
Coverage Estimation for Symbolic Model Checking

Yatin Hoskote*, Timothy Kam*, Pei-Hsin Ho**, Xudong Zhao*

*Strategic CAD Labs
Design Technology, Intel Corp.

{yatin.hoskote, timothy.kam, xudong.zhao}@intel.com

**Advanced Technology Group
Synopsys, Inc.

pho@synopsys.com
s in
can
r-

el
be
in
rics
e

tric
0%
is
ng
e
in
p-
tes
ign

cre-
tire
, it

sors
or-

d by
e
lue

te
rty,
he
e

the

ich
ri-

he

t of
g
an

and
 Abstract
Although model checking is an exhaustive formal verification

method, a bug can still escape detection if the erroneous behavior
does not violate any verified property. We propose a coverage met-
ric to estimate the “completeness” of a set of properties verified by
model checking. A symbolic algorithm is presented to compute this
metric for a subset of the CTL property specification language. It
has the same order of computational complexity as a model check-
ing algorithm. Our coverage estimator has been applied in the
course of some real-world model checking projects. We uncovered
several coverage holes including one that eventually led to the dis-
covery of a bug that escaped the initial model checking effort.

1 Introduction

Model checking is the most popular formal verification (FV)
technology for property verification today in an industrial setting.
Given a model of a design and some desired properties, a model
checker like SMV[1] exhaustively verifies whether the model sat-
isfies all the desired properties under all possible input sequences.
The properties are specified in a property specification language
such as Computation Tree Logic (CTL) [2]. Although model
checking is an exhaustive FV technique, a bug can escape the
model checking effort if the properties specified by the user do not
check for the erroneous behavior caused by the bug. Such errone-
ous behavior usually occurs in some obscure corner case that has
been missed by the user. This is quite common when the specifica-
tion has to be manually decomposed into a set of smaller, more
tractable properties that are verifiable by the model checker. To
reduce bug escapes, the user needs to continuously strengthen
existing properties and specify new properties, without knowing if
the additional verification is insufficient or redundant.

In existing simulation-based verification methodologies, cover-
age metrics are used to improve the quality of the test suite and
estimate the progress of the verification task. For example, a com-
mon coverage metric for simulation iscode coverage[3], which
measures the fraction of HDL statements exercised during simula-
tion. Transition coverageis another metric for control state
machines [4][5]. Such coverage metrics have been proven to be

effective in reducing bug escapes by pointing out coverage hole
the test suite [6]. For the same purpose, a coverage metric that
identify coverage holes in the formally verified properties can ce
tainly facilitate the process of augmenting the properties.

To the best of our knowledge, such coverage metrics for mod
checking do not exist. The need for a coverage metric may not
apparent until now because model checking is still in its infancy
industrial usage. The other reason is that existing coverage met
for simulation do not apply directly to model checking e.g., a naiv
interpretation of the code coverage or transition coverage me
on a model checking task gives a meaningless coverage of 10
for every property. Logic simulation is dynamic and its coverage
driven by input simulation vectors, whereas the model checki
engine is static without any notion of circuit execution. Unlik
logic simulation, the likelihood of having a bug escape detection
a model checking effort depends solely on the quality of the pro
erties verified. Therefore, we want a coverage metric that estima
the “completeness” of a set of properties against which the des
has been verified.

Consider the CTL formula forcount, a modulo-5 counter, with
stall andreset as external inputs:

This formula specifies that if thestall and resetsignals are deas-
serted and the counter value is less than 5, then the counter in
ments by 1 in the next step. The model checker explores the en
reachable state space to verify the property. However, in reality
ascertains the correctness of the condition oncount(that it incre-
ments correctly) only in those states that are immediate succes
of states satisfying the antecedent. The actual checking of the c
rectness condition on the model state space is thus constraine
the CTL formula. Clearly, this property cannot be said to provid
100% coverage. This example illustrates that there is indeed va
to defining a coverage measure for formally verified properties.

We define a coverage metric to identify that part of the sta
space which is covered by the verified properties. In each prope
we identify one signal (or a proposition on several signals) as t
observed signalin that property. Our metric measures the coverag
of a set of properties with respect to this observed signal. For
above example, we considercountto be the observed signal. Infor-
mally, the coverage metric identifies the reachable states in wh
the value of the observed signal determines the validity of the ve
fied properties. The model checking algorithm only checks t
correctness condition on the observed signalcount in these “cov-
ered” states to prove or disprove the property.

We also present a coverage estimation algorithm for a subse
CTL. It is of the same order of complexity as a model checkin
algorithm. Thus the coverage can be computed if the property c
be verified. The coverage estimator has been implemented

** This work was done when the author was withIntel Corp.

AG stall¬ reset¬ count C=() C 5<()∧ ∧ ∧(() AX count C 1+=()→[]

n-
sig-

ile
et
sary
ed
ved
con-
ui-
een
fi-

me
ov-

is

d

re

t

e
ute

ver
1

ch

d
eci-
re
ce

he
applied in the course of some real-world model checking projects.
We uncovered several coverage holes including one which eventu-
ally led to the discovery of a bug that once escaped the model
checking effort. These results support our belief that this coverage
metric should be useful in industrial model checking efforts.

This paper is organized as follows. Section 2 defines the cover-
age metric. The algorithm for computing the metric and its correct-
ness proof outline are presented in Section 3. Methodology for
usage is presented in Section 4 and experimental results are pre-
sented in Section 5. We discuss limitations of this metric in Sec-
tion 6 and then conclude the paper with some observations.

2 Coverage in Formal Verification

A formula (or property) specifies the desired values of particu-
lar circuit signals at various points in time in relation to other sig-
nals. In other words, each formula specifies a correctness condition
on certain circuit signals and also specifies where in the circuit
state space this condition should hold. One of the signals or propo-
sitions being checked in the correctness condition is identified as
the observed signal and coverage is defined on this observed sig-
nal. In this paper, we view a sequential circuit as a Mealy machine.

Definition 1: A finite state machine (FSM)M is a 4-tuple <S,

TM, P, SI >, whereS is a finite set of states, is a transi-

tion relation ofM between pairs of states inS, andP = {p1, p2, ..,

pn, q} is a set of signals, whereq is the observed signal. Each sig-

nal is a Boolean function representing a set of states,
or equivalently, each signal corresponds to an atomic proposition.

 is a set of initial states.

Given a property that has been verified to be true of the circuit,
we define coverage of that property for the specified observed sig-
nal in terms of a subset of circuit states reachable from the initial
states. A state is reachable from the initial states if there exists an
input sequence which takes the FSM from an initial state to that
state. Acovered setof states for an observed signal is the set of
reachable states in which the values of the observed signal must be
checked to prove satisfaction of the property.

This leads to two desirable characteristics of the covered set.
First, if we change the value of the observed signal in any state of
the model outside the covered set, the property should still be satis-
fied. Those states are not checked for the property. Second, if we
change the value of the observed signal in any covered state, the
property should fail. The set of covered states is a minimal set.

To determine whether a state belongs in the covered set, we
modify the value of the observed signal in that state and assess its
effect on the validity of the property. To facilitate this test, we first
define adual FSM for each state of the given FSMM.

Definition 2: Given an FSMM = < S, TM, P, SI >, whereP =

{ p1, p2, .., pn, q} , and any state , thedual FSM with

respect to states is the 4-tuple <S, TM, { p1, p2, .., .pn, } , SI >,

where

 for every state .

With this definition, we now define a covered set of states.

Definition 3: Given a propertyf and an FSMM such thatM sat-
isfies f with respect to its initial state setSI, denoted by

, a set is a covered set off on M for observed

signalq if and only if for any state , the dual FSM satisfies

the condition .

This definition is independent of the property specification la
guage and guarantees that changing the value of the observed
nal in an uncovered state will not cause the property to fail wh
changing the value in a covered state will cause it to fail. This s
of covered states is unique. Consequently it constitutes a neces
and sufficient set to prove satisfaction of the property. Cover
states are defined in this manner so that the value of the obser
signal on those states is guaranteed to satisfy the correctness
dition as specified by the property. Thus, coverage gives an int
tive measure of how much of the state space of the model has b
checked by the verified property for the observed signal. This de
nition does not preclude multiple observable signals in the sa
property. The covered states are then simply the union of the c
ered states for each individual signal.

To prove by contradiction that the set of covered states
unique, assume that there are two distinct covered setsC1 andC2

for a propertyf and an observed signalq. As , there must

exist a states which belongs to one but not the other, say

and without loss of generality. By the definition of covere

setC1, if we change the value ofq in states, the propertyf fails.

This implies thats should belong to all covered sets and therefo

, which is a contradiction. Therefore, and the se

of covered states is unique.
We show a simple example to illustrate the intuition behind th

definition of a covered state. Suppose that we wish to comp
coverage of the simple CTL formula

with q as the observed signal. The formula specifies that whene
p1 is asserted,q will be asserted two steps in the future. Figure

shows a fragment of the state transition graph of a circuit on whi
we are computing coverage. Consequently,q must be asserted in
the marked state in Figure 1 for the formula to hold. This marke
state is a covered state. Inspection shows that the condition sp
fied in Definition 3 indeed holds for this state. Note that there a
other states withq asserted but are not marked as covered sin
they are not critical to the validity of the given formula.

Definition 4: Coverage of a formula for anobserved signalon a
given model with a given set of initial states is computed as t
fraction of reachable states of the model that are covered:

TM S S×⊆

S T F,{ }→

SI S⊆

s S∈ M̂s

q̂s

q̂s t()
q t() t s≠()
q¬ t() t s=()




= t S∈

M SI, f= C S⊆

s S∈

M̂s S, I f≠() s C∈()⇔

C1 C2≠

s C1∈

s C2∉

s C2∈ C1 C2=

AG p(1 AX AX q)→

Figure 1: Covered state for AG(p1 -> AX AX q)

p1

q

initial

q

state

q

or

e

re
e
tic
.

ge
tes
he
o
e
yn-

er.
a

he
en
r-

red
ta-
ity
ed
irect

rved

ith

the
Coverage for a set of properties is simply the coverage from the
union of the covered sets from each individual property.

Full or 100% coverage for a particular observed signal thus
means that the value of that signal has been checked by the verified
properties on all reachable states of the circuit. This serves as a
very useful indicator of the completeness of the properties and the
quality of the verification. More importantly, the formulation of
the coverage metric allows the identification of areas with low cov-
erage in terms of uncovered states so that the user can write addi-
tional properties to increase the coverage.

2.1 Coverage for ACTL formulas

The definition of coverage presented above is general enough to
be applicable to any property specification language. However, the
covered set may not be easily computable for all languages. In this
paper, we consider a subset of ACTL [2], the universal subset of
CTL, and present an algorithm to compute the covered set for this
subset. In our experience, this subset is sufficiently expressive to
specify most desirable properties of sequential logic circuits in
practice.

The subset of ACTL acceptable to us is defined as follows:

f ::=

whereb is a propositional formula andf andg are temporal formu-
las within the subset. Note thatAF f can be equivalently written as
A[True U f] and we do not need to treat it separately. The only
ACTL construct missing from this subset is disjunction of tempo-
ral formulas.

Applying Definition 3 to this subset of ACTL, we can compute
exactly the set of states where the value of the observed signal is
crucial to the validity of the formula. However, such a faithful
application results in some unexpected coverage. The coverage for
eventualityproperties is extremely low. For instance, consider the
propertyA[p1 U q] and the state transition graph of a circuit as

shown in Figure 2. The property specifies thatp1 should be high on

any path from an initial state until observed signalq is asserted.
Intuitively, we would expect that the first state encountered where
q is asserted should be covered (as marked in Figure 2). However,
changing the value ofq in this state does not cause the property to
fail becausep1 is high in that state. In fact, none of the states on

this path will be considered covered by the definition. Thus the
coverage for this property will be zero. This is contrary to our
expectation from such a property. To obtain a more intuitive meas-
ure of coverage, we need to isolate the coverage effects of the two
parts of the Until formula from each other and compute coverage
for each part separately. To achieve this, we define a transforma-
tion on ACTL formulas that changes the syntactic structure of the
formulas but maintains semantic equivalence.

Definition 5: For an FSMM, given a formulaf in the accepta-
ble ACTL subset and an observed signalq within the formula, we

introduce a signal defined by the same function as the observed

signal q. The observability transformation, , is defined as fol-

lows: we substitute occurrences ofq in f with (denoted by

)

In the sequel, we shall write and as the shorthand f

and respectively. The new signal is now th

observed signal for the transformed formula .
Note that the formulas after the observability transformation a

equivalent to the original formulas with respect to validity of th
verification. The only two cases in which we change the syntac
structure of the formula are the implication and Until formulas
The motivation is to pinpoint the states which contribute covera
from the consequent part of the implication as well as the sta
which independently contribute coverage from each part of t
Until formula. As a result of the observability transformation, tw
semantically equivalent formulas with different syntax can provid
different coverage. This is acceptable because we believe the s
tax of the formula better captures the verification intent of the us
The application of Definition 3 to the transformed formulas gives
more intuitive and pragmatic determination of the covered set.

3 Coverage Computation

In this section, we present a recursive algorithm to compute t
set of covered states in the state space of an FSM for a giv
ACTL formula and a given observed signal. The algorithm ope
ates on the original formula but gives the computed set of cove
states with respect to the transformed formula. Thus, our compu
tion of coverage does not require application of the observabil
transformation. Later, we shall prove that the computed cover
set is the same set of states as would have been obtained by d
application of Definition 3 to the transformed formula.

Problem Statement: Given an FSMM with a set of initial

statesSI and an acceptable ACTL formulag such that ,

compute the set of covered states and the coverage for obse
signal q.

Coverage for a nested formulag is computed in a recursive
manner on the syntactic structure ofg. This algorithm is summa-
rized byTable 1. Coverage for each sub-formula is computed w
respect to a set ofstart states. The covered state set for formulag
with respect to start state setS0 is denoted byC(S0, g). As we

traverse down the parse tree, the set ofstart statesused to compute
coverage for a particular sub-formula changes, as shown in

coverage
number of covered states

number of reachable states
--- 100×=

b b f→ AXf AGf A f g∪[] f g∧

q'

ϕ
q'

f
q q′→

ϕ b f→() b ϕ f()→=

ϕ b() b
q q′→=

ϕ AXf() AXϕ f()=

ϕ AGf() AGϕ f()=

ϕ A fUg[]() A ϕ f()Ug[] A f g¬∧()Uϕ g()[]∧=

ϕ f g∧() ϕ f() ϕ g()∧=

f ' g'

ϕ f() ϕ g() q'

f '

Figure 2: Computing covered states for A[p1 U q]

p1

q

initial

q

state
p1

p1p1
p1

M SI, g=

re

is

3.
a

or-

t-

n

r-

b-
u-
for

as

a-

a
the

.
er
the
table. Coverage for the top-level formulag is computed with
respect to the set of initial statesSI of M (substitutingS0 = SI in

Table 1), i.e.,C(SI, g).

The algorithm guarantees that the value of the observed signal
in any covered state satisfies the correctness condition specified by
the formula. If a sub-formula does not involve the observed signal,
its covered set will be empty. Definitions of the functions used in
the algorithm are given below.

Given a propositional formulab, let T(b) represent the set of
states which satisfyb. Note that the property is satisfied by the cir-
cuit if and only if b is true in all start states. The subset of these
start states which are covered is identified as those start states
where the satisfaction of predicateb actually depends on the value
of observed signalq (b may also specify conditions on other sig-
nals). In other words, changing the value of observed signalq on a
covered state must falsify the formulab on that state when other-
wise it would be true. In the above table, this set of states is given
by the functiondepend(b).

The computation for formulas of type ,AX f, andAG f is

straightforward. The formula specifies that the formulaf
must be true on those start states inS0 which satisfy the predicate

b. The covered setC(S0,) of the sub-formula with

respect to the start statesS0 is equivalent to, and computed as, cov-

ered set forf with respect to the new set of start

states .

The formulaAX f specifies thatf holds in all successor states
from the start state setS0. The functionforward(S0) gives states

reachable in exactly one step from the start states inS0. This set

becomes the new start states while computing coverage forf.

AG f specifies thatf holds on all states reachable fromS0. The

function reachable(S0) gives states reachable fromS0 in any

number of forward steps. This set becomes the new set of start
states for computing coverage of f.

The coverage estimation for the Until operator is a little mo

complicated. The computation of covered states for

explained with the help of the state transition graph in Figure
Sub-formulaf1 is verified to be true on states along paths from

start state (unique in this example) inS0, such thatf1 is true untilf2
first becomes true. The functiontraverse(S0, f1, f2) identifies states

along paths starting from states inS0 such thatf1 is true andf2 is

not true until, but not including, states wheref2 becomes true.

These states are marked and labelled byf1 in Figure 3 and become

the new set of start states while computing coverage for sub-f
mulaf1.

 where .

In addition, the states satisfyingf2 first encountered while tra-

versing forward fromS0 are considered as start states for compu

ing coverage for propositional sub-formulaf2. These are marked

and labelled byf2 in Figure 3, and are computed by the functio

firstreached(S0, f2).

The covered set of the Until formula is the union of the cove
age fromC(traverse(S0, f1, f2), f1) andC(firstreached(S0, f2), f2).

The covered set of a formula which is a conjunction of two su
formulas is simply the union of the covered sets of the sub-form
las, because both sub-formulas must be satisfied by the FSM
the conjuncted formula to be satisfied.

Correctness Theorem:Given an FSMM with initial statesSI

and an acceptable ACTL formulag with observed signalq, the
above algorithm computes correctly the set of covered states

specified by Definition 3 for the transformed formula = (g)

and observed signal , where is the observability transform
tion.

Proof: Due to length limitation on the paper, we only present
proof skeleton here. Interested readers are welcome to contact
authors for a complete proof.

The proof is by induction on the structure of the formula
Except for the three cases involving temporal operators, all oth
cases can be easily obtained from the definitions of coverage,
observability transformation and the algorithm. The cases ofAX
andAG operators follow directly from the following equations:

TABLE 1. Recursive computation of covered set

 C(S0, g) Covered Set of States

C S0 b,() S0 depend b()∩
C S0 b f→,() C S0 T b()∩ f,()
C S0 AXf,() C forward S0() f,()
C S0 AGf,() C reachable S0() f,()
C S0 A f1U f 2[],() C traverse S0 f 1 f 2, ,() f 1,() ∪

C firstreached S0 f 2,() f 2,()

C S0 f,
1

f 2∧() C S0 f 1,() C S0 f 2,()∪

depend b() T b() T b
q q¬→¬()∩=

b f→
b f→

b f→ b f→

C S0 T b()∩ f,()

S0 T b()∩

forward S0() s″ s′ S0∈ s′ s″,(),∃ TM∈{ }=

reachable S0() forwardi S0()
i 0=

∞
∪=

A f 1U f 2[]

traverse S0 f 1 f 2, ,() S′0 traverse forward S′0() f 1 f 2, ,()∪=

S′0 S0 T f 1() T f 2¬()∩ ∩=

firstreached S0 f 2,() S0 T f 2()∩() ∪=

firstreached forward S0 T f 2¬()∩() f 2,()

Figure 3: Computing covered states for A[f1 U f2]

A[f1 U f2]
f1

f1

f1

f1
f1 f1 f2

f2

f2

S0

g' ϕ
q' ϕ

M(forward S0(), f) M(S0,⇔ AXf())= =

M(reachable S0(), f) M(S0,⇔ AGf())= =

ore

em
a-
rue
re
not
tes

of
or
ved
of

ig-
ich
hat
the
ber
ta-

-
l
fer
or-
le,
+

ck

as
ide
iss-
re
p-
ty

te
ps
The most complex case is the Until operator. The two terms in
the definition of the observability transformation correspond to the
two sets in the coverage algorithm. Sincetraverse(S0, f1, f2) repre-

sents the set of states on paths starting fromS0 that satisfyf1 and

do not satisfyf2 until and not including states that satisfyf2, the

covered set computed byC(traverse(S0, f1, f2), f1) is the correct

covered set for . Likewise, the covered set computed

by C(firstreached(S0, f2), f2) is the correct covered set for

.

This algorithm is of the same order of complexity as conven-
tional symbolic model checking algorithms. Both are based on fix
point computation using Binary Decision Diagrams (BDDs) [7]
which are exponential in the worst case. Results for sub-formulas
computed during verification can be memoized and used during
coverage estimation for a more efficient implementation. In prac-
tice, coverage estimation can be slightly more expensive than the
verification in some cases because it requires computing the cover-
age space as the set of reachable states. This involves fix point
computation which may not have been necessary for the actual
verification of the CTL formulas. Advanced techniques for reacha-
bility analysis can be of great help here.

After computing the set of reachable states and the set of cov-
ered states, the coverage estimator gives the coverage percentage
and prints out a list of uncovered states. This output can greatly aid
the user in writing additional properties to cover the holes. The
coverage estimator also prints out traces to uncovered states by
performing a breadth first reachability analysis from the initial
states to an uncovered state via the shortest path and generating an
input sequence corresponding to this path [8].

4 Coverage in the Verification Flow

4.1 Methodology

As motivated earlier, a coverage metric can be very useful in
achieving a high degree of confidence in the completeness of the
verification. Using the metric presented here, the verification engi-
neer is able to identify behaviors exhibited by the circuit that have
not been checked by any property. The first step in this process is
to inspect uncovered states provided by the coverage estimator. If
it is not immediately apparent from this inspection how to
strengthen the verification to cover that hole, the second step is to
instruct the tool to generate traces to specific uncovered states.
These traces are evidence of circuit behavior leading to uncovered
states and provide strong hints as to the nature of additional prop-
erties required to achieve higher coverage. The user can then
strengthen the verification either by writing additional properties
or improving existing ones by weakening the antecedent or
strengthening the consequent. The minimum coverage requirement
recommended by us is to ensure 100% coverage for each primary
output signal.

4.2 Don’t cares
A large fraction of the set of states not covered by the properties

could be states on which the value of the observed signal is irrele-
vant to the correctness of the circuit. Thesedon’t carestates are
supplieda priori by the user as a set of propositions on state varia-

bles and excluded from the coverage space so as to give a m
realistic coverage estimate.

4.3 Fairness conditions
Fairness conditions expressed in the model checking syst

constrain the system to only look at fair paths during the verific
tion of a property, i.e., paths where the fairness constraints are t
infinitely often. The presence of fairness constraints therefo
requires the coverage estimation algorithm also to ignore states
falling on fair paths. Coverage is computed as the fraction of sta
reachable along fair paths.

5 Experimental Results

The coverage estimator has been implemented on top
SMV[1] and applied to several circuits from a microprocess
design. We selected a few signals from each circuit as the obser
signals and applied the estimator to determine the coverage
properties which had been verified to check behavior of those s
nals. Table 2 gives the names of the observed signals for wh
coverage was measured, the number of properties verified for t
signal, the coverage obtained for the given set of properties,
performance of model checking measured in terms of the num
of BDD nodes and the run time in seconds on a HP9000 works
tion, and the runtime performance of the coverage estimator.

Circuit 1 is a priority buffer which schedules and stores incom
ing entries according to their priorities (high or low). The mode
had 24 variables. Given the number of entries already in the buf
and the number of incoming entries, the properties specify the c
rect number of entries in the buffer at the next clock. For examp
if the buffer currently has B entries and I incoming entries and I
B is less than the size of buffer, then the buffer in the next clo
should have I + B entries. High and low priority entries are
checked by different properties, and their counts are considered
the observed signals. The set of verified properties should prov
a complete analysis of all possible cases, but we uncovered a m
ing case when the buffer is empty and low priority entries a
incoming, the entries should be stored. A simple additional pro
erty was written to cover this case. Verification of this proper
failed and actually revealed a bug in the design of the buffer!

Circuit 2 is a circular queue controlled by a read pointer, a wri
pointer and a wrap bit that toggles whenever either pointer wra

A f '1U f 2[]

A f 1 f 2¬∧()U f '2[]

TABLE 2. Coverage results

Signal
#

Prop %COV
Verification
BDDs - time

 Coverage
BDD - time

Circuit 1 (priority buffer)

hi-pri 5 100.00 124k - 59.28s 150k - 60.41s

lo-pri 5 99.98 155k - 61.37s 178k - 71.26s

Circuit 2 (circular queue)

wrap 5 60.08 26k - 8.3s 26k - 7.46s

full 2 100.00 21k - 1.55s 21k - 1.52s

empty 2 100.00 13k - 1.51s 13k - 1.55s

Circuit 3 (pipeline)

output 8 74.36 10k - 3.58s 10k - 7.42s

m-

rage
s.
ed
-
een
ing
r-
rse
ts
ge

odel
he
t is

h-

-

f
ic
s

t
l,”

n

n

he

n

n
te

t

around the queue. It also has stall, clear and reset signals as inputs.
Properties were written to verify the correct operation of the wrap
bit, the full and empty signals. The model had 38 variables. The
coverage for the full and empty signals was 100%. But coverage
for the wrap bit was 60%. Inspecting the uncovered states, three
additional properties were written which still did not achieve
100% coverage. We traced the input/state sequences leading to
these uncovered states and found that the value of wrap bit was not
checked if the stall signal was asserted when the write pointer
wraps around. Such a subtle corner case can easily be missed dur-
ing property specification. A property was added to specify that
the wrap bit remains unchanged for this case and 100% coverage
was achieved.

Circuit 3 is a pipeline in the instruction decode stage of the
processor. The width of the pipeline datapath was abstracted to a
single bit. Properties were verified on this signal to check the cor-
rect staging of data through the pipeline [9], rather than the actual
data transformations. These properties generally took the form that
an input to the pipeline will eventually appear at the output given
certain fairness conditions on the stalls. The final model had 15
variables. Coverage was increased to 100% by identifying uncov-
ered states and enhancing the set of properties. The biggest hole in
our pipeline control verification was that we ignored the fact that
the pipeline output retains its value for 3 cycles while data is being
processed by a state machine connected to the end of the pipeline.

These examples demonstrate that coverage estimation can
improve the quality of FV. The runtimes and memory requirements
are similar to those required by the actual verification. Further-
more, the examples are a good representation of common FV
properties: the buffers involved syntactically simple properties,

e.g., and the pipeline required eventuality

properties using the Until operator in a nested manner, e.g.,

.

6 Limitations

The coverage metric, though very effective in uncovering miss-
ing properties, has limitations. First, it is a metric based on the cir-
cuit model itself. It can uncover functionality in the model not
verified by any property, but it cannot point out functionality miss-
ing in the model (and the properties). Thus, an incomplete design
can have 100% coverage. In fact, all model based coverage metrics
share the same drawback. Second, the coverage metric is based on
states, not paths. Path coverage would be an ideal coverage metric
because it can provide coverage of actual executions of the circuit
over time. State coverage is static in the sense that a state may be
reached via several paths and property verification over any one of
those paths will cover that state. Unfortunately, the behavior along
an unverified path may be incorrect. However, path coverage is a
much more intractable problem given the sheer number of execu-
tion paths that even a small design can exhibit. In our opinion,
state coverage is the best possible metric which trades off com-
pleteness with computation efficiency.

Given these limitations, it is clear that 100% coverage does not
guarantee completeness of the verification nor correctness of the
circuit. However, coverage short of 100% definitely implies
incompleteness of properties. As such, the coverage estimator has
more value in helping the user uncover holes in the property suite

and improve FV quality rather than provide a guarantee of co
pleteness. In this role, it is a highly effective tool.

7 Conclusions

We addressed the need and challenge of developing a cove
metric within model checking based verification methodologie
Although model checking is exhaustive with respect to the verifi
properties, it is very difficult to determine whether sufficient prop
erties have been specified and whether all circuit behavior has b
verified. We have proposed a coverage metric for model check
that is applicable to a significant subset of CTL. An efficient cove
age estimation algorithm was implemented and tested in the cou
of several real-world model checking efforts. The experimen
indicate that the coverage metric can identify meaningful covera
holes that can lead to the discovery of bugs that escaped the m
checking effort. We believe this paper breaks new ground in t
area of formal verification and addresses an important issue tha
one of the keys to making formal verification a widely used tec
nology.

8 Acknowledgements
We would like to thank Victor Konrad and Carl Seger for valua

ble discussions and John O’Leary for help with the examples.

References
[1]K. L. McMillan, “Symbolic Model Checking: An Approach to

the State Explosion Problem,” Kluwer Academic, 1993.
[2]E. Clarke, E. Emerson and A. Sistla, “Automatic Verification o

Finite-State Concurrent Systems Using Temporal Log
Specifications,”ACM Transactions on Programming Language
and Systems, vol 8, no. 2, pp.244-263, April, 1986.

[3]K.-T. Cheng, A. Krishnakumar, “Automatic Functional Tes
Generation Using the Extended Finite State Machine Mode
Proceedings of DAC, pp.86-91, June 1993

[4]R. Ho, C. Yang, M. Horowitz, D. Dill, “Architecture Validation
for Processors,”Proceedings of the 22nd Annual Symposium o
Computer Architecture, June 1995

[5]Y. Hoskote, D. Moundanos, J. Abraham, “Automatic Extractio
of the Control Flow Machine and Application to Evaluating
Coverage of Verification Vectors,”Proceedings of ICCD, pp.
532-537, October 1995

[6]M. Kantrowitz, L. Noack, “I’m Done Simulating: Now What?
Verification Coverage Analysis and Correctness Checking of t
DEC chip 21164 ALPHA Microprocessor,”Proceedings DAC,
pp. 325-330, June 1996

[7]R. Bryant, “Graph-based Algorithms for Boolean Functio
Manipulation,” IEEE Transactions on Computers, vol. C-35, no.
8, 1986

[8]H. Cho, G. Hachtel, F. Somenzi, “Redundancy Identificatio
and Test Generation for Sequential Circuits Using Implicit Sta
Enumeration,”IEEE Transactions on CAD, vol 12, no. 7, pp.
935-945, 1993

[9]P.-H. Ho, A.Isles, T.Kam, “Formal Verification of Pipeline
Control using Controlled Token Nets and Abstrac
Interpretation,"Proceedings of ICCAD, pp 529-536, November
1998.

AG p1 AX…AX p2→()

AG p1 A p2UA p3U p4[][]→()

	Coverage Estimation for Symbolic Model Checking
	Yatin Hoskote*, Timothy Kam*, Pei-Hsin Ho**, Xudong Zhao*
	Abstract

	1 Introduction
	2 Coverage in Formal Verification
	2.1 Coverage for ACTL formulas

	3 Coverage Computation
	TABLE 1. Recursive computation of covered set

	4 Coverage in the Verification Flow
	4.1 Methodology
	4.2 Don’t cares
	4.3 Fairness conditions

	5 Experimental Results
	TABLE 2. Coverage results

	Circuit 1 (priority buffer)
	hi-pri
	5
	100.00
	124k - 59.28s
	150k - 60.41s
	lo-pri
	5
	99.98
	155k - 61.37s
	178k - 71.26s
	Circuit 2 (circular queue)
	wrap
	5
	60.08
	26k - 8.3s
	26k - 7.46s
	full
	2
	100.00
	21k - 1.55s
	21k - 1.52s
	empty
	2
	100.00
	13k - 1.51s
	13k - 1.55s
	Circuit 3 (pipeline)
	output
	8
	74.36
	10k - 3.58s
	10k - 7.42s
	6 Limitations
	7 Conclusions
	8 Acknowledgements
	*Strategic CAD Labs
	Design Technology, Intel Corp.
	{yatin.hoskote, timothy.kam, xudong.zhao}@intel.com
	**Advanced Technology Group
	Synopsys, Inc.
	pho@synopsys.com

