Pulse Width Modulated ‘Linear’ LED Bar Graph Display

| ntr oduction

This application note presents a circuit which implements two design and programming
techniques for SX virtual peripherals. The first technique is for reading the value of a
potentiometer by measuring the time it takes to partially charge a capacitor through the
potentiometer. The second technique is for displaying the eight bit result in a simulated linear

manner using pulse width modulation to proportionally vary brightness of adjacent LEDs on a bar
graph composed of sixteen LEDs. The result isasignal that 'slides’ smoothly up and down the bar

graph as the potentiometer is rotated instead of hopping from one LED to the next.

LED16

LED15

LED14

LED13

SX18AC

13

LED12

12

11

10 R6

LED11

6 1M pot

17

LED10O

RB7 x
16 R5

LED3

LED2

LED1

XZE XZQ XZQ XZQ XZQ XZQ XZE XZE XZE XZE XZE XZQ XZQ XZQ XZQ XZ;,;

RB6
15 220

14

C1
.047uF

%

*see text

R1-4
220

Figure 1l - Tested circuit of the pulse width modulated 16 LED bar graph display.

How the circuit and program wor k

Both sections of the circuit are set up as virtual peripherals which take advantage of the
SX’sinterna interrupts to simplify programming and timing issues. The interrupt is triggered each
time the RTCC rolls over (counts past 255 and restarts at 0). By loading the OPTION register
with the appropriate value, the RTCC count rate is set equal to the oscillator frequency, which is
the internal 4AMHz oscillator in this case. At the close of the interrupt sequence, a predefined value
isloaded into the W register using the RETIW instruction which determines the period of the
interrupt in RTCC cycles.

1) Reading the potentiometer

To read the value of the potentiometer, we measure the partial charging time (until the
port input triggers high) of asimple RC circuit, which is directly proportional to the
potentiometer value. The SX begins the timing measurement by discharging capacitor C1 through
port RA bit O by setting the port to an output and driving it low, thereby essentially shorting the
capacitor to ground through the current-limiting resistor R5 which prevents damage! to the SX
port. The program code leaves port RA.O low long enough to assure that the capacitor is
discharged enough not to affect the next reading by more than 1/256th = 0.4% to maintain
resolution on the order of 8 hits. It then clears the charge time counter register and switches port
RA.0 to an input to begin charging the capacitor through the potentiometer. It increments the
charge time register until the capacitor charges enough to trigger an input reading of high on the
port. To reduce power consumption and avoid high current draws through the potentiometer
when it is set near its lower limit, the program waits a specified time between potentiometer
samples before clearing and taking another reading.

The capacitor and potentiometer values are chosen so that if the potentiometer is at its
maximum value, the time to charge the capacitor enough to trigger the input to high and provide
8 hit timing resolution will be just dightly above 28 (= 256) interrupt cycles since each interrupt
cycle corresponds to one pass through the count loop. By using the ‘RETIW int_period’
instruction to end the interrupt, the RTCC rolls over and an interrupt is triggered every
int_period? RTCC cycles®. With the SX running on the internal 4MHz oscillator in turbo mode
(i.e. 1 RTCC count/hardware clock count), the interrupt timing is:

t = int_period / AMHz = 200/ 4 x 106 =50 MBeC, SO: tyggo0ps = 12.8 MseC

interrupt

Starting with a potentiometer of 1MW, and knowing that the SX port input triggers high
at about 0.25V ¢, we can use the formuIaV:VCC>(1-e't/RC) for the charging voltage on the
capacitor after timet to calculate the required capacitor value:

1 R5 limits the maximum discharge current through the /O port to under 30mA (i.e. Ruischarge ° Vad / Imax =5V /
30mA = 167W). In practice, for small capacitor values (on the order of 0.01nt or less), RS can probably even be
omitted, since the total charge stored on the capacitor is minimal and shouldn't damage the SX.

2 The value for the int_period variable controls the interrupt period. It is suggested that the minimum value for this
variable be kept longer than the longest possible interrupt routine duration (converted to RTCC counts), and the
maximum value should be 256, in which caseint_period=0. Values less than the execution time of the interrupt
routine will cause interrupt periods longer than 256 RTCC counts.

3 Actual CPU cycle count may be multiples of int_period if the RTCC is operating with a prescaler other than 1.

0.25V 44 =V X(l - e't/RC)
hence C=-t/(RxIn(1-0.25)) =- 12.8 x 10-3/ (1 x 106 xIn(0.75)) = 0.044 uF

We want to be sure to use the whole 8 bit counter range, so we choose C alittle large in
order that the charge time extends sightly beyond 256 iterations of the count loop when the
potentiometer is at its maximum, hence the value of C1 = 0.047uF*. Then, within the capacitor
charge counting loop, we aso watch the charge time counter for overflow and skip ahead with a
charge time value set to maximum when this occurs (so that the bar graph doesn’t loop around
and display low values again if the potentiometer is near its maximum). To alow for tolerance
values of the capacitor and potentiometer, final adjustments can be made to the int_period
variable to assure that the whole 0-255 range is properly spanned by the potentiometer.

2) The LED bar graph output and pulse-width modulation

It is often desirable to minimize the number of pins used on the SX while maximizing the
number of devices accessed. An effective and cost-efficient manner of doing thisis to set the pins
up as amatrix to read devices such as switch/keypad inputs or, asin this case, as outputs to
access an array of 16 LEDs. While the LEDs are physically positioned one after another in aline
as abar graph, the circuit connections are made in a 4x4 matrix using only 8 SX port pins rather
than 16. The program code then controls which LED row and column is active which then lights
the corresponding LED. Here we have used the 4 high bits of port B as the source output rows
for the LEDs and the lower 4 bits as sink (output=low) input columns,

Since we have 16 LEDs and a value for the potentiometer input of 0-255 (8 bits), we can
create a smooth linear signal 'dide’ effect by using pulse width modulation to partialy and
proportionally light adjacent LEDs when the output value lies between them. For example,
assume we read a potentiometer value of 44. Since there are 16 LEDs, this value would
correspond to LED number 44/16=2.75. Normally in this case, we'd have to choose between the
2nd and 3rd LEDs, but using pulse width modulation we can resolve the fraction after the decimal
point by sending a 25% duty cycle to the second LED and a 75% duty cycle to the third one,
providing the visual effect that the signal is somewhere between the two LEDSs, and closer (3/4
way) to the 3rd one. We use the higher nibble of the potentiometer reading to select which of the
16 LED(s) will belit, and the lower nibble for the pulse width modulation duty cycle calculation,
which makes possible 16 levels of brightness. During each interrupt cycle, the pulse width
modulation duty cycle count is incremented, and with the aid of alookup table, the matrix on port
B is set up to light the appropriate LED. In this way, each reading value from 0-255 is given a
unigue output pattern the LED bar graph.

Resistors R1-4 limit current to the LEDs, which at 100% duty cycle draw an I, gp = Va/R
= 5V/220W @23mA. The values of R1-4 may be adjusted to reduce/increase the overall
brightness, though the 30 mA source/sink maximum port current limit should be kept in mind.

4If the value of C1 is changed, the clear_time constant for discharging it should also be adjusted appropriately.

Program Listing

R R Ik O kO O R I kR R R kR R b O O

Pul se Wdth Mdul ated 'Linear' LED Bar Graph Display - © Copyright 1998

Lengt h: 87 bytes
Aut hor: Crai g Wbb
Witten: 97/02/26

This programinplenents two virtual peripherals using interrupts.

It shows to read a potentioneter as an 8 bit value and pul se width
nodul ate a bar-graph of 16 LEDs arranged in a 4x4 matrix on port B
in order to provide a snmooth 'sliding' signal effect by varying the
bri ght ness of adjacent LEDs when the potentioneter 8 bit value lies
somewher e between them

R R b I S S kI S kR kO R S O R R O O

**x*x% Assenbl er directives

DEVI CE pi ns18, pagesl, banks8, st ackx, opti onx

DEVI CE osc4mhz, t ur bo

| D '16 LEDs'

RESET Start :set reset/boot address

EEE R Ik S I R R kO R R O Program Varl abl es R I b O O I S kO

;¥*x*%* Regi ster definitions (bank 0)

1
1
1
1
1

ORG 08h ; gl obal vari abl es 08-0Fh
readi ng DS 1 ; potentioneter reading
di spl ay DS 1 ; LED out put to display
flags DS 1 ; program fl ags

1

; variables for LED interrupt routine

1

ORG 10h :bank 0 vari abl es
mai nbank EQU $
LED_bank EQU $; (can be other than bank 0)
LED DS 1 ; hol ds which LED to |ight
cycl e_count DS 1 ; pwm cycl e count
pot _count DS 1 ;tenporary pot timng count
cl ear _del ay DS 1 ;delay period to clear cap.
sanpl e_del ay DS 1 ;del ay period per sanple

; (reduces power consunption)

y¥**xxxx Bit variable definitions

i)ot EQU RA. O ;potentioneter in RC (input)

triggered EQU flags.0 ;status of pot. reading
cl earing EQU flags.1 ;hi while cap. is clearing

;**xxx% Constants

2 ;tinme between pot. readings
45 ;delay value for clearing
t he capacitor (>=2)

sanpl e_tine
clear_tine

i nt _period = 200 ;interrupt period (based

; on RTCC counts)
10 portA = 00001111b ;Port A input/output setup
LEDs_of f = OFh :RB val ue for LEDs=of f
z************************* Interrupt ROUtIFIES IR R R R Rk kS

1

ORG 0

***%* \firtual Peripheral

reading is 255.

I nput variable(s) : none
Qut put vari abl e(s) readi ng
Vari abl e(s) affected :
Fl ag(s) affected :
Timing cycles (turbo)

JNB cl earing, : charge
MoV W#11111111b
DECSZ cl ear _del ay

MoV W #11111110b
TEST cl ear _del ay

SNz

CLRB cl earing

AND W #1 O _portA

MoV 1 RA, W
CLR pot _count
JMWP : done_pot
:charge JNB pot, : adj ust _count

MoV W pot _count
SB triggered
MOV readi ng, W
SETB triggered

;adjust_count |INCSZ pot_count
JMWP : done_pot
MoV W #255
SB triggered

MOV readi ng, W
SETB triggered

DECSZ sanpl e_del ay
JMWP : done_pot
itrig CLRB triggered

SETB cl earing

MOV sanpl e_del ay, #sanpl e_tine
MOV cl ear _del ay, #cl ear _tine

: done_pot

;***** \irtual Peripheral LED dri ver

pot _count,
clearing, triggered
12-chargi ng,

Read potentioneter

This routine reads the value of the potentionmeter by clearing the

capacitor in the RCtimng circuit and then nmeasuring the tinme it takes
the capacitor to charge until the port
current draws at | ow potentioneter val ues,
after (256*sanple_tine) interrupt cycles.

goes high. To avoid high

the routine only resanpl es
The maxi mum pot enti onet er

cl ear_del ay, sanpl e_del ay

14-triggered, 14-clearing

;are we clearing cap.?

;get port mask (=done)

:is count done?

;no, get port nmask (=clearing)
:is count done?

;if not, skip ahead

;yes, reset clearing flag
;get port setup byte

;adjust pot port status
;clear timng count

;junp past checking routine
;triggered yet?

;get timng count

;is this first trigger cycle?
;yes, store result

;set trigger flag

;adj ust readi ng counter

;was counter at maxi nunf

;no, store mex. val ue

;did we already get reading?
:no, so set it to max.

; and flag that we got val ue
;tinme for new sanpl e?

;if not, keep cycling

;yes, reset trigger flag

;set flag to clear cap

;1 oad sanpl e and

; clear delay time counts
;end of pot. reading routine

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

This routine drives the LED bar-graph array, providing 16 |evels

of brightness to allow an output slide effect between adjacent LEDs
It nust be called fairly often, otherwi se the pulsing effect wll
beconme noti ceabl e.

I nput vari abl e(s) di spl ay

Qut put variabl e(s) : none

Variabl e(s) affected : cycle_count, LED
Tim ng cycles (turbo) : 21

;next instruction needed only if nultiple variable banks are used

MOV W <>di spl ay ;get input (nibble-swapped)

AND W #0Fh ; keep high 4 bits (which LED)

MOV LED, W ;save it

MOV W di spl ay ;get input reading again

AND W #00001111b ; keep lower 4 bits for PWM

MOV W cycl e_count -W :cal cul ate which LED to have on
zer o_poi nt Sy4 ;adj ust zero baseline up one*

SC ;next one up? If not skip ahead

I NC LED ;yes, increnent to next LED

MOV W LED ;get LED nunber

CALL LED Tabl e :fetch LED val ue

MOV RB, W :1ight LED

I NC cycl e_count ;adj ust PWM cycl e

SNB cycle_count. 4 ;tine to reset (16 cycles)?
CLR cycl e_count ;yes, start new cycle

*this instruction shifts the whol e display range up by one, thus nmeking the
first LEDdimMy lit on a reading of 0, and the last Iit fully on a reading
of 255. If it's preferable that all LEDs be off on a reading of 0, this
instruction may be renoved or commented out.

MOV W #-int_period ;interrupt again after
RETI W ; "int_period RTCC counts

R R R I O R R I I SUbrOUtI nes R R S b I R SRR R b I O

***%* Subroutine : LED Table

This is a |l ook-up table that returns the output port value to light the LED
contained in the Wregister. If Wholds 0, then all LEDs are turned off.

LED Tabl e ADD PCL, W ;get RB value for LED1-16
RETW OFh :LEDs all off
RETW 1Eh ; LED1
RETW 2Eh ; LED2
RETW 4Eh : LED3
RETW 8Eh ;. LED4
RETW 1Dh ;. LEDS
RETW 2Dh : LED6
RETW 4Dh ;. LED7
RETW 8Dh ; LED8
RETW 1Bh : LED9
RETW 2Bh ; LED10O
RETW 4Bh ; LED11
RETW 8Bh ; LED12
RETW 17h ; LED13
RETW 27h ; LED14
RETW 47h ; LED15
RETW 87h ; LED16

BRI I b O SRR R I S NBII"I Program R R R I O O R S

;****% Initialization routine

1
1
1
1
1

Start CLR RA ;clear port A
MoV IRA, #1 O _port A ;set up port A
MoV RB, #LEDs_of f :set all LEDs off
MOV I RB, #0 ;configure port B as outputs
CLR FSR ;reset all ramstarting at 08h
:zero_ram SB FSR. 4 ;are we on | ow half of bank?
SETB FSR. 3 ;1f so, don't touch regs 0-7
CLR I ND ;clear using indirect addressing
1 INZ FSR, : zero_ram ;repeat until done
MOV I OPTI ON, #10001000b ;enable interrupt on rtce=xtal/1
MOV sanpl e_del ay, #sanpl e_tine ;1 oad sanpling period

;*¥***% Main program | oop
Mai nl oop

MOV di spl ay, readi ng ;copy pot. to LED output display

: <pr ogram code goes here>

JMWP Mai nl oop ; keep | oopi ng
END

