Coverage Estimation for Symbolic Model Checking

Yatin Hoskote*, Timothy Kam*, Pei-Hsin Ho**, Xudong Zhao*

*Strategic CAD Labs **Advanced Technology Group
Design Technology, Intel Corp. Synopsys, Inc.
{yatin.hoskote, timothy.kam, xudong.zhao}@intel.com pho@synopsys.com
Abstract effective in reducing bug escapes by pointing out coverage holes in

the test suite [6]. For the same purpose, a coverage metric that can

Hentify coverage holes in the formally verified properties can cer-
method, a bug can still escape detection if the erroneous behavi fy g y prop

I o))
does not violate any verified property. We propose a coverage mg‘;tl-'r_}_ly Iﬁc'lt')tatf tTe prokcessl O; augmel:tlng the propetrtles.f del
ric to estimate the “completeness” of a set of properties verified by ' © 1€ DESLOT our knowledge, such coverage metrics for mode

model checking. A symbolic algorithm is presented to compute thirecking do not exist. The need for a coverage metric may not be
metric for a subset of the CTL property specification language. RPparent until now because model checking is still in its infancy in
has the same order of computational complexity as a model chedkdustrial usage. The other reason is that existing coverage metrics
ing algorithm. Our coverage estimator has been applied in théor simulation do not apply directly to model checking e.g., a haive
course of some real-world model checking projects. We uncover@sterpretation of the code coverage or transition coverage metric
several coverage holes including one that eventually led to the dign a model checking task gives a meaningless coverage of 100%
covery of a bug that escaped the initial model checking effort. for every property. Logic simulation is dynamic and its coverage is
1 Introduction drivz_an b_y inpu_t simulation vectors, Wher_eas_ the model chec_king
engine is static without any notion of circuit execution. Unlike
Model checking is the most popular formal verification (FV)logic simulation, the likelihood of having a bug escape detection in
technology for property verification today in an industrial settinga model checking effort depends solely on the quality of the prop-
Given a model of a design and some desired properties, a modgties verified. Therefore, we want a coverage metric that estimates
checker like SMV[1] exhaustively verifies whether the model satthe “completeness” of a set of properties against which the design
isfies all the desired properties under all possible input sequencéss been verified.
The properties are specified in a property specification language Consider the CTL formula focount a modulo-5 counter, with
such as Computation Tree Logic (CTL) [2]. Although modelstall andresetas external inputs:
checking is an exhaustive FV technique, a bug can escape th&[((-stall0-resetd(count= Q O(C<5)) - AX(count= C+1)]

model checking effort if the properties specified by the user do nathis formula specifies that if thstall andresetsignals are deas-
check for the erroneous behavior caused by the bug. Such errorgrted and the counter value is less than 5, then the counter incre-
ous behavior usually occurs in some obscure corner case that kaénts by 1 in the next step. The model checker explores the entire
been missed by the user. This is quite common when the specifiGgachable state space to verify the property. However, in reality, it
tion has to be manually decomposed into a set of smaller, mokgcertains the correctness of the conditiorconnt(that it incre-
tractable properties that are verifiable by the model checker. T@ents correctly) only in those states that are immediate successors
reduce bug escapes, the user needs to continuously strengteRtates satisfying the antecedent. The actual checking of the cor-
existing properties and specify new properties, without knowing ifectness condition on the model state space is thus constrained by
the additional verification is insufficient or redundant. the CTL formula. Clearly, this property cannot be said to provide

In existing simulation-based verification methodologies, coverip0% coverage. This example illustrates that there is indeed value
age metrics are used to improve the quality of the test suite ang defining a coverage measure for formally verified properties.
estimate the progress of the verification task. For example, a com- We define a coverage metric to identify that part of the state
mon coverage metric for simulation édde coveragg3], which space which is covered by the verified properties. In each property,
measures the fraction of HDL statements exercised during Simulﬁ,e |dent|fy one Signa| (Or a proposition on several Signa|s) as the
tion. Transition coverageis another metric for control state observed signah that property. Our metric measures the coverage
machines [4][5]. Such coverage metrics have been proven to g a set of properties with respect to this observed signal. For the
above example, we considesuntto be the observed signal. Infor-
mally, the coverage metric identifies the reachable states in which
the value of the observed signal determines the validity of the veri-
fied properties. The model checking algorithm only checks the
correctness condition on the observed sigimlntin these “cov-
ered” states to prove or disprove the property.

We also present a coverage estimation algorithm for a subset of
CTL. It is of the same order of complexity as a model checking
algorithm. Thus the coverage can be computed if the property can
be verified. The coverage estimator has been implemented and

** This work was done when the author was witttel Corp.

applied in the course of some real-world model checking projects.

We uncovered several coverage holes including one which eventu- q ___»O q
ally led to the discovery of a bug that once escaped the model

checking effort. These results support our belief that this coverage O’\
metric should be useful in industrial model checking efforts.

pé/ O
This paper is organized as follows. Section 2 defines the cover- initial ! O'Oio’\m
age metric. The algorithm for computing the metric and its correct- state

ness proof outline are presented in Section 3. Methodology for

usage is presented in Section 4 and experimental results are pre- Figure 1: Covered state for AR(-> AX AX q)
sented in Section 5. We discuss limitations of this metric in Sec- o .
tion 6 and then conclude the paper with some observations. Definition 3: Given a property and an FSMV such thaiM sat-

isfies f with respect to its initial state sef, denoted by
M, S |= f,asetCOS is a covered set bbn M for observed

A formula (or property) specifies the desired values of particusignalq if and only if for any statesO S , the dual FSM satisfies
lar circuit signals at various points in time in relation to other sig-

nals. In other words, each formula specifies a correctness conditilif condition(Mg S ¢) = (sO C) .
on certain circuit signals and also specifies where in the circuit This definition is independent of the property specification lan-
state space this condition should hold. One of the signals or propguage and guarantees that changing the value of the observed sig-
sitions being checked in the correctness condition is identified @l in an uncovered state will not cause the property to fail while
the observed signal and coverage is defined on this observed sigranging the value in a covered state will cause it to fail. This set
nal. In this paper, we view a sequential circuit as a Mealy machinef covered states is unique. Consequently it constitutes a necessary
Definition 1: A finite state machine (FSMY is a 4-tuple <S, and sufficient set to prove satisfaction of the property. Covered
Tw, P, § >, whereSis a finite set of states],, 1 Sx S is a transi- States are defined in this manner so that the value of the observed
signal on those states is guaranteed to satisfy the correctness con-
.) i . . dition as specified by the property. Thus, coverage gives an intui-
Pn. 0} is a set of signals, whergis the observed signal. Each sig- tive measure of how much of the state space of the model has been
nal is a Boolean functios - { T, F} representing a set of stateghecked by the verified property for the observed signal. This defi-
or equivalently, each signal corresponds to an atomic propositionition does not preclude multiple observable signals in the same
S [0S is a set of initial states. property. The covered states are then simply the union of the cov-

Given a property that has been verified to be true of the circuiEred states for each |nd|_/|d_ual signal. .
we define coverage of that property for the specified observed si -_TO prove by contradiction that the_ set of covered states is
nal in terms of a subset of circuit states reachable from the initi:ﬁmque’ assume that there are two distinct coveredGedC,
states. A state is reachable from the initial states if there exists &or a propertyf and an observed signal As C, # C, , there must

input sequence which takes the FSM from an initial state to thalist a states which belongs to one but not the other, say C,
state. Acovered sebf states for an observed signal is the set of

reachable states in which the values of the observed signal must#¥SU G, without loss of generality. By the definition of covered
checked to prove satisfaction of the property. setC,, if we change the value df in states, the propertyf fails.
This leads to two desirable characteristics of the covered sethis implies that should belong to all covered sets and therefore

First, if we change the value of the observed signal in any state of ¢, which is a contradiction. Therefor€, = C, and the set

the model outside the covered set, the property should still be satisf . .
ot covered states is unique.

fied. Those states are not checked for the property. Second, if we : . o .
chanae the value of the observed sianal in anv covered state theWe show a simple example to illustrate the intuition behind the
9 . 9 Y - ' definition of a covered state. Suppose that we wish to compute
property should fail. The set of covered states is a minimal set. :
. . coverage of the simple CTL formula

To determine whether a state belongs in the covered set, we
modify the value of the observed signal in that state and assess its AG(_pl -~ AX AX 9 .
effect on the validity of the property. To facilitate this test, we firstwith g as the observed signal. The formula specifies that whenever
define adual FSMfor each state of the given FSWI p, is assertedq will be asserted two steps in the future. Figure 1

Definition 2: Given an FSMM =< S, Ty, P, §>, whereP = shows a fragment of the state transition graph of a circuit on which

~ . we are computing coverage. Consequerglypust be asserted in

{py, P2 v By q}., and any statestJ S, theual FSMAMS with the marked state in Figure 1 for the formula to hold. This marked
respect to statsis the 4-tuple <S, Ty, {py, P2, .., - Gs}, § >, state is a covered state. Inspection shows that the condition speci-

2 Coverage in Formal Verification

tion relation ofM between pairs of states 8 andP = {p4, p,, ..,

where fied in Definition 3 indeed holds for this state. Note that there are
0q(y)|(t£9) other states wittg asserted but are not marked as covered since
4.t = forevery state 1 S . they are not critical to the validity of the given formula.
S ra®|(t=s) Definition 4: Coverage of a formula for avbserved signadn a

With this definition, we now define a covered set of states. given model with a given set of initial states is computed as the
fraction of reachable states of the model that are covered:

number of covered states

= 9 q
COVerage= Himber of reachable staté(s100 Jo q
Coverage for a set of properties is simply the coverage from the initial O—»Wg
union of the covered sets from each individual property. state P1 Py P1 P1

Full or 100% coverage for a particular observed signal thus
means that the value of that signal has been checked by the verified
properties on all reachable states of the circuit. This serves as a
very useful indicator of the completeness of the properties and the o(b -)= b~ &(f)
quality of the verification. More importantly, the formulation of
the coverage metric allows the identification of areas with low cov- ¢ (b)= b‘ ,
erage in terms of uncovered states so that the user can write addi- 9-4q
tional properties to increase the coverage. d(AXF)= AXP(f)

Figure 2: Computing covered states fopAD]

2.1 Coverage for ACTL formulas O(AGF)= AGH(f)

The definition of coverage presented above is general enough to - .
be applicable to any property specification language. However, the (AL TUEN= AlP(HUA DAI(TH=0)Ue(9)]
covered set may not be easily computable for all languages. Inthis ¢(f 0g)= ¢(f) J¢(9)
paper, we consider a subset of ACTL [2], the universal subset of
CTL, and present an algorithm to compute the covered set for this)])
subset. In our experience, this subset is sufficiently expressive ff) and ¢(g) respectively. The new signaf is now the
specify most desirable properties of sequential logic circuits iobserved signal for the transformed formidla
practice. Note that the formulas after the observability transformation are
The subset of ACTL acceptable to us is defined as follows: equivalent to the original formulas with respect to validity of the
fa=b| b f| AXf | AGf| A fOd | fOg verification. The only two cases in which we change the syntactic

whereb is a propositional formula anfdandg are temporal formu- Structure of the formula are the implication and Until formulas.
las within the subset. Note thAF f can be equivalently written as The motivation is to pinpoint the states which contribute coverage
AlTrue U and we do not need to treat it separately. The Ongrom the consequent part of the implication as well as the states
ACTL construct missing from this subset is disjunction of tempoWhich independently contribute coverage from each part of the
ral formulas. Until formula. As a result of the observability transformation, two
Applying Definition 3 to this subset of ACTL, we can computeSe€mantically equivalent formulas with different syntax can provide
exactly the set of states where the value of the observed signaldifferent coverage. This is acceptable because we believe the syn
crucial to the validity of the formula. However, such a faithful tax of the formula better captures the verification intent of the user.
application results in some unexpected coverage. The coverage dte application of Definition 3 to the transformed formulas gives a
eventualityproperties is extremely low. For instance, consider th&hore intuitive and pragmatic determination of the covered set.
property A[p; U g] and the state transition graph of a circuit as
shown in Figure 2. The property specifies thashould be high on
any path from an initial state until observed signgak asserted. In this section, we present a recursive algorithm to compute the
Intuitively, we would expect that the first state encountered wherget of covered states in the state space of an FSM for a given
qis asserted should be covered (as marked in Figure 2). Howev&CTL formula and a given observed signal. The algorithm oper-
changing the value df in this state does not cause the property taates on the original formula but gives the computed set of covered
fail becausep; is high in that state. In fact, none of the states orstates with respect to the transformed formula. Thus, our computa-
this path will be considered covered by the definition. Thus théon of coverage does not require application of the observability
coverage for this property will be zero. This is contrary to oufransformation. Later, we shall prove that the computed covered
expectation from such a property. To obtain a more intuitive mea$®et is the same set of states as would have been obtained by direct
ure of coverage, we need to isolate the coverage effects of the t@@Plication of Definition 3 to the transformed formula.
parts of the Until formula from each other and compute coverage Problem Statement: Given an FSMM with a set of initial
for each part separately. To achieve this, we define a transformstatesS and an acceptable ACTL formutpsuch thatM, SI |: g,
tion on ACTL formulas that changes the syntactic structure of the
formulas but maintains semantic equivalence. c_ompute the set of covered states and the coverage for observed
Definition 5: For an FSMM, given a formul# in the accepta- signalg.

ble ACTL sub d b d siagatithin the | Coverage for a nested formutpis computed in a recursive
€ subset and an observed sigqatithin the formula, We 5 nner on the syntactic structure@fThis algorithm is summa-

introduce a signai’ defined by the same function as the observgged byTable 1. Coverage for each sub-formula is computed with
signal g. The observability transformation¢ , is defined as fol- respect to a set dtart statesThe covered state set for formuja
lows: we substitute occurrences qfin f with g (denoted by With respect to start state sg is denoted byC(S, g). As we
f) traverse down the parse tree, the segtaft statesised to compute

‘q - q coverage for a particular sub-formula changes, as shown in the

In the sequel, we shall writd' ang as the shorthand for

3 Coverage Computation

table. Coverage for the top-level formutpis computed with

B L 3 f
respect to the set of initial stat& of M (substitutingS; = § in 02
Table 1), i.e.C(S, 9). e Uit
The algorithm guarantees that the value of the observed signal fl f2
in any covered state satisfies the correctness condition specified bj[f, U fo] O/(f fq f1
the formula. If a sub-formula does not involve the observed signal, f 1 Q—»Q\Jé/(
its covered set will be empty. Definitions of the functions used in S) oY
the algorithm are given below.
TABLE 1. Recursive computation of covered set Figure 3: Computing covered states fof,A 5]
C(Sp, 9) Covered Set of States The coverage estimation for the Until operator is a little more
C(SO, b) SO n depend b complicated. The computation of covered statesApif,U f,] is

explained with the help of the state transition graph in Figure 3.

C(SO’ b f) C(% n T(b). T) Sub-formulafy is verified to be true on states along paths from a
C(Sy AXT) C(forward(), f) start state (unique in this example)Sg such thaf; is true untilf,
C(&y AGH) C(reachablg¢ §), f) first becomes true. The functigraverse($, fy, f,) identifies states
C(%, ALfUTS]) C(traverséd o f.f5),)0 along paths starting from states$ such thatf; is true andf, is

not true until, but not including, states whefie becomes true.
These states are marked and labelled,by Figure 3 and become
C(Sy f1 0f,) C(& fPUC(S) f)) theln;ew set of start states while computing coverage for sub-for-
mulaf;.

Given a propositional formuld, let T(b) represent the set of traversd §, f, f,) = S, 0 traversq forward S), 1, f,)
states which satisfig. Note that the property is satisfied by the cir-

cuit if and only if b is true in all start states. The subset of theseWhereSo = S0 T(fy) n T(= 1) .

start states which are covered is identified as those start statesln addition, the states satisfyirfg first encountered while tra-
where the satisfaction of predicdiectually depends on the value versing forward fromg, are considered as start states for comput-
of observed signaj (b may also specify conditions on other sig- ing coverage for propositional sub-formufia These are marked

nals). In other words, changing the value of observed sigoal a and labelled byf, in Figure 3, and are computed by the function
covered state must falsify the formubeon that state when other- _
firstreached(g§ f).

wise it would be true. In the above table, this set of states is given .
by the functiordepend(h) firstreached § f,) = (S n T(fy)) 0O
depend B = T(b)n T(= b‘q —|q) firstreached forward $n T(- f,)), f,)

. . The covered set of the Until formula is the union of the cover-

The computation for formulas of typle - AX{ andAGTis 00 fromcraverse(s, f, 1), f,) andC(firstreached(§ £), f).
straightforward. The formuld —) SPec'f'es_ that the for.mtjla The covered set of a formula which is a conjunction of two sub-
must be true on those start statessywhich satisfy the predicate formulas is simply the union of the covered sets of the sub-formu-
b. The covered seE(S, b - f) of the sub-formulab — f with las, because both sub-formulas must be satisfied by the FSM for
respect to the start stat&gis equivalent to, and computed as, cov-the conjuncted formula to be satisfied.

ered setC(SO A T(b), f) fof with respect to the new set of start Correctness Theorem:Given an F;MM with |n|t|a‘ll states§
and an acceptable ACTL formulg with observed signat), the

statesSO nT(b) . above algorithm computes correctly the set of covered states as

The formulaAX f specifies thaf holds in all successor states SPecified by Definition 3 for the transformed formuja ¢=9) (
from the start state s&,. The functionforward(3) gives states and observed signal’ , whege s the observability transforma-
reachable in exactly one step from the start state},iThis set tion.

becomes the new start states while computing coverage for Proof: Due to length limitation on the paper, we only present a
forward(S) = {s'|05 0Sy, (s,s") 0Ty} proof skeleton here. Interested readers are welcome to contact the

o authors for a complete proof.
AG fspecifies that holds on all states reachable frdy The The proof is by induction on the structure of the formula.

function reachable(g) gives ;tates reachable fro®, in any pycept for the three cases involving temporal operators, all other
number of forward steps. This set becomes the new set of stafises can be easily obtained from the definitions of coverage, the
states for computing coveragefof observability transformation and the algorithm. The caseAXf
reachabld § = [forwardi(SO) andAG operators follow directly from the following equations:
i=0

(M, forward($) | f) = (M, S |5 (AXf))
(M, reachabld §) | f) = (M, S F (AG))

C(firstreached ﬁ f2), f2)

The most complex case is the Until operator. The two terms ibles and excluded from the coverage space so as to give a more
the definition of the observability transformation correspond to theealistic coverage estimate.
two sets in the coverage algorithm. Siricaverse(g, f, f,) repre-

sents the set of states on paths starting fthat satisfyf; and

4.3 Fairness conditions

q t sai il and not includi tates that satighy th Fairness conditions expressed in the model checking system
0 not satisfyf, until and not including states that satisfy the constrain the system to only look at fair paths during the verifica-

covered set computed W(traverse(§, fy,), f1) is the correct o of a property, i.e., paths where the faimess constraints are true

covered set forA[f',Uf,] . Likewise, the covered set computethfinitely often. The presence of fairness constraints therefore

by C(firstreached(§ f,), f,) is the correct covered set for requires the coverage estimation algorithm also to ignore states not

AL(f, 0= 1,)UF,] falling on fair paths. Coverage is computed as the fraction of states
1=712 2l -

reachable along fair paths.
This algorithm is of the same order of complexity as conven-

tional symbolic model checking algorithms. Both are based on fi2 Experimental Results

point computation using Binary Decision Diagrams (BDDs) [7] . .

which are exponential in the worst case. Results for sub-formulas 1h€_coverage estimator has been implemented on top of
computed during verification can be memoized and used duri@v‘_l[l] and applied to several circuits from a microprocessor
coverage estimation for a more efficient implementation. In pra __eS|gn. We select_ed afew sngnals from each CI.rCUI'[as the observed
tice, coverage estimation can be slightly more expensive than tf¥nals and applied the estimator to determine the coverage of

verification in some cases because it requires computing the cov8fOPerties which had been verified to check behavior of those sig-

age space as the set of reachable states. This involves fix pdiiiS: Table 2 gives the names of the observed signals for which

computation which may not have been necessary for the actfgverage was measured, _the number of_ properties verified_for that
verification of the CTL formulas. Advanced techniques for reachas-'gnal’ the coverage obtalne_d for the glver_1 set of properties, the
bility analysis can be of great help here. performance of model checking measured in terms of the number

After computing the set of reachable states and the set of co§f BDD nodes and the run time in seconds on a HP9000 worksta-

ered states, the coverage estimator gives the coverage percentigfé and the runtime performance of the coverage estimator.
and prints out a list of uncovered states. This output can greatly aid TABLE 2. Coverage results

the user in writing additional properties to cover the holes. The .

coverage estimator also prints out traces to uncovered states by # Verification Coverage
performing a breadth first reachability analysis from the initial| Signal [Prop | %COV | BDDs - time | BDD - time
states to an uncovered state via the shortest path and generating|aTircuit 1 (priority buffer)

input sequence corresponding to this path [8]. hi-pri 5 100.00 124k - 59.28s| 150k - 60415
4 Coverage in the Verification Flow lo-pri 5 99.98 155k - 61.37s| 178k - 71.26%
4.1 Methodology Circuit 2 (circular queue)

As motivated earlier, a coverage metric can be very useful in Wap S 60.08 | 26k -8.3s 26k - 7.46s
achieving a high degree of confidence in the completeness of theull 2 100.00 21k - 1.55s 21k - 1.52s
verifi(_:ation. Usi_ng the metric _presentt_eo_l here, the vgrifi(_:ation engir empty 2 100.00 13k - 1.51s 13k - 1.55s
neer is able to identify behaviors exhibited by the circuit that havg——— i
not been checked by any property. The first step in this process |<ircUit 3 (Pipeline)
to inspect uncovered states provided by the coverage estimator. [putput | 8 ‘ 74.36 ‘ 10k - 3.58s ‘ 10k - 7.42s

it is not immediately apparent from this inspection how 10 jrcyit 1 is a priority buffer which schedules and stores incom-
strengthen the verification to cover that hole, the second step 'SiHb entries according to their priorities (high or low). The model
instruct the tool to generate traces to specific uncovered stategq 24 variables. Given the number of entries already in the buffer
These traces are evidence of circuit behavior leading to uncovergfly the number of incoming entries, the properties specify the cor-
states and provide strong hints as to the nature of additional Progsct number of entries in the buffer at the next clock. For example,
erties required to achieve higher coverage. The user can thgfine puffer currently has B entries and | incoming entries and | +
strengthen the verification either by writing additional propertieg; ig |ess than the size of buffer, then the buffer in the next clock
or improving existing ones by weakening the antecedent Qi hae | + B entries. High and low priority entries are
strengthening the consequent. The minimum coverage requiremeRcked by different properties, and their counts are considered as

recommended by us is to ensure 100% coverage for each primapg gpserved signals. The set of verified properties should provide

output signal. a complete analysis of all possible cases, but we uncovered a miss-
ing case when the buffer is empty and low priority entries are
Ecoming, the entries should be stored. A simple additional prop-
rty was written to cover this case. Verification of this property

4.2 Don't cares

A large fraction of the set of states not covered by the propertié
could be states on which the value of the observed signal is irrel&-.))
vant to the correctness of the circuit. Theken't care states are ailed and actually revealed a bug in the design of the buffer!

supplieda priori by the user as a set of propositions on state varia- _C|rcu|t 2isa C"C“'?“ queue controlled by a re_ad ponnt_er, awrite
pointer and a wrap bit that toggles whenever either pointer wraps

around the queue. It also has stall, clear and reset signals as inpatsd improve FV quality rather than provide a guarantee of com-
Properties were written to verify the correct operation of the wrapleteness. In this role, it is a highly effective tool.

bit, the full and empty signals. The model had 38 variables. The .

coverage for the full and empty signals was 100%. But coverage Conclusions

for t.h.e wrap bit w.as 60%. Inspectmg the ungovgred states,l three We addressed the need and challenge of developing a coverage
additional properties were written which still did not achieve

100% coverage. We traced the inout/state sequences leadin metric within model checking based verification methodologies.
th 0 ncov Ed tates and found “ﬁ) t the val q fwran bit w gﬁéﬁﬂﬂough model checking is exhaustive with respect to the verified
ese uncovered states and fou atthevalue otwrap as ?operties, it is very difficult to determine whether sufficient prop-
checked if the stall signal was asserted when the write pointer . . - ;
: . rties have been specified and whether all circuit behavior has been

wraps around. Such a subtle corner case can easily be missed (F r

ing property specification. A property was added 1o specify the}\% rified. We have proposed a coverage metric for model checking

th bit . h d for thi d 100% at is applicable to a significant subset of CTL. An efficient cover-
W:s\'\g;ﬁevlegemams unchanged for this case an 0 Coveragge estimation algorithm was implemented and tested in the course

Circuit 3 i ineline in the instruction decode st f th of several real-world model checking efforts. The experiments
redit 3 1S a pipeline in he nstruction decode stage ot M, 40416 that the coverage metric can identify meaningful coverage

. . . s S %8les that can lead to the discovery of bugs that escaped the model

single bit. Properties were verified on this signal to check the Corérecking effort. We believe this paper breaks new ground in the

rect staging of dgta through the plpgllne [9], rather than the aCtugrea of formal verification and addresses an important issue that is
data transformations. These properties generally took the form thgﬁe of the keys to making formal verification a widely used tech-

an input to the pipeline will eventually appear at the output given ology
certain fairness conditions on the stalls. The final model had 1% ’
variables. Coverage was increased to 100% by identifying uncog Acknowledgements

ered states and enhancing the set of properties. The biggest hole inye would like to thank Victor Konrad and Carl Seger for valua-
our pipeline control verification was that we ignored the fact thapje discussions and John O’Leary for help with the examples.
the pipeline output retains its value for 3 cycles while data is bein

E{gferences

processed by a state machine connected to the end of the pipeli _) _
These examples demonstrate that coverage estimation dadK. L. McMillan, “Symbolic Model Checking: An Approach to

improve the quality of FV. The runtimes and memory requirement t]TEe (S:}ZﬁﬁeE)éplgﬂloer;S%?gfénA" Igi%\?llgr‘ﬁ\ﬁ?gr%rgtii% \}t?r?f:igéation of
are similar to those required by the actual verification. Furthe . T . '

- “Finite-State Concurrent Systems Using Temporal Logic
more, the examples are a good representation of common F\gyaifications,’ACM Transactions on Programming Languages

properties: the buffers involved syntactically simple properties, 5nq Systemsol 8, no. 2, pp.244-263, April, 1986.
e.g.,AG(p, - AX...AXp,) and the pipeline required eventuality[3]K.-T. Cheng, A. Krishnakumar, “Automatic Functional Test
properties using the Until operator in a nested manner, e.g.Generation Using the Extended Finite State Machine Model,”
AG(Al B,UA[p,U pa]]) Proceedings of DA(p.86-91, June 1993

P ALP s Rl [4]R. Ho, C. Yang, M. Horowitz, D. Dill, “Architecture Validation

sl e for Processors,Proceedings of the 22nd Annual Symposium on
6 Limitations Computer ArchitectureJune 1995

The coverage metric, though very effective in uncovering misJ—S];('tEOSEOtet’ DI 'l;/}ounc;/?nor?, J. Ab(rjak:\mi. Altj.tom?t'CEEthra?'on

ing properties, has limitations. First, it is a metric based on the Cir'(():ove?a eonO][oVeri]Ei)(V:\:itiOECVg]CetO?gPI’OCZ%;? 'gnofol C (\:/gua ing
cuit model itself. It can uncover functionality in the model not g ’ 9 Pp-

. 532-537, October 1995
verified by any property, but it cannot point out functionality miss- 6]M. Kantrowitz, L. Noack, “'m Done Simulating: Now What?
ing in the model (and the properties). Thus, an incomplete desi& ; o X ' '

Nerification Coverage Analysis and Correctness Checking of the

can have 100% coverage. In fact, all model based coverage metric§gc chip 21164 ALPHA Microprocessor,Proceedings DAC
share the same drawback. Second, the coverage metric is based BP. 325-330, June 1996

states, not paths. Path coverage would be an ideal coverage meffifR. Bryant, “Graph-based Algorithms for Boolean Function
because it can provide coverage of actual executions of the circuiManipulation,”IEEE Transactions on Computengl. C-35, no.
over time. State coverage is static in the sense that a state may g 1986

reached via several paths and property verification over any one [8H. Cho, G. Hachtel, F. Somenzi, “Redundancy ldentification

those paths will cover that state. Unfortunately, the behavior alongand Test Generation for Sequential Circuits Using Implicit State

an unverified path may be incorrect. However, path coverage is &numeration,”IEEE Transactions on CADvol 12, no. 7, pp.

much more intractable problem given the sheer number of execu935-945, 1993

tion paths that even a small design can exhibit. In our opiniodd]P.-H. Ho, A.lsles, T.Kam, “Formal Verification of Pipeline

state coverage is the best possible metric which trades off com&ontrol - using ~ Controlled Token Nets and Abstract

pleteness with computation efficiency. Interpretation,"Proceedings of ICCAPpp 529-536, November
Given these limitations, it is clear that 100% coverage does n011998'

guarantee completeness of the verification nor correctness of the

circuit. However, coverage short of 100% definitely implies

incompleteness of properties. As such, the coverage estimator has

more value in helping the user uncover holes in the property suite

	Coverage Estimation for Symbolic Model Checking
	Yatin Hoskote*, Timothy Kam*, Pei-Hsin Ho**, Xudong Zhao*
	Abstract

	1 Introduction
	2 Coverage in Formal Verification
	2.1 Coverage for ACTL formulas

	3 Coverage Computation
	TABLE 1. Recursive computation of covered set

	4 Coverage in the Verification Flow
	4.1 Methodology
	4.2 Don’t cares
	4.3 Fairness conditions

	5 Experimental Results
	TABLE 2. Coverage results

	Circuit 1 (priority buffer)
	hi-pri
	5
	100.00
	124k - 59.28s
	150k - 60.41s
	lo-pri
	5
	99.98
	155k - 61.37s
	178k - 71.26s
	Circuit 2 (circular queue)
	wrap
	5
	60.08
	26k - 8.3s
	26k - 7.46s
	full
	2
	100.00
	21k - 1.55s
	21k - 1.52s
	empty
	2
	100.00
	13k - 1.51s
	13k - 1.55s
	Circuit 3 (pipeline)
	output
	8
	74.36
	10k - 3.58s
	10k - 7.42s
	6 Limitations
	7 Conclusions
	8 Acknowledgements
	*Strategic CAD Labs
	Design Technology, Intel Corp.
	{yatin.hoskote, timothy.kam, xudong.zhao}@intel.com
	**Advanced Technology Group
	Synopsys, Inc.
	pho@synopsys.com

