
Pulse Width Modulated ‘Linear’ LED Bar Graph Display

Introduction
This application note presents a circuit which implements two design and programming

techniques for SX virtual peripherals. The first technique is for reading the value of a
potentiometer by measuring the time it takes to partially charge a capacitor through the
potentiometer. The second technique is for displaying the eight bit result in a simulated linear
manner using pulse width modulation to proportionally vary brightness of adjacent LEDs on a bar
graph composed of sixteen LEDs. The result is a signal that 'slides' smoothly up and down the bar
graph as the potentiometer is rotated instead of hopping from one LED to the next.

10

11

12

13

14

15

16

17

RB0

RB1

RB2

RB3

RB4

RB6

RB7

RB5

R1-4

220

R6

1M pot.

C1

.047uF

R5*

220

+ 5V

Vss

MCLR

4

282

Vdd

RA0
6

SX18AC

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

LED9

LED10

LED11

LED12

LED13

LED14

LED15

LED16

*see text

Figure 1 - Tested circuit of the pulse width modulated 16 LED bar graph display.

How the circuit and program work

Both sections of the circuit are set up as virtual peripherals which take advantage of the
SX’s internal interrupts to simplify programming and timing issues. The interrupt is triggered each
time the RTCC rolls over (counts past 255 and restarts at 0). By loading the OPTION register
with the appropriate value, the RTCC count rate is set equal to the oscillator frequency, which is
the internal 4MHz oscillator in this case. At the close of the interrupt sequence, a predefined value
is loaded into the W register using the RETIW instruction which determines the period of the
interrupt in RTCC cycles.

1) Reading the potentiometer
To read the value of the potentiometer, we measure the partial charging time (until the

port input triggers high) of a simple RC circuit, which is directly proportional to the
potentiometer value. The SX begins the timing measurement by discharging capacitor C1 through
port RA bit 0 by setting the port to an output and driving it low, thereby essentially shorting the
capacitor to ground through the current-limiting resistor R5 which prevents damage1 to the SX
port. The program code leaves port RA.0 low long enough to assure that the capacitor is
discharged enough not to affect the next reading by more than 1/256th = 0.4% to maintain
resolution on the order of 8 bits. It then clears the charge time counter register and switches port
RA.0 to an input to begin charging the capacitor through the potentiometer. It increments the
charge time register until the capacitor charges enough to trigger an input reading of high on the
port. To reduce power consumption and avoid high current draws through the potentiometer
when it is set near its lower limit, the program waits a specified time between potentiometer
samples before clearing and taking another reading.

The capacitor and potentiometer values are chosen so that if the potentiometer is at its
maximum value, the time to charge the capacitor enough to trigger the input to high and provide
8 bit timing resolution will be just slightly above 28 (= 256) interrupt cycles since each interrupt
cycle corresponds to one pass through the count loop. By using the ‘RETIW int_period’
instruction to end the interrupt, the RTCC rolls over and an interrupt is triggered every
int_period2 RTCC cycles3. With the SX running on the internal 4MHz oscillator in turbo mode
(i.e. 1 RTCC count/hardware clock count), the interrupt timing is:

tinterrupt = int_period / 4MHz = 200 / 4 x 106 = 50 µsec, so: t256 loops = 12.8 msec

Starting with a potentiometer of 1MΩ, and knowing that the SX port input triggers high
at about 0.25Vcc, we can use the formula V=Vcc⋅(1-e-t/RC) for the charging voltage on the
capacitor after time t to calculate the required capacitor value:

1 R5 limits the maximum discharge current through the I/O port to under 30mA (i.e. Rdischarge ≥ Vdd / Imax = 5V /
30mA = 167Ω). In practice, for small capacitor values (on the order of 0.01µF or less), R5 can probably even be
omitted, since the total charge stored on the capacitor is minimal and shouldn't damage the SX.

2 The value for the int_period variable controls the interrupt period. It is suggested that the minimum value for this
variable be kept longer than the longest possible interrupt routine duration (converted to RTCC counts), and the
maximum value should be 256, in which case int_period=0. Values less than the execution time of the interrupt
routine will cause interrupt periods longer than 256 RTCC counts.

3 Actual CPU cycle count may be multiples of int_period if the RTCC is operating with a prescaler other than 1.

0.25Vdd = Vdd ⋅ (1 - e-t/RC)

hence: C = -t / (R ⋅ ln(1 - 0.25)) = - 12.8 x 10-3 / (1 x 106 ⋅ ln(0.75)) = 0.044 uF

We want to be sure to use the whole 8 bit counter range, so we choose C a little large in
order that the charge time extends slightly beyond 256 iterations of the count loop when the
potentiometer is at its maximum, hence the value of C1 = 0.047uF4. Then, within the capacitor
charge counting loop, we also watch the charge time counter for overflow and skip ahead with a
charge time value set to maximum when this occurs (so that the bar graph doesn’t loop around
and display low values again if the potentiometer is near its maximum). To allow for tolerance
values of the capacitor and potentiometer, final adjustments can be made to the int_period
variable to assure that the whole 0-255 range is properly spanned by the potentiometer.

2) The LED bar graph output and pulse-width modulation
It is often desirable to minimize the number of pins used on the SX while maximizing the

number of devices accessed. An effective and cost-efficient manner of doing this is to set the pins
up as a matrix to read devices such as switch/keypad inputs or, as in this case, as outputs to
access an array of 16 LEDs. While the LEDs are physically positioned one after another in a line
as a bar graph, the circuit connections are made in a 4x4 matrix using only 8 SX port pins rather
than 16. The program code then controls which LED row and column is active which then lights
the corresponding LED. Here we have used the 4 high bits of port B as the source output rows
for the LEDs and the lower 4 bits as sink (output=low) input columns.

Since we have 16 LEDs and a value for the potentiometer input of 0-255 (8 bits), we can
create a smooth linear signal 'slide' effect by using pulse width modulation to partially and
proportionally light adjacent LEDs when the output value lies between them. For example,
assume we read a potentiometer value of 44. Since there are 16 LEDs, this value would
correspond to LED number 44/16=2.75. Normally in this case, we'd have to choose between the
2nd and 3rd LEDs, but using pulse width modulation we can resolve the fraction after the decimal
point by sending a 25% duty cycle to the second LED and a 75% duty cycle to the third one,
providing the visual effect that the signal is somewhere between the two LEDs, and closer (3/4
way) to the 3rd one. We use the higher nibble of the potentiometer reading to select which of the
16 LED(s) will be lit, and the lower nibble for the pulse width modulation duty cycle calculation,
which makes possible 16 levels of brightness. During each interrupt cycle, the pulse width
modulation duty cycle count is incremented, and with the aid of a lookup table, the matrix on port
B is set up to light the appropriate LED. In this way, each reading value from 0-255 is given a
unique output pattern the LED bar graph.

Resistors R1-4 limit current to the LEDs, which at 100% duty cycle draw an ILED = Vdd/R
= 5V/220Ω ≅ 23mA. The values of R1-4 may be adjusted to reduce/increase the overall
brightness, though the 30 mA source/sink maximum port current limit should be kept in mind.

4 If the value of C1 is changed, the clear_time constant for discharging it should also be adjusted appropriately.

Program Listing

;**
; Pulse Width Modulated 'Linear' LED Bar Graph Display - © Copyright 1998
;
; Length: 87 bytes
; Author: Craig Webb
; Written: 97/02/26
;
; This program implements two virtual peripherals using interrupts.
; It shows to read a potentiometer as an 8 bit value and pulse width
; modulate a bar-graph of 16 LEDs arranged in a 4x4 matrix on port B
; in order to provide a smooth 'sliding' signal effect by varying the
; brightness of adjacent LEDs when the potentiometer 8 bit value lies
; somewhere between them.
;
;**
;
;****** Assembler directives
;

DEVICE pins18,pages1,banks8,stackx,optionx
DEVICE osc4mhz,turbo
ID '16 LEDs'
RESET Start ;set reset/boot address

;
;******************************* Program Variables ***************************
;
;****** Register definitions (bank 0)
;

ORG 08h ;global variables 08-0Fh
reading DS 1 ;potentiometer reading
display DS 1 ;LED output to display
flags DS 1 ;program flags
;
; variables for LED interrupt routine
;

ORG 10h ;bank 0 variables
mainbank EQU $
;
LED_bank EQU $;(can be other than bank 0)
LED DS 1 ;holds which LED to light
cycle_count DS 1 ;pwm cycle count
pot_count DS 1 ;temporary pot timing count
clear_delay DS 1 ;delay period to clear cap.
sample_delay DS 1 ;delay period per sample

; (reduces power consumption)
;
;****** Bit variable definitions
;
pot EQU RA.0 ;potentiometer in RC (input)
triggered EQU flags.0 ;status of pot. reading
clearing EQU flags.1 ;hi while cap. is clearing
;
;****** Constants
;
sample_time = 2 ;time between pot. readings
clear_time = 45 ;delay value for clearing

; the capacitor (>=2)
int_period = 200 ;interrupt period (based

; on RTCC counts)
IO_portA = 00001111b ;Port A input/output setup
LEDs_off = 0Fh ;RB value for LEDs=off
;
;************************* Interrupt Routines ****************************
;

ORG 0
;

;***** Virtual Peripheral : Read potentiometer
;
; This routine reads the value of the potentiometer by clearing the
; capacitor in the RC timing circuit and then measuring the time it takes
; the capacitor to charge until the port input goes high. To avoid high
; current draws at low potentiometer values, the routine only resamples
; after (256*sample_time) interrupt cycles. The maximum potentiometer
; reading is 255.
;
; Input variable(s) : none
; Output variable(s) : reading
; Variable(s) affected : pot_count, clear_delay, sample_delay
; Flag(s) affected : clearing, triggered
; Timing cycles (turbo) : 12-charging, 14-triggered, 14-clearing
;

JNB clearing,:charge ;are we clearing cap.?
MOV W,#11111111b ;get port mask (=done)
DECSZ clear_delay ;is count done?
MOV W,#11111110b ;no, get port mask (=clearing)
TEST clear_delay ;is count done?
SNZ ;if not, skip ahead
CLRB clearing ;yes, reset clearing flag
AND W,#IO_portA ;get port setup byte
MOV !RA,W ;adjust pot port status
CLR pot_count ;clear timing count
JMP :done_pot ;jump past checking routine

:charge JNB pot,:adjust_count ;triggered yet?
MOV W,pot_count ;get timing count
SB triggered ;is this first trigger cycle?
MOV reading,W ;yes, store result
SETB triggered ;set trigger flag

:adjust_count INCSZ pot_count ;adjust reading counter
JMP :done_pot ;was counter at maximum?
MOV W,#255 ;no, store max. value
SB triggered ;did we already get reading?
MOV reading,W ;no, so set it to max.
SETB triggered ; and flag that we got value
DECSZ sample_delay ;time for new sample?
JMP :done_pot ;if not, keep cycling

:trig CLRB triggered ;yes, reset trigger flag
SETB clearing ;set flag to clear cap.
MOV sample_delay,#sample_time ;load sample and
MOV clear_delay,#clear_time ; clear delay time counts

:done_pot ;end of pot. reading routine
;
;
;***** Virtual Peripheral : LED driver
;
; This routine drives the LED bar-graph array, providing 16 levels
; of brightness to allow an output slide effect between adjacent LEDs
; It must be called fairly often, otherwise the pulsing effect will
; become noticeable.
;
; Input variable(s) : display
; Output variable(s) : none
; Variable(s) affected : cycle_count, LED
; Timing cycles (turbo) : 21
;
;next instruction needed only if multiple variable banks are used
;

MOV W,<>display ;get input (nibble-swapped)
AND W,#0Fh ;keep high 4 bits (which LED)
MOV LED,W ;save it
MOV W,display ;get input reading again
AND W,#00001111b ;keep lower 4 bits for PWM
MOV W,cycle_count-W ;calculate which LED to have on

:zero_point SZ ;adjust zero baseline up one*
SC ;next one up? If not skip ahead

INC LED ;yes, increment to next LED
MOV W,LED ;get LED number
CALL LED_Table ;fetch LED value
MOV RB,W ;light LED
INC cycle_count ;adjust PWM cycle
SNB cycle_count.4 ;time to reset (16 cycles)?
CLR cycle_count ;yes, start new cycle

;
;*this instruction shifts the whole display range up by one, thus making the
; first LED dimly lit on a reading of 0, and the last lit fully on a reading
; of 255. If it's preferable that all LEDs be off on a reading of 0, this
; instruction may be removed or commented out.
;
;

MOV W,#-int_period ;interrupt again after
RETIW ; 'int_period' RTCC counts

;
;******************************* Subroutines *********************************
;
;
;***** Subroutine : LED_Table
;
; This is a look-up table that returns the output port value to light the LED
; contained in the W register. If W holds 0, then all LEDs are turned off.
;
LED_Table ADD PCL,W ;get RB value for LED1-16

RETW 0Fh ;LEDs all off
RETW 1Eh ;LED1
RETW 2Eh ;LED2
RETW 4Eh ;LED3
RETW 8Eh ;LED4
RETW 1Dh ;LED5
RETW 2Dh ;LED6
RETW 4Dh ;LED7
RETW 8Dh ;LED8
RETW 1Bh ;LED9
RETW 2Bh ;LED10
RETW 4Bh ;LED11
RETW 8Bh ;LED12
RETW 17h ;LED13
RETW 27h ;LED14
RETW 47h ;LED15
RETW 87h ;LED16

;
;********************************* Main Program *******************************
;
;***** Initialization routine
;
Start CLR RA ;clear port A

MOV !RA,#IO_portA ;set up port A
MOV RB,#LEDs_off ;set all LEDs off
MOV !RB,#0 ;configure port B as outputs
CLR FSR ;reset all ram starting at 08h

:zero_ram SB FSR.4 ;are we on low half of bank?
SETB FSR.3 ;If so, don't touch regs 0-7
CLR IND ;clear using indirect addressing
IJNZ FSR,:zero_ram ;repeat until done
MOV !OPTION,#10001000b ;enable interrupt on rtcc=xtal/1
MOV sample_delay,#sample_time ;load sampling period

;
;***** Main program loop
;
Mainloop
;

MOV display,reading ;copy pot. to LED output display
;
; <program code goes here>
;

JMP Mainloop ;keep looping
;

END

