver

e SATORI [lyer,Parthasarathy,Cheng,
ICCADO3]
— ATPG decision strategy
— ATPG implicit unrolling
— ATPG partial assignments
— SAT conflict-based learning
— SAT implication

Word-Level ATPG Solver

e RACE [Mahesh lyer, ITCO3]

e Solves word-level arithmetic (datapath) and
Boolean constraints (control)

Inductive Prover

e Induction proof
— Use SAT or ATPG
— WIll be covered in Kens session

Bibliography (2/3)

V. Bertacco, K. Olukotun, “Efficient state representation for symbolic simulation,” DAC2002,
pp.99-110

R.E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE TCAD, C-
35(8), 1986

J.R. Burch,E.M. Clarke,K.L. McMillan,D.L. Dill,J. Hwang, “Symbolic model checking:102° states
and beyond,” LICS1990

A. Goel, R.E. Bryant “Set manipulation with Boolean functional vectors for symbolic
reachability analysis,"* DATE2003

M.K. lyer, G. Parthasarathy, K.T. Cheng, “SATORI-a fast sequential SAT engine for circuits,”
ICCADO3

M. lyer, “RACE: a word-level ATPG-based constraint solver system for smart random
simulation,” 1TCO3

A. KOlIbl, J. Kukula, K. Antreich, R. Damiano, “Handling special constructs in symbolic
simulation,” DAC2002, pp.105-110

H.H. Kwak, I.-H. Moon, J. Kukula, T.R. Shiple, “Combinational equivalence checking through
function transformation,” ICCADO2, pp.526-533

K.L. McMillan, “Interpolation and SAT-based Model Checking,” CAV2003

K.L. McMillan, “Applying SAT methods in unbounded symbolic model checking,” CAV2003,
pp.250-264

C. Wilson, D.L. Dill, R.E. Bryant, “Symbolic simulation with approximate values,” FMCAD 2000,
pp. 486-504

J. Yuan,K. Shultz,C. Pixley, H.Miller, A. Aziz “Modeling design constraints and biasing in
simulation using BDDs,” ICCAD1999, pp.584-589

J. Yang, C.-J. Seger, “Generalized symbolic trajectory evaluation — abstraction in action,”
FMCAD2002, pp. 70-87

Outline

Formal property verification basics

Modern formal property verification engines
Hybrid proof and disproof methods

— Disproof

— Proof

Key ingredients for practical formal property
verification tools

Hybrid Disproof Methods

e Orchestrate simulation and multiple formal
disproof engines
e lteratively run random simulation and formal

engines from “deep” states

— Ho,Shiple,Harer,Kukula,Damiano,Bertacco, Taylor,Lo
ng, ICCADOO

Directed Simulation

Manually create input vectors to drive the
design --- SLOW, LOW COVERAGE, MISS
BUGS

PAY
%**
PAY PAY
pAe
S

Random Simulation

Drive the design with random but legal input
vectors --- MISS HARD-TO-FIND BUGS

*ﬁ%i)) i
YA
YA
*i?
e YA
Bi?
‘5&5}&

Formal Disproof

Short range semi-exhaustive search --- MISS
DEEP BUGS
< PAY
PAY
S PAY
pAY
*i?
S pAY

Hybrid Disproof [ICCADQO]

Collaborative simulation and formal engines
searching far and wide

PAY
PAY **
— PAY

How to bias
random simulation?

) S

Which formal
algorithm?
How deep?

Where to star
formal search?

Hybrid Iterative Abstraction

Refinement

e Goal: Make the size of the design almost
iIrrelevant; Only proof complexity matters

— Model under verification with 10M gates

— Algorithm avoids building or analyzing whole design

e 3-value simulation

e ATPG in limited fashion
— ATPG model size is linear to the netlist, not depth*netlist

— Use hybrid engines to model check abstract model

e BDD-based symbolic reachability analysis
e ATPG

— Wang,Ho,Long,Kukula,Zhu,Ma,Damiano, DACO1

Counter Example Guided
Abstraction Refinement

model C*

1. Choose Initial abstract

l

2. Model check
abstract model C*

true, done

lCex

3. Can extend Cex
from C"to C?

yes, Cex

lno

4. Refine (extend)
abstract model C*

Step 1. Create Abstract Model

e Task
— Create an abstract model

e Abstract model

— A subset of registers
e Included registers, excluded registers

— Combinational fanin cones of included registers
e Included registers

— Initially include registers in the assertion

— Later refinement adds more registers

Abstract model

Outputs of the Inputs of the
registers of N < { registers of N

NC

Primary inputs
of N but register 4
outputs of M

NO

Primary inputs of N <
and M

N

Rest of registers <

and inputs of M
P M: concrete model

N: abstract model

Step 2: Model Check Abstract
Model

e Task

— FInd an abstract error trace to reach the fail state
— Or declare the fail state unreachable (assertion
proven)
e FInd an error trace on the abstract model

— BDD based image computation

e Number of input variables is often an issue for backward
Image computation

— ATPG based search
e Length of the error trace sometimes is an issue

Find Abstract Error Trace

e Hybrid BDD-ATPG algorithm for abstract
error trace:

— Forward image to reach the fail state
e Input variables are existentially quantified out, not an
Issue
— Backward image to find an abstract error trace
e Computes a min-cut abstract model with less number of
Inputs
e Backward image to get an assignment to the state
variables and min-cut inputs with as many dashes as
possible; e.q., (-,0,-,1,-,-,-)
e Use ATPG to generate an assignment to the original input
variables with as many dashes as possible

e ATPG alone as the fall-back solution

Min-Cut and Original Abstract
Models

Outputs of the
registers of N

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

M: concrete model
N: original abstract model
MC: min-cut abstract model

\

Gates of N |}
and MC

Inputs of the
registers of N

Inputs of MC

Inputs of N

Ghtes of N
byt not in MC

Hybrid Algorithm

BDD-based backward image

\A

Outputs of the
registers of N

Primary inputs
of N but register
outputs of M

Primary inputs of
N and M

M: concrete model
N: original abstract model
MC: min-cut abstract model

1 and MC

Gates of N

\

1 Inputs of the
— registers of N

Prove Assertion

e If error trace cannot be found on the
abstract model (aborted after reaching

resource limit)
— Apply symbolic reachability analysis to prove the
assertion on the abstract model

e BDD
e Interpolant & Ken% session

e |If proof is also aborted

— Increase the resource limit and resume error trace
finding

Step 3: Try to Concretize
Abstract Error Trace

e Task

— Check the validity of abstract error trace on
concrete model

— Discover concrete error trace

e Challenge
— Must analyze the whole design

e Solution

— Use 3-value simulation to quickly identify abstract
error traces that cannot be concretized

— Use guided ATPG to concretize the error trace

Check Abstract Error Trace
Using 3-Value Simulation

e 3-valued simulation

— Simulate the abstract error trace on concrete

model to see If there are conflicts on excluded
registers

— Conflicts & candidates to be included in the
refined abstract model

— No conflicts & Try to concretize the abstract
error trace using ATPG

Identify Conflicts Using 3-Value

Outputs of the
registers of N

Primary inputs
of N but register
outputs of M

Primary inputs of

N and M

Rest of registers
and inputs of M

<

<

<

Simulation

Abstract error tracefg

3-value simulation result

onflict!

M: concrete model
N: abstract model

Step 3: Try to Concretize the
Abstract Error Trace

e Conflict

— Yes & conflict variables are good candidates to be
Included to refine the abstract model (in Step 4)

— No & guided ATPG to find concrete error trace

e Guided ATPG

— Runs faster than unguided

— Gradually impose more constraints
e Increases the chance to find real error traces

Abstract Error Trace Guided

Included I X 1 1
registers of N <
> 0] 0 X X
Excluded 1 0 1
' <
registers of M % 1 X
Primary inputs [0 0 1
of M and N 1
Rest of | X X X
registers and $ X X X
inputs of M X X X
([X X X

Step 4: Refinement

e Task

— Add “important” registers to refine the abstract
model

— Intuition: add registers that invalidate the spurious
error trace
e Key idea: 3-value simulation conflicts are good
candidates

— Assignments required by the spurious error trace
If the trace is minimal (true for BDD, not always
true for ATPG, SAT is bad for this)

— Concrete model does not permit the assignments
(conflicts)

Identify Conflicts Using 3-Value
Simulation (Recall)

Abstract error tracefg

Outputs of the
registers of N

Primary inputs
of N but register
outputs of M

Primary inputs of

N and M

Rest of registers
and inputs of M

A

3-value simulation result

onflict!

M: concrete model
N: abstract model

Candidate Minimization

e Find a smaller set of registers to be included

e Greedy minimization algorithm using SAT
— Order all conflict registers according to heuristics

— Add one conflict register at a time to the abstract
model
e Until the augmented abstract model and the error trace
become unsatisfiable
— Try to remove previously added conflict registers
one at a time

e A register is removed If the minimized model is still
unsatisfiable

Minimization by SAT

Abstract
Circuit

Abstract error
trace

Satisfiable
C

Minimization by SAT

Abstract
Circuit

Abstract error
trace

Satisfiable
C

Minimization by SAT

Abstract
Circuit

Abstract error
trace

Related Work

e Clarke,Grumberg,Jha,Lu,Veith, CAVOO

— Require building transition relation of whole design
in BDD

— Refinement based on investigation of deadend
states

e States in abstract error trace
— Can be reached by concrete error trace
— Cannot reach fail states by concrete error trace
— Closest to fail states

e Different than the deadend states that we mentioned
about random simulation with assumptions

e But some states before the deadend states might reveal
the key register

Related Work (cont.)

e Glusman,Kamhi,Mador-Haim,Fraer,Vardi,
TACASO3

— Consider a sequence of BDDs to find refinement

e More expensive backward image computation than a
seguence of cubes (multiple traces in both cases)

— Add gates or registers to refine the abstract
model
e More expensive refinement process

Related Work (cont.)

e Wang,Li,Jin,Hachtel,Somenzi, ICCADO3

— Build synchronous onion rings (SORs) to represent all
shortest error traces at once

— Score each input of the abstract model by the number of
transitions that the input can potentially kill (if it is on our
side) in the SORs

e Pick the register that drives the input with the highest score to
be included in the abstract model

e Register may not be on our side

e Register that can kill all shortest error traces may not get the
highest score

— EXpensive computations are only done on the abstract model
e Scalable
e Many SAT-based abstraction refinement work

— Ken’ session

Bibliography (3/3)

E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, “Counterexample-guided
abstraction refinement,” CAV2000, pp. 154-169

M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, M. Vardi, “Multiple-
counterexample guided iterative abstraction refinement: an industrial evaluation,
TACAS2003

P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor, “Smart
simulation using collaborative formal and simulation engines,” ICCAD2000, pp.120-
126

C. Wang, B. Li, H. Jin, G.D. Hachtel, F. Somenzi, “Improving Ariadnes bundle by
following multiple threads in abstraction refinement,” ICCAD2003, pp.408-415

D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, R. Damiano, “Formal property
verification by abstraction refinement with formal, simulation and hybrid
engines,” DAC 2001, pp. 35-40

Outline

Formal property verification basics
Modern formal property verification engines
Hybrid proof and disproof methods

State-of-the-art formal property verification
tools

Make Formal Property
Verification Main-Stream

e Higher return for the user

— Handle bigger designs more efficiently
e Never choke on it; always do something

— Produce definitive results on more designs

e | ower investment from the user

— Reduce the effort and turnaround time for setting
up the DUV, the assertions and assumptions

— Tool better be launch-and-forget
— Reduce debugging effort

Challenges

e Problem is intrinsically hard

— PSPACE complete, most likely exponentially harder
than NP complete problems (place&route and logic
synthesis)

e Assertions and assumptions have to be written

In RTL or property languages

— Cannot accept high-level verification languages like
Vera, e or C++

e Key ingredients that help

Key 1. Abstraction

e Goal: successful verification depends on the
complexity of the proof/disproof rather than
the size of the design
— Abstraction throughout

— Can produce definitive results for some assertions
of designs with 10M gates

e May fail to do so for some assertions of designs with 1K
gates (it5s all right)

Key 2: Tight Integration with
Simulation Environments

e Handle initialization sequences in HVL,
pehavior HDL, C++ or VCD

e Help debugging and regression

e Most effective tool for refining the FV model
(DUV, assertions, assumptions and reset)

e Reuse assertions and assumptions between
simulation and formal property verification

e ldentify and reduce synthesis-simulation
mismatches

Key 3: Multiple Formal
Technologies

e Already a must for main-stream formal
equivalence checking tools
e Different technologies/tricks excel at
— Different applications (proof vs. disproof)
— Different assertions (easy vs. hard)
— Different design constructs (control vs. data)
e No silver bullets
— The more technologies the more successes

Key 4: Proof vs. Disproof

e Prove and disprove deserve separate
considerations

— Prove:
e Most effective abstraction is over-approximation of the
model
— More traces than original model; no false positive
— False error traces

— Disprove:
e Most effective abstraction is under-approximation of the
input stimuli
— Less traces than original model; no false negative

— Cannot give valid (unbounded) proof
— Bounded proof

