Smart Simulation
Using Collaborative Formal and Simulation Engines

Pei-Hsin Ho, Thomas Shiple, Kevin Harer, James Kukula,
Robert Damiano, Valeria Bertacco, Jerry Taylor, Jiang Long

{pho, shiple, kevinh, kukula, robertd, valeria, jerryt, long}@synopsys.com

Advanced Technology Group, Synopsys Inc.

Abstract

We present Ketchum, a tool that was developed to
improve the productivity of simulation-based
functional verification by providing two capabilities: (1)
automatic test generation and (2) unreachability
analysis. Given a set of “interesting” signals in the
design under test (DUT), automatic test generation
creates input stimuli that drive the DUT through as
many different combinations (called coverage states)
of these signals as possible to thoroughly exercise the
DUT. Unreachability analysis identifies as many
unreachable coverage states as possible.

Ketchum differs from the previous published results
for several reasons. First, Ketchum provides 10x
higher capacity than previous published results. The
higher capacity is achieved by carefully orchestrating
simulation and multiple formal methods including
symbolic simulation, SAT-based BMC, symbolic
fixpoint computation and automatic abstraction.
Second, Ketchum performs not only automatic test
generation but also unreachability analysis, which
enables the test generation effort to be focused on
coverage states that are not unreachable. Third, the
backbone of Ketchum is an off-the-shelf commercial
simulator. It enables Ketchum to reach deep states of
the design quickly and supports simulation monitors
through the standard API of the simulator during test
generation.

We applied Ketchum to several industrial designs,
including the picoJava microprocessor from SUN and
the DW8051 microcontroller from Synopsys and
obtained very promising results. The experiments
show that Ketchum can (1) handle design blocks
containing more than 4500 latches and 170K gates,
(2) reach up to 6x more coverage states than random
simulation and (3) identify a majority of the
unreachable coverage states.

1. Introduction

Functional verification checks if the functionality of the
hardware design meets the specification. A typical
method for “bullet-proofing” the functionality of the
design is random simulation [11]. Random simulation
can leverage today's fast simulators and computer
farms by using some sophisticated test harness.
Verification engineers need to build a model of the
environment in which the DUT operates. During
random simulation, biased pseudo random
generators drive the primary inputs of the
environment model with random values and the
environment model then drives the primary inputs of
DUT with random but legal stimuli. The behavior of
the DUT can be checked by simulation monitors
during the simulation. We call the model that consists
of the DUT and the environment model the model
under test (MUT).

To measure the quality of the verification effort,
verification engineers apply coverage metrics to
estimate how thoroughly the input stimuli have
exercised the design. Coverage metrics directly
based on the source code of the RTL design, such as
line coverage, are too weak because they do not take
the concurrency of hardware designs into
consideration. Consider two finite state machines
(FSMs) that control a buffer (see Figure 1).

T @D G
S e

Figure 1. Two FSMs that control a buffer

The first FSM represents the operation that is being
performed on the buffer, the second FSM the status
of the buffer. It's possible to achieve 100% line
coverage on the corresponding RTL description by

exercising only 3 cross-states: idle/empty,
write/normal, read/full. However, interesting corner
cases such as read/empty (reading when the buffer is
empty) and write/full (writing when the buffer is full)
could be left unvisited.

State coverage, on the other hand, can distinguish
different concurrent events. Given a set of interesting
signals, which we call coverage signals, the state
coverage measures how many different combinations
of the values of the coverage signals have been
reached during simulation. We call each combination
a coverage state. For the above example, if we select
the set of signals that encodes the states of the two
FSMs as our coverage signals, 100% state coverage
indicates that all nine cross states have been visited.

Coverage signals are usually selected from signals
that constitute pipeline control, interacting FSMs,
decoder outputs, status registers or other key control
signals. By forcing the design into many different
coverage states, the probability of detecting errors is
increased. For the above example, a simulation
monitor may detect that some valid data in the buffer
is mistakenly over-written during a write to a full
buffer. Therefore, verification engineers may want to
construct input stimuli to maximize the state
coverage; that is, to reach as many coverage states
as possible. This task is known as coverage-driven
test generation. Today it can be achieved by manually
writing test sequences, or tweaking the biasing in
random simulation. However, this approach is very
expensive in terms of engineering resources.

Alternatively, formal methods like symbolic fixpoint
computation and symbolic simulation can
exhaustively search for an input sequence to hit a
coverage state. Recently many formal and semi-
formal (mixture of formal and simulation techniques)
methods [1][7] have been proposed for this
application. However, existing results in the literature
suffer from a serious capacity limit, as they were only
demonstrated on design blocks with less than 500
latches.

Our contribution is the development of a practical
solution, Ketchum, to automate the test generation
process for verifying real-world designs. Given (1) a
synthesizable MUT and (2) a set of less than 64
coverage signals, Ketchum automatically (1)
generates test sequences to reach as many coverage
states as possible and (2) identifies as many
unreachable coverage states as possible. The
generated high-coverage tests can be replayed during
regression tests. Simulation monitors written in
arbitrary languages communicating to the standard
API of the commercial simulator can be used during
test generation for catching bugs.

The target capacity of Ketchum is to handle
synthesizable MUT in the range of 100K gates and 5K
latches. This range encompasses design blocks of
integral functionality and many IP blocks, to which
random simulation may be applied today.

Ketchum’s unreachability analysis employs symbolic
fixpoint computation [12] and robust automatic
abstraction techniques to prove many coverage states
unreachable. Its automatic test generation utilizes a
combination of simulation and formal methods like
symbolic simulation [1][4] and SAT-based bounded
model checking (SAT-based BMC)[2], to generate
input sequences to achieve high state coverage.

More specifically, random simulation and formal
methods are interleaved to perform a deep and wide
exploration of the state space. Starting from a given
initial state, random simulation quickly hits several
new coverage states but will eventually stops
reaching new coverage states so quickly. Then one of
the formal methods is used in an exhaustive search
for a new coverage state. This search is narrowed to
just those states not yet proven unreachable. The
process then repeats, leveraging the ability of
simulation to search deep, and the ability of formal
methods to search wide.

We applied Ketchum to several industrial designs,
including the picoJava microprocessor from SUN and
the DW8051 microcontroller from Synopsys and
obtained very promising results. The experiments
show that Ketchum can (1) handle design blocks
containing more than 4500 latches and 170K gates,
(2) reach up to 6x more coverage states than random
simulation and (3) identify a majority of the
unreachable coverage states.

The remainder of the paper proceeds as follows.
Section 2 describes our method for generating input
sequences to reach coverage states, and Section 3
our algorithm for proving coverage states
unreachable. Section 4 presents the experimental
results. Having defined the problem and explained our
approach in detail, Section 5 describes related work,
and finally Section 6 concludes the paper.

2. Test Generation

We present a test generation algorithm that combines
(1) random simulation, (2) symbolic simulation and (3)
SAT-based bounded model checking to generate
stimuli to reach coverage states. We will first provide
a brief overview of these three search techniques.

A state (resp. coverage state) of a design is a
valuation of all signals (resp. coverage signals) of the
design. Given a starting state, random simulation

automatically generates a trace of the MUT from the
starting state by driving the primary inputs of the MUT
with random values. During the random simulation,
we observe the values of the coverage signals. If the
values of the coverage signals indicate that a new
coverage state has been reached, we store the new
coverage state and mark it as reached. The
advantage of random simulation is that it is extremely
fast and it can generate traces that reach very deep
states in the state space. The disadvantage is that it
only searches along a single trace at a time. We
perform random simulation using a commercial
simulator. Note that off-the-shelf simulators usually
perform much better in generating a single very long
trace than a lot of short traces where the simulator
needs to be injected with the same starting state over
and over again. We use random simulation as our
long range search engine to reach deep states.

Symbolic simulation drives each primary input of the
MUT with a new symbolic variable at each simulation
step [4]. It computes the symbolic formula for each
signal according to the logic in its fanin. Notice that
the DUT will be driven by legal symbolic formulas
because of the environment model in the MUT. The
symbolic formulas are stored as Binary Decision
Diagrams (BDDs) [3]. Given a starting state, the j-th
step of symbolic simulation can reach any new
coverage state that is j steps away from the starting
state. We store the unclassified coverage states as a
BDD, called unclassified BDD. During symbolic
simulation, we check if a new coverage state has
been reached by substituting the coverage signals in
the unclassified BDD with the symbolic formulas of
the coverage signals. If the result of the operation is
not the empty set, a new coverage state has been
reached by symbolic simulation. In that case, we
update the unclassified BDD and generate a trace to
be used in simulation, as discussed later. Otherwise
we continue performing additional steps of symbolic
simulation until a new coverage state is reached or
some memory or time limit is reached.

Table 1. Comparison of Search Engines

Engine Effective Strength Limitation
Search
Range
Random Long Deep Single trace
simulation states
Symbolic Medium Designs Time, memory,
simulation with fewer | length of trace
inputs
SAT-based Short Short hit | Time, length of
BMC traces trace

Two important observations about symbolic
simulation can be noted. First, the number of
symbolic variables that have been used during
simulation has more impact on the complexity of
symbolic simulation than the number of latches in the

MUT. The number of symbolic variables used in the
symbolic simulation is the number of primary inputs
times the number of simulation steps. Second, when
the size of the BDD that represents the simulation
values gets unwieldy, we can easily under-
approximate the symbolic simulation values by setting
some symbolic variables to Boolean constants [1][6].
As a result of these two observations, we can
efficiently perform symbolic simulation on designs
with thousands of latches and hundreds of primary
inputs for 10 to 50 steps. Because of our first
observation, symbolic simulation generally is not
adequate to generate traces to reach coverage states
that are more than a few tens of steps away from the
initial state. Thus, we use symbolic simulation for
middle-range exhaustive (or semi-exhaustive with
underapproximation) search.

SAT-based BMC was introduced in [2]. Given a
particular starting state, we can use a SAT solver to
search for a trace up to a certain length j to reach a
new coverage state. The targeted coverage states
can be restricted to coverage states that are not yet
reached or proven unreachable by the unreachability
engine. Within a certain time limit, a complete SAT
solver [14] will: (1) find a trace to reach a new
coverage state, or (2) prove that no new coverage
states can be reached by traces up to length i/, or (3)
return no conclusions. If the outcome is (2) or (3), we
apply the SAT solver to search for traces of length
i+1, until some memory or time limit is reached. For
designs with thousands of latches and hundreds of
inputs, SAT-based BMC usually requires a lot less
memory and is a lot faster than symbolic simulation
for finding traces of length less than 10.
Consequently, we use SAT-based BMC as our short-
range exhaustive search engine.

Figure 2. Test generation algorithm

Knowing the advantages and disadvantages of each
search engine (summarized in Table 1), we
orchestrate the search engines to hide the
disadvantages and exploit the advantages of
individual engines. We want to perform a deep and
wide search by randomly simulating to a deep state

and, starting from that state, a short or middle range
wide (exhaustive) search using SAT-BMC or symbolic
simulation.

Figure 2 illustrates the test generation algorithm. The
rectangular box represents the entire state space of
the MUT and the stars represent the coverage states
in the state space. The algorithm starts off by playing
an initialization sequence provided by the user to
reach the initial state of the MUT (a). Then, we
perform random simulation (the generated trace is
represented as the zig-zag line) and quickly reach
easy-to-reach coverage states.

After most of the easy-to-reach coverage states have
been reached, the rate of reaching new coverage
states falls below a heuristic threshold (b). At this
moment, we kick off our SAT-based BMC with the
current state of random simulation as the starting
state. If SAT-based BMC does not reach a coverage
state within the search range, we kick off symbolic
simulation after that. The search space of an
exhaustive search engine is represented as nested
circles in Figure 2. When, the exhaustive search
engine finds a new coverage state, it generates a
sequence of input assignments that is then replayed
by the simulator (represented by the gray arrows). If
both exhaustive search engines run out of time or
memory limits without finding a new coverage state,
we will return control to the random simulator. In
either case, we start random simulation again and
repeat this process until a desirable coverage number
is reached. The final output of Ketchum will be a
single long trace that traverses all the reached states,
which is stored in a separate file for use during
regression testing of the MUT. Since all the traces
returned by the formal engines are replayed through
the simulator, the simulation monitors will function
correctly just as in ordinary random simulation.

We noticed that after an exhaustive engine reaches a
new coverage state, the subsequent random
simulation run could often reach a bunch of new
coverage states quickly. We suspect that the reason
is that among the set of coverage signals, some
coverage signals are relatively easy to transition from
one value to another and some coverage signals are
relatively hard to transition. As a result, after an
exhaustive engine manages to reach a new
combination of the hard-to-transition coverage
signals, random simulation will bump into different
combinations of the easy-to-transition coverage
signals, which combined with the new combination of
the hard-to-reach signals become new coverage
states.

3. Unreachability

Proving coverage states unreachable is a major
aspect of coverage-driven test generation. Knowing
the number of unreachable coverage states provides
a more accurate measure of the quality of a
simulation test bench. Moreover, knowing specifically
which states are unreachable allows the reachability
engine of Ketchum to focus on a much smaller set of
states.

The goal of the unreachability engine of Ketchum is to
provide fast and robust results without necessarily
trying to detect all of the unreachable states. Simply
put, we sacrifice exactness in favor of capacity and
robustness. To this end, we have designed a
straightforward algorithm that is conservative: it can
prove states unreachable, but cannot prove states
reachable. The basic idea of the algorithm is one that
has been employed by many others before: perform
exact analysis on a pruned model of the MUT.
However, we introduce novel techniques in the way
we select the latches and the combinational logic to
include in this pruned model.

Specifically, we first select a small set of latches that
includes the coverage signals; the remaining latches
are treated as primary inputs. Next, a novel cutting
procedure is used to reduce the fanin of the chosen
latches, to further simplify the analysis. Then, exact
reachability analysis is performed on the pruned
model using BDDs. The computed set of reachable
states is projected onto the coverage signals.
Coverage states in the complement of this projection
are provably unreachable, since the pruned model is
an abstraction of the original. In the following we detalil
the latch selection and logic cutting procedures of the
algorithm.

The latch selection process starts with the coverage
signals. We then add latches incrementally in a
breadth-first search (BFS) of the latch dependency
graph of the MUT until we reach a user-specified limit
on the number of latches. If all the latches of the last
BFS level visited cannot be included within the limit,
then an arbitrary subset from that level is used.

After a subset of latches has been selected, we
employ a cutting algorithm to reduce the number of
variables in the support of the transition functions.
Experience has shown that even if only 50 or so
latches are being analyzed, if the transitive fanin of
the latch subset depends on many hundreds of
primary inputs and non-selected latches, then later
BDD computations will be intractable.

primary * min cut
inputs N
free

inputs free cut

free
gate

non-
selected
latches

&
&
&
K
L4
Ld
&
&
&
-
L4
Ld
Ld
&
&
J

bound gates
bound N
inputs

selected

latches

Figure 3. Definition of min-cut for cutting procedure

To explain the algorithm we define a few terms.
Consider the transitive fanin of the selected latches
(see Figure 3). The bound inputs are the outputs of
the selected latches. The free inputs are the primary
inputs and the outputs of the non-selected latches. A
gate in the transitive fanin of the selected latches is
bound if its transitive fanin contains a bound input,
otherwise it is free. Now consider the free gates that
directly feed bound gates; we call the collection of
such signals the free cut. The signals on the free cut
may be correlated, but they do not depend on the
bound inputs. Hence, it would appear to be a good
tradeoff to replace all the signals on the free cut with
primary inputs, thus removing all the free gates from
the BDD computations. But, we can do much better,
for it is not the number of gates that we want to
reduce, but the number of signals in the support of
the transition functions.

To this end, we extract a directed network from the
signal dependency graph (the graph whose set of
nodes is the set of signals and set of directed edges
is the fanin relation). The sources of this network are
the free inputs, and the sinks are the signals on the
free cut. We then compute a minimum cut of this
network and replace the signals on the min-cut with
primary inputs. The min-cut has the advantage of not
only reducing the number of variables in the BDD
computations, but also of maintaining more
correlation relative to the free cut.

Experience shows that using the min-cut almost
always produces the same set of unreachable
coverage states as compared to no cutting at all.
Furthermore, there are cases where the reachability
fixed point computation only completes when using
the min-cut. For instance, in the case of IU, one of
the experimental results reported below, the cache
miss signal originally had 1102 variables in its
support, and reachability could not complete. The
min-cut procedure reduces the support to 60
variables, and enables reachability to complete with a

result that is superior to that of just leaving the cache
miss signal out of the analysis entirely.

It is clear that the unreachability algorithm computes a
lower bound on the number of unreachable coverage
states of a MUT. In other words, every coverage state
that was identified as unreachable is really
unreachable, but an unreachable coverage state may
be missed due to automatic abstraction.

4. Experimental Results

We implemented a prototype of Ketchum in C. We
used a commercial Verilog simulator (VCS) as our
random simulator and we developed in house all the
other engines. Our symbolic simulator and
unreachability engines rely on the CUDD package
[18] for BDD computations. The SAT engine is an
implementation of the GRASP algorithm [14].

We applied our prototype of Ketchum to some real-
world designs. Table 2 summarizes the experimental
results on the Integer Unit, Data Cache Unit and
Stack Management Unit of the Sun picoJava
microprocessor [16], the entire Synopsys DesignWare
DW8051 microcontroller, and a commercial bus
controller design “Bus”. Each experiment was run on
a Sun Solaris server of 4 processors and 4GB
memory.

The first 3 columns show the characteristics of the
five designs. The 2" column shows the number of
latches in each design. The 3" column shows the
number of coverage signals. Note that the number of
coverage states is 2 to the number of coverage
signals. In order to choose the coverage signals, we
located the control FSMs in the source code of the
designs. Then we chose the latches that encode
these control FSMs as the coverage signals. For
example, for the case of DCU, we identified the
“cache-miss” FSM (6 latches), the “cache-fill” FSM (5
latches), the “write-back” FSM (8 latches) and the
“zero-out” FSM (6 latches). Because all these FSMs
are 1-hot encoded, there are at most 6x5x8x6=1440
reachable coverage states. Among those coverage
states, Ketchum identified that only 111 are potentially
reachable and it was actually able to generate tests
that reach all of the 111 coverage states. Note that
Ketchum was not told in advance about the FSM
encoding.

The 4™ column shows the unreachability results: the
number of coverage states that were NOT identified
by Ketchum as unreachable (the number of potentially
reachable coverage states) and the CPU time taken
by the unreachability analysis. We can see that
Ketchum can effectively identify the majority of the
coverage states as unreachable. The number of

latches that we include in the abstract model is 50
across all designs.

In the next 3 columns we compare two automatic test
generation approaches, random simulation and
Ketchum, in terms of the effectiveness of reaching
coverage states. The 5™ column shows the number of
coverage states reached by random simulation and
the time taken by random simulation (24 hours). The
6" column shows the corresponding results for
Ketchum. The 7™ column shows the percentage
improvement in terms of the number of coverage
states that Ketchum reached over random simulation.
We can see that Ketchum uniformly outperforms
random simulation by a large margin. The exception
is the DCU unit of picoJava, on which random
simulation reached almost as many coverage states
as Ketchum but cost 700x more CPU time.

Table 2. Experimental Results

DUT Ltch Cov | Cov Reach | Reach | Imp

sig. | state aftr cover cover (%)
Kchm Sstates | states
unreach Rndm Kchm

U 4558 | 17 230 9 40 344
445sec 24hr 24hr

8051 | 784 11 896 317 597 88
299sec 24hr 24hr

DCU 385 25 111 109 111 2
259sec 24hr 2min

SMU | 217 16 132 104 132 30
1423sec 24hr 45min

Bus 155 16 342 44 342 677
60sec 24hr 75min

During the experiments, we provided minimum
environment models for the designs. We set some
exception signals (like the test signals that control the
scan chain) to constants and assigned very small
probabilities for asserting some reset signals during
random simulation. The same setting and biasing
were applied to both random simulation and Ketchum.
So we believe that it is a fair comparison.

Since Ketchum needs to analyze the MUT that
consists of both the DUT and the environment model
for test generation, the size of the DUT that Ketchum
can effectively handle decreases as the size of the
environment model increases. In our experience,
since the environment model only needs to model the
interface behavior of the DUT, a reasonable
environment model of the DUT is usually much
simpler than the DUT itself, especially if the DUT is an
integral functional block of the design.

5. Related Work

Unreachability Analysis

Symbolic fixpoint computation [12] is the common
basis for unreachability analysis. Different methods
that over-approximate the reachable state space have
been proposed in [1][5][8][13]. However, these
methods were designed for approximating reachable
“states”, not reachable “coverage states”, so they do
not utilize the fact that the logic that is closer to the
coverage signals has more impact on the behavior of
the coverage signals than the logic that is farther
away. The algorithms presented in [15] perform
unreachability analysis on the pruned model where all
latches except the coverage signals of the original
DUT are treated as primary inputs. However, this may
leave too many primary inputs to perform symbolic
fixpoint computation. In [9], a heuristic is introduced to
reduce the number of primary inputs. Our algorithm,
on the other hand, finds the optimal cut to minimize
the number of primary inputs.

Test Generation

Algorithms that perform some form of over-
approximated symbolic image computation to guide
simulation for reaching coverage goals have been
proposed in [1][8][17]. However, these solutions have
been ineffective so far in attacking designs with
thousands of latches, on which even the first image
computation may not terminate. In [1] under-
approximated symbolic simulation was introduced to
mitigate BDD blowup. But according to our
experimental results, the under-approximation
technique presented in the paper is too drastic in the
sense that it often misses coverage states.

Our test generation algorithm is similar to the SIVA
system described in [7] in the sense that both
methods interleave simulation and formal engines to
reach coverage goals. However, the following are the
major differences. First, SIVA uses ATPG and
symbolic image computation while Ketchum uses
symbolic simulation and SAT-based BMC. We believe
that using symbolic image computation for test
generation is not practical. On the simulation side,
SIVA computes a search tree rather than a linear
trace, which prevents it from taking advantage of the
speed and the deep states offered by commercial
simulators. In addition, with the commercial simulator,
Ketchum can utilize arbitrary simulation checkers. In
terms of coverage goals, SIVA was designed for
maximizing toggle coverage rather than state
coverage. But in practice, toggle coverage goals in
the DUT are often relatively easy to reach, so the
edge of SIVA over random simulation is slim. At last,
it was reported that SIVA was only tested on
examples with around 400 latches whereas we

successfully applied Ketchum on real-world designs
with 10x the number of latches.

6. Conclusion and Future Work

We have presented Ketchum, a tool that automates
the problem of coverage-driven test generation. This
novel technology combines multiple formal verification
techniques and random simulation to classify most of
the unreachable coverage states and reach up to 6x
more coverage states than random simulation alone.
At the same time, it can handle designs of more than
4500 latches, an order of magnitude more complex
than published formal or semi-formal verification
results.

Through the use of a robust abstraction algorithm,
Ketchum is able to quickly prove most coverage
states as unreachable. Central to this algorithm is a
cutting procedure that reduces the variable support of
the transition functions of the abstract model, enabling
unreachability analysis to complete on big designs.
On the reachability side, Ketchum employs a novel
interleaving of simulation and formal verification
techniques that exploits hard-to-reach coverage
states. The combination of these approaches greatly
improves the mobility of the search in the state space,
thus leading to better coverage results.

There are multiple directions to extend and improve
Ketchum. For coverage metrics, we want to extend
Ketchum to handle transition coverage. For
unreachability, foremost is an enhanced algorithm for
selecting a subset of latches that takes more factors
into account beyond BFS level, such as the number of
fanins from, and fanouts to, the coverage signals. For
test generation, we want to improve the
underapproximation capabilities of the formal
techniques, as well as integrate additional engines,
such as sequential ATPG.

7. References

[1] J. Bergmann and M. Horowitz. Improving
coverage analysis and test generation for large
designs. In Proceedings of ICCAD, 1999.

[1] V. Bertacco, M. Damiani and S. Quer. Cycle-
based symbolic simulation of gate-level
synchronous circuits. In Proceedings of DAC, pp.
391-396, 1999.

[2] A. Biere, A. Cimatti, E. Clarke, M. Fujita and Y.
Zhu. Symbolic model checking using SAT
procedures. In Proceedings of DAC, 1999

[3] R.E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, C-35(8), pp 677-691, 1986.

[4] R.E. Bryant. Symbolic simulation--techniques and
applications. In DAC, pp. 517-521, 1990.

[5] H. Cho, G. Hatchel, E. Macii, M. Poncino, and F.
Somenzi. Automatic state space decomposition
for approximate FSM traversal based on circuit
analysis. IEEE TCAD, 15(12), pp. 1451-1464,
1996.

[6] D.L. Dill. Embedded tutorial: formal verification
meets simulation. In Proceedings of ICCAD,
1999.

[71 M.K. Ganai, A. Aziz and A. Kuehlmann.
Enhancing simulation with BDDs and ATPG. In
Proceedings of DAC, pp. 385-390, 1999.

[8] S.G. Govindaraju, D.L. Dill, AJ. Hu, and M.A.
Horowitz. Approximate reachability with BDDs
using overlapping projections. In Proceedings of
DAC, pp. 451-455, 1998.

[9] P.-H. Ho, A. Isles and T. Kam. Formal verification
of pipeline control using controlled token nets and
abstract interpretation. In ICCAD, 1998.

[10]R.C. Ho and M. Horowitz. Validation coverage
analysis for complex digital designs. In ICCAD,
1996.

[11] M. Kantrowitz and L. Noack. I'm Done Simulating:
Now what? verification coverage analysis and
correctness checking of the DEC chip 21164
Alpha microprocessor. In DAC, pp. 325-330,
1996.

[12]K.L. McMillan. Symbolic model checking. Kluwer
Academic Publishers, 1994.

[13]1.-H. Moon, J. Kukula, T. Shiple and F. Somenzi.
Least fixpoint approximation for reachability
analysis. In Proceedings of ICCAD, pp. 41-44,
1999.

[14]J.P. Marques-Silva and K.A. Sakallah. GRASP: a
search algorithm for propositional satisfiability. In
IEEE Transaction on Computers, pp. 506-521,
May 1999.

[15]D. Moundanos, J.A. Abraham and Y.V. Hoskote.
Abstraction techniques for validation coverage
analysis and test generation. In IEEE
Transactions on Computers, January 1998.

[16]Sun Microsystems. PicoJava technology.
http://www.sun.com/microelectronics/communitys
ource/picojava.

[17]C.H. Yang and D.L. Dill. Validation with guided
search of the state space. In DAC, pp. 599-604,
1998.

[18]F. Somenzi. CUDD: CU Decision Diagram
Package. ftp://visi.colorado.edu/pub/.

