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We present a method that enables developing environment 
models or assumptions using properties in property languages 
like SVA, OVA and PSL, or using RTL monitors in design 
languages like Verilog and VHDL, for pseudo-random 
simulation, formal property verification and hybrid verification. 
Our method also includes automatic dead-end avoidance and 
enables assume-guarantee reasoning. We demonstrate the 
effectiveness of the method on four real-world designs and 
environment models. 

1. INTRODUCTION 

Functional verification verifies register-transfer-level (RTL) 
designs against their functional specifications. Most designs 
make certain assumptions about their environments. For 
example, in Figure 1, the DUV may be designed with the 
assumption that whenever it makes a grant to the environment 
(grant=1), the environment will always remove the request in the 
next clock cycle (req=0).  
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Figure 1 DUV and its environment 

During the verification of the DUV, if we drive it with input 
stimuli that violate the assumption, then it needs no longer 
adhere to its functional specification. In that case, a subsequent 
erroneous behavior of the DUV is called a false negative, since it 
does not indicate a real bug of the DUV. To avoid distracting the 
user with false negatives, random simulation, formal property 
verification and hybrid methods [6] all require a model of the 
environment to verify the DUV.  

Input clk, rst, req_input; 
reg previous_grant; output req; 
 
assign req = (previous_grant)? 0 : req_input; 
always @ (posedge clk or negedge rst)  
               if (!rst) previous_grant <= 0; 
               else previous_grant <= grant; 

 

Figure 2 Generator-style environment model 

Traditionally, environment models are written as generator-style 
testbenches that generate random legal stimuli to drive the DUV. 
For the system in Figure 1, a generator-style testbench that drives 

the input signal req of the DUV is shown in Figure 2. The 
register previous_grant asserts if and only if the input grant 
asserted in the previous clock cycle. If previous_grant asserts, 
the signal req will be driven by the value 0; otherwise it will be 
driven by the random input req_input. 

An alternative way to describe environment models is via 
checker-style constraints that specify the legal input stimuli for 
the DUV. Checker-style environment models can be written as 
properties in property languages like OVA [9], PSL [1] and SVA 
[15]. For example, the environment in Figure 1 can be specified 
as a property as follows. 

if grant then #1 ! req; 
 

Figure 3 Checker-style environment model as a property 

The temporal operator “#1” means “one clock cycle later.” 
Checker-style environment models can also be written as 
monitors in RTL Verilog or VHDL. A monitor is basically a 
design with an output signal that asserts if and only if the 
property is violated. A monitor for the environment in Figure 1 is 
shown in Figure 4. The output signal fail asserts if and only if the 
environmental assumption is violated. Note that the monitor does 
not drive the input req of the DUV (signal req is an input of the 
monitor) as in Figure 2. Verification tools have to understand the 
sequential monitor and drive the input req of the DUV in a way 
that does not assert the fail signal. 

Today most simulators only support generator-style and most 
formal property verification tools only support checker-style 
environment models. As a result, verification engineers must 
specify the environment model twice in order to utilize both 
verification techniques. Therefore, supporting checker-style 
environment models for both random simulation and formal 
property verification will enable the user to specify the 
environment model once and use it “everywhere”.  

Furthermore, supporting checker-style environment models for 
both random simulation and formal property verification enables 
hybrid verification methods to orchestrate random simulation 
and formal property verification to achieve better verification 
coverage. 

Input clk, rst, req, grant; 
reg previous_grant; output fail; 
 
assign fail = (previous_grant && req)? 1 : 0; 
always @ (posedge clk or negedge rst) 
               if (!rst) previous_grant <= 0; 
               else previous_grant <= grant; 

 
Figure 4 Checker-style environment model as a monitor 
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One major advantage of checker-style environment models over 
generator-style environment models is that the properties and 
monitors can be used as either assumptions to model the 
environment or assertions to check the behavior of the DUV, 
which enables the re-use of verification IPs. For example, 
suppose that we have a system of two blocks A and B that 
interact with each other; i.e., each block is the other block’s 
environment. During the hierarchical verification of the system, 
the assumptions that we made about block A during the 
verification of block B should be used as assertions for verifying 
block A (to guarantee that the assumptions are valid), which is 
called assume-guarantee reasoning[10]. 

Recent result in [21] shows that generator-style environment 
models can also be made to support assume-guarantee reasoning 
but would require new verification techniques that no existing 
commercial formal property verification or random simulation 
tools support today. 

The rest of the paper is organized as follows. In Section 2 we 
discuss the related work. We go through the terminology in 
Section 3 before we describe our method. In Section 4 and 
Section 5 we introduce the method for handling temporal 
properties and sequential monitors in formal property 
verification and random simulation, respectively. In Section 6, 
we discuss the dead-end state problem and an automatic method 
to avoid dead-end states. We present experimental results in 
Section 7 and conclude the paper in Section 8. 

2. RELATED WORK 
The Simgen framework was first presented in 
[11][17][18][19][20] for handling environment models specified 
as combinational properties (constraints) for random simulation. 
Simgen utilizes a Binary Decision Diagram (BDD)[4] based 
constraint solver that effectively converts the combinational 
properties into a BDD at compile time before random simulation. 
Each path from the root to the leaf node 1 of the BDD 
corresponds to a valid input vector for the DUV. At each clock 
cycle of random simulation, according to the current value of 
design output signals, Simgen randomly walks in the BDD to 
generate a valid input vector for the DUV. The random walk also 
respects user-specified biasing constraints for input signals of the 
DUV. In [13], the BDD is rebuilt at each cycle of random 
simulation. In our experience, this method greatly slows down 
random simulation and should be used only if the method in 
[11][17][18][19][20] cannot complete the buildup of the BDD at 
compile time. The above methods however do not directly 
support sequential checkers (temporal properties as in Figure 3 
and sequential monitors as in Figure 4). To handle sequential 
checkers using the above methods, the user has to manually 
separate the combinational constraints from the state machines 
and feed the combinational constraints to the BDD-based 
constraint solver. Our method automates this process for 
sequential checkers for not only random simulation but also 
formal property verification and hybrid methods and uses a 
combinational constraint solver [8] that is an enhancement of the 
Simgen technology. 

The methods in [7][10][16] convert combinational checkers into 
BDDs and then convert the BDDs into gate-level combinational 
generators for both random simulation and formal property 

verification. In our experience, the combinational generators 
converted from the BDDs usually are much more complex than 
the original combinational checkers, which makes formal 
property verification highly inefficient. Our method supports not 
only combinational checkers but also sequential checkers in 
formal property verification without suffering the same 
complexity blowup problem. 

One can also build environment models that consist of both 
checker and generator style constraints. Commercial testbench 
automation tools Vera [5] and Specman [12] enable the users to 
write combinational checker-style environment models to 
supplement their sequential generator-style environment models. 
Our method should enable these commercial tools to support 
sequential checker-style environment models. 

3. PRELIMINARIES 
We introduce in this section the high-level flow and formalism 
that are required for describing our method in later sections. 

3.1 High level flow that converts checkers 
into gate-level networks 

Checker-style environment models can be specified as temporal 
properties in property languages like OVA [9] and PSL [1] or 
sequential monitors in RTL languages like Verilog [3] and 
VHDL. Each RTL monitor has an output signal that asserts if 
and only if the corresponding property is violated. The properties 
and monitors can be used as either assumptions or assertions.  

We apply the following process to obtain the gate-level networks 
from the assertions and assumptions. We first convert OVA or 
PSL properties into RTL monitors using OVA or PSL compilers 
[1]. For example, the property in Figure 3 will be automatically 
converted into the monitor in Figure 4. 
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Figure 5 Gate-level monitor 

Second we convert all the user-specified and automatically 
generated RTL monitors into gate-level networks using logic 
synthesis techniques. Figure 5 shows the gate-level network 
converted from the monitor in Figure 4, where the box represents 
a register with clock signal clk and reset signal rst. The register 
stores the last value of the signal grant. We will use this gate-
level netlist to extract BDDs for random simulation. In addition, 
the gate-level networks of the assertions and the assumptions will 
be assembled to form a gate-level model for formal property 
verification. 

3.2 Finite State Automata 
The semantics of the gate-level network of a checker is a Finite 
State Automaton (FSA) that recognizes the sequences 
characterized by the checker. The automaton enters a rejecting 
state when the observed sequence becomes invalid. The rejecting 



state for the example in Figure 5 represents the state where the 
fail signal asserts. 

The FSA is a 6-tuple A = (X, Y, S, T, s0, Sr), where 

1. X is the set of values of the input signals of the DUV that 
are to be constrained, 

2. Y is the set of values of the signals of the DUV, 
3. S is the set of states of the FSA, 
4. T is the state transition relation T ⊆ S × (X × Y) × S, 
5. s0 ∈ S is the initial state, and 
6. Sr ⊂ S is the set of rejecting states (indicating the violation 

of the checker). 
 
Both X and Y are input values of the FSA. Also, we shall refer to 
T by its characteristic function: 
T(s, (x, y), s’): S × (X × Y) × S → {0, 1}.  

To use the FSA as an assumption means that the DUV input 
values x of X are to be restricted in such a way that the DUV 
never enters a rejecting state sr. This means that if the FSA is in 
state s that is not a rejecting state, then the input values of X that 
make the FSA transition to a rejecting state at the next clock tick 
must be prohibited. In other words, the input value x of X must 
satisfy the constraint ¬T(s, x, y, sr). A combinational constraint 
solver based on the Simgen technology [18] can randomly 
generate an input value x of X that satisfies the above condition. 

More specifically, given the current value of s and y, the 
combinational constraint that has to be solved for the design 
input value x at each clock tick is obtained as 
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where Π stands for Boolean product over all values σ in S-Sr and 
rejecting states sr in Sr. For gate-level networks, the above 
constraint is actually the negation of the combinational transitive 
fan-in cone of the fail signal. For the gate-level network in 
Figure 5, the combinational constraint C for the constraint solver 
is the logic inside the dotted box in Figure 6; i.e. 
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Figure 6 Checker-style assumption for random simulation 

During simulation, the DUV and the sequential checker are 
simulated together as shown in Figure 6. The DUV signal value y 
is sampled sometime after the clock tick when y has stabilized. 
The input value x must then be applied so that the DUV has 
enough time to stabilize before the next clock tick. The sampled 
values of x and y by the FSA force it to make a transition. If there 
is no combinational loop created by the assumption monitors and 
the DUV, then it is sufficient to execute the combinational 
constraint solver and drive the input value x only once per clock 
cycle, because the value y cannot change as function of the value 
x before the next clock tick. 

4. FORMAL PROPERTY 
VERIFICATION 

Given the DUV, a set of assertions and a set of assumptions, we 
can build a formal verification model as follows. First, we feed 
all outputs of the assertion monitors to an OR gate called 
assert_fail and feed all outputs of the assumption monitors to 
another OR gate called assume_fail. As a result, the signal 
assert_fail (assume_fail) asserts if and only if an assertion 
(assumption) is violated. Second, we connect the assert_fail and 
assume_fail signals in the way shown in Figure 7 to generate the 
output signal fail. 
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Figure 7 Formal verification model 

In Figure 7 the signals X are DUV inputs and the signals Y are 
DUV signals. The assertions and assumptions monitor both the X 
and Y signals. The register output r latches the output q of the 
OR gate and thus will stay high once it goes high; i.e., the output 
q asserts if and only if an assumption has been violated. The fail 
signal is the conjunction of assert_fail and the negation of q, so 
it asserts if and only if an assertion is violated and no 
assumptions has been violated. Therefore, the assertions are 
formally proven if and only if the fail signal is formally proven to 
be a constant zero. 

We simply present the formal verification model to formal 
property verification or hybrid verification tools. Formal 
property verification engines will try to either prove that the fail 
signal will never assert (all assertions are proven) or find a 
counter example that asserts the fail signal (some assertions are 
violated). 

5. RANDOM SIMULATION 
As indicated in Section 3, when the DUV stabilizes after the 
most recent active clock edge, we (1) sample the value y of the 
DUV signals and the value s of the assumption FSA, (2) solve 
the constraint C with the values y and s to obtain a random value 
x, and (3) drive the DUV inputs with the random value x. 

For example, suppose that the active clock edge for all registers 
is “posedge clk” and the DUV stabilizes after P/4 where P is the 
clock period. First, we can sample the values of y and s at P/4 
after each “posedge clk.” Second, if there exists a solution that 
satisfies the constraint C, we can obtain a random solution x from 
the constraint solver. Third, we can drive the value x to DUV 
inputs any time that leaves enough time for DUV to stabilize 
after the input stimulus and before the arrival of the next 
“posedge clk.” For example, we can drive the inputs of the DUV 
at “negedge clk.”   



At the following posedge clk, the values of y and s are again 
sampled, and the assumption FSA advances to the next state as 
determined by the state transition relation T. Since we solved for 
x using the stable values of y and s, the assumption FSA cannot 
be in a rejecting state. This process repeats until the random 
simulation is complete. 

Notice that although we are dealing with sequential checkers, we 
only need to solve a combinational constraint system C at every 
active clock edge. But because the combinational constraint 
solver cannot predict the future, there is a possibility that at a 
given active clock edge, the constraint system C does not have 
any solution. In that case we say that the simulation is in a dead-
end state. We address this problem in the next section. 

6. DEAD-END STATES 
To illustrate the problem of dead-end states in sequential 
checkers, consider the following set of assumptions defined in 
OVA, where p, q and r are inputs to a DUV clocked by clk. 

clock posedge clk { 
  event evA: if p then #2 ~r; 
  event evB: if q then #1 r; 
} 

 

Figure 8 Assumption with dead-end states 

The assumptions say that if signal p is set to 1 then two cycles 
later signal r must be set to 0, and if signal q is set to 1, then one 
cycle later signal r must be set to 1. 

Now, given the assumptions, the combinational constraint solver 
can legitimately set p to 1 in a certain cycle, and then set q to 1 in 
the next cycle. However, in the following cycle, the solver is 
unable to solve for r, and the system has reached a dead-end 
state. In that case, we can generate a warning message, reset the 
design and resume random simulation from the reset state. If we 
get into dead-end states very often during the random simulation, 
the verification coverage and simulation time may suffer due to 
repeated resets. 

The interesting aspect of this dead-end state is that it occurs 
because of the solutions chosen by the solver in earlier cycles. If 
the solver chose different solutions earlier, the dead-end state 
would not have occurred. For example, after setting p to 1, the 
solver had not set q to 1 in the next cycle, it would have avoided 
the dead-end states described. 

It is possible for the constraint solver to look ahead some number 
of cycles when solving the constraints. In this case, if the solver 
always looked ahead one cycle, then it would know not to set q 
to 1 one cycle after setting p to 1. However, this slows down 
simulation by making the solver slower, and is also susceptible 
to the horizon effect: no matter what look-ahead was used, a 
dead-end state might occur just outside the limit. 

A better solution is to consider strengthening the assumptions 
themselves to prevent solutions that lead to a dead-end state. For 
example, we can add an assumption to the assumptions in Figure 
8 to produce the assumptions in Figure 9: 

clock posedge clk { 
  event evA: if p then #2 ~r; 
  event evB: if q then #1 r; 
  event enC: if p then #1 ~q; 
} 

 

Figure 9 Assumptions without dead-end states 

The extra assumption says that if p is set to 1 then q must not be 
set to 1 in the next cycle. This prevents the dead-end states from 
occurring. In fact, there are no dead-end states possible with the 
assumptions in Figure 9. 

The technique that we developed for dead-end state avoidance 
builds on this observation to automatically compute the weakest 
assumption necessary to avoid dead-end states due to the 
assumptions.  

We also extend our technique to avoid, where possible, dead-end 
states due to the DUV. To illustrate this, consider what might 
happen if p and r in Figure 8 were DUV inputs, but q was a 
DUV output. Then we could not prevent the DUV from setting q 
to 1 one cycle after the constraint solver set p to 1. The only way 
for the constraint solver to guarantee no dead-end states in this 
case would be to never set p to 1. The assumptions of Figure 8 
augmented with this assumption are shown in Figure 10. This is 
a stronger set of assumptions than that generated in Figure 9. 

  clock posedge clk { 
     event evA: if p then #2 ~r; 
     event evB: if q then #1 r; 
     event evC: p==0; 
  } 
 

Figure 10 Strong assumptions without dead-end states 

The danger of using knowledge of future design output values in 
the dead-end avoidance procedure is that it could avoid detecting 
real design errors. Therefore, this feature has to be used with care 
as explained in Section 6.3. 

6.1 Avoidance algorithm for deadend states 
in assumptions 

Let A = (X, Y, S, T, s0, Sr) be an assumption checker FSA. 

We first compute a fixed point that will represent all states that 
inevitably lead to a dead-end state in later cycles. Since this is a 
fixed-point computation, there is no bound on how much later 
the dead-end state may occur. 
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Since X, Y and S are finite, the sequence must converge in a 
finite number of iterations to some D. 

We next compute the set of reachable states, R, of A using a 
fixed-point calculation: 
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Finally, we define a new FSA, A’ = (X, Y, S, T, s0, R∩D), and 
use A’ in place of A as the assumption. If D includes s0, then 
there is no way to avoid dead-end states. If R∩D is a subset of Sr, 
then the assumption is free of reachable dead-end states. Both of 
the above algorithms are implemented using the CUDD BDD 
package [14]. All the set-theoretic operators in the above 
algorithms can be implemented as Boolean operators in BDDs. 
Given the set of assumptions in Figure 8, this algorithm would 
automatically extend it to produce the assumptions in Figure 9. 

6.2 Avoidance algorithm for deadend states 
in assumptions and DUV 

The algorithm we have described in the previous section is 
guaranteed to avoid any dead-end states inherent in the 
assumptions. However, as described earlier, the DUV can also 
interact with the assumptions to cause dead-end states. We can 
add an even stronger assumption to prevent this from happening 
by using the following fixed-point computation for D: 

We assume that there is no combinational path from any of the 
DUV inputs to any of the DUV outputs. In this case, the 
computation of the fixed point, D, is modified as follows: 

rSD =0
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The rest of the procedure remains the same. However, this may 
result in the dead-end-state voidance assumption being too 
strong. For example, given the assumptions in Figure 8, where q 
was a DUV output, this algorithm would produce the set of 
assumptions in Figure 10. Again, the above algorithm is 
implemented using the BDD data structure. 

6.3 Methodology 
Note that dead-end states might be the result of a bug in the 
design. In addition, the input stimuli that lead the design into 
dead-end states might be the only input stimuli that can reveal 
some tough bugs of the design. In both cases, we may miss the 
detection of the bug if we always turn on automatic dead-end 
avoidance during random simulation. 

Therefore, we propose the methodology that the user should first 
try random simulation without automatic dead-end avoidance. 
When dead-end state happens, the user should examine the cause 
of the dead-end states. If the cause is most likely due to 
incomplete assumptions, the user has the option to manually 
strengthen the assumptions to remove the dead-end states or turn 
on the automatic dead-end avoidance feature to save engineer’s 
time. Note that formal property verification does not require 
dead-end avoidance and is not impacted by dead-end states. 

7. EXPERIMENTAL RESULTS 
For formal property verification, our method builds a formal 
verification model by simply hooking up the assumptions, the 
assertions and the DUV together with a few extra logic gates. As 
a result, check-style environment model introduces little 
overhead to formal property verification engines. 

The more interesting question is whether our method’s constraint 
solving and automatic dead-end avoidance operations would 
introduce great overhead to random simulation. To answer this 
question, we performed experiments on four real-world designs 
and environment models: USB2, PCI Express, and two other 
designs with coded names. Table 1 shows the statistics of the 
designs. 

Table 1 Design statistics 

Design #gates #registers #inputs #outputs 

USB2 262K 7000 284 329 

PCIE 60K 2352 250 28 

C-1 39K 1784 252 355 

C-2 64K 1452 319 232 

 

The environment models were specified in both checker and 
generator styles. For the checker-style environment model, we 
performed the experiments with and without automatic dead-end 
avoidance. The sizes of the environment models were measured 
in terms of the sizes of the gate-level networks as well as the 
numbers of the BDD nodes in the combinational constraint 
solver. Simulation run time was measured for 250K clock cycles 
of random simulation with a commercial simulator on a 750MHz 
SPARC processor. 

Table 2 Comparison of the run times 

Design Env. 
models 

#BDD 
nodes 

#registers #gates CPU
Time  

generator N.A. 303 62K 624 

checker 3423 281 52K 745 

USB2 

dead-end  4040 281 52K 550 

generator N.A. 252 1.6K 351 PCIE 

checker 207 32 600 349 

generator N.A. 14 6135 1567 C-1 

checker 250 17 6163 1548 

generator N.A. 20 641 2173 

checker 353 12 922 1894 

C-2 

dead-end 380 12 922 2005 

 

 



Table 2 presents the experimental results. The second column 
shows the number of BDD nodes in the combinational constraint 
solver. With dead-end avoidance, extra constraints may result in 
an increase on the number of BDD nodes in the constraint solver. 
The checker-style environment models for PCIE and C-1 are 
dead-end free, so we do not report their dead-end avoidance data. 

The fifth column shows the CPU seconds for running 250K 
cycles of random simulation. For the USB2 design, with dead-
end avoidance, the checker-style environment model becomes 
faster than the generator-style environment model. This is 
possible because the time for the constraint solver to generate a 
random solution is proportional to the average path length in the 
BDD and not the total number of nodes in the BDD. We believe, 
however, that the performance improvement achieved here by 
dead-end avoidance is more accidental than normal. The compile 
time for building the BDDs in the constraint solver and deadend 
avoidance computation is less than 1 CPU minute for these four 
examples with the exception that the deadend avoidance 
computation took approximately 10 CPU minutes for the USB2 
design. 

We would like to draw the conclusion that for these four 
examples our method of handling checker-style environment 
models, with and without automatic dead-end state avoidance, 
does not incur much performance overhead over generator-style 
environment models in random simulation. 

8. CONCLUSIONS 
We have described a method for handling checker-style 
environment models specified as either sequential RTL monitors 
or temporal assumptions for random simulation, formal property 
verification and hybrid verification. This method therefore 
enables the user to (1) specify the environment model once and 
use it with multiple verification techniques, (2) reuse temporal 
properties as both assertions and assumptions and (3) employ 
assume-guarantee based verification methodology. 

Unlike the previous work, our method can automatically handle 
sequential RTL monitors or temporal assumptions; the user does 
not need to manually extract combinational constraints for the 
combinational constraint solver. In addition, we also present a 
method that automatically avoids dead-end states during random 
simulation. 

We tested the implemented algorithm on four real-world designs 
and environment models. The experimental results show that our 
method of handling checker-style environment models does not 
incur much performance overhead over generator-style 
environment models in random simulation. In the future, the 
dead-end avoidance algorithm can be improved in many ways, 
including partitioning the assumptions, using BDD 
approximation techniques, and exploiting don’t-care 
optimizations during the computation of the fixpoints D and R. 
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