
Hand-in-hand Verification and Synthesis of Digital Circuits

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Master of Science (by Research)
in

Computer Science and Engineering

By

Chandan Karfa

under the guidance of

Chittaranjan Mandal

Dipankar Sarkar

Department of Computer Science and Engineering

Indian Institute of Technology

Kharagpur

March 2007

Dedicated to my parents

Certificate
This is to certify that the thesis titled ”Hand-in-hand Verification and Synthesis of Digital Circuits”

submitted by Chandan Karfa, to the Department of Computer Science and Engineering, Indian

Institute of Technology, Kharagpur, India, for the partial fulfilled for award of the degree of Master

of Science (by Research), is a bonafide record of original research work carried out by him under

our supervision and guidance. The thesis fulfills all the requirements as per the regulations of this

Institute and, in our opinion, has reached the standard needed for submission. Neither this thesis

nor any part of it has been submitted for any degree elsewhere.

Place: I.I.T. Kharagpur (Chittaranjan Mandal)

Associate Professor

Date: Dept. of Computer Science and Engg

Indian Institute of Technology

Kharagpur 721302, INDIA.

Place: I.I.T. Kharagpur (Dipankar Sarkar)

Professor

Date: Dept. of Computer Science and Engg

Indian Institute of Technology

Kharagpur 721302, INDIA.

Acknowledgment
This thesis is the result of my research work under the guidance of Prof. C. R. Mandal and Prof.

D. Sarkar at the Department of Computer Science and Engineering of the Indian Institute of Tech-

nology, Kharagpur. I am deeply grateful to my research advisors for the huge amount of time and

effort they spent guiding me through several difficulties on the way. Without the help, encourage-

ment and patient support I received from my guides, this thesis would never have materialized. I

am considered myself extremely lucky for getting the opportunity to work under them. During my

long association with them and the other professors in IIT, Kharagpur, I am sure, I have learned

a lot. I am also thankful to Dr. Chris Reade, Head of School of Business Information Manage-

ment, Kingston Business School for providing me some useful suggestions and support. I want

to thank Prof. A. Patra, Professor-in-charge, Advanced VLSI Design Laboratory, IIT Kharagpur

for allowing me to use the lab resource for my experimentations. I will never forget the support,

suggestion and ideas provided by Santosh Biswas through out my research work. I am grateful to

Murali, Satyam, Srinivas and Ajay for their full sopport in the development of SAST. My special

thanks goes to Sumit and Tirthankar for help me in preparing the GUI of SAST. It was a great fun

and source of ideas and energy to have friends like Somnath, Bodhisatwa, Harsha, Sayak, Gopal,

Soham, Soumyajit, Sunandan, Pratyush, Barun, Plaban, Anupam and others in my department.

I am thankful to our cook Das da for serving me food through out my stay in IIT Kgp. Last

but most important are my parents and the other members of my family. Without their constant

encouragements, supports and well wishes, this thesis never be materialized.

Chandan Karfa

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

March 2007

Abstract
Advances in VLSI technology have enabled its deployment into complex circuits. Synthesis

flow of such circuits comprises various phases where each phase performs the task algorithmi-

cally providing for ingenious interventions of experts. The gap between the original behaviour

and the finally synthesized circuit is too wide to be analyzed by any reasoning mechanism. The

validation tasks, therefore, must be planned to go hand-in-hand with each phase of synthesis with

scope to handle the specialties of each synthesis sub-task separately. This thesis is concerned

with hand-in-hand verification and (high-level) synthesis of digital circuits. The verification of

high-level synthesis is performed in three-phases namely, scheduling verification, allocation and

binding verification and data-path and controller verification. The input and output of each phase

are represented as finite state machines with data-paths (FSMD); the equivalence of two FSMDs

is defined and has been proved. The difficulties of each phase are identified and the verification

methods based on equivalence of two FSMDs have been formulated accordingly. The scheduling

verification method is strong enough to accommodate merging of path segments in the original

behaviour, application of several code motion techniques and some arithmetic transformations em-

ployed during scheduling. The allocation and binding verification method is capable of handling

register sharing verification. For verification of the data-path and controller synthesis phase, a

rewriting method is proposed. The method reveals, from a flat set of control signal assertions, the

spatial sequences of data flow over the data-path, each sequence realizing a member of a concur-

rent set of register transfer operations. A high-level synthesis tool, called structured architecture

synthesis tool (SAST), has been developed which support hand-in-hand synthesis and verification.

The synthesis flow of SAST and the results for several high-level synthesis benchmarks are pro-

vided. The thesis concludes by identifying some directions for future research.

Key Words: High-level Synthesis, Formal Verification, Equivalence Checking, Normalization,

FSMD models, Path-Based Scheduling, Code Motion Techniques, Allocation and Binding, Regis-

ter Sharing, Data-Path and Controller Generation, Rewriting Method, SAST.

Contents

1 Introduction, Background and Motivation 1

1.1 General Introduction . 1

1.1.1 High-level Synthesis . 3

1.1.2 Formal Verification . 5

1.2 Literature Survey on High-level Synthesis Verification 6

1.2.1 Pre-synthesis Verification . 7

1.2.2 Formal Synthesis Verification . 7

1.2.3 Post-synthesis Verification . 8

1.3 Motivation and Objectives of the Present Work 13

1.4 Contributions of the Present Work . 15

1.5 Organization of the Thesis . 17

2 The Equivalence Problem Formulation 19

2.1 Introduction . 19

2.2 Finite State Machines with Data-paths . 19

2.2.1 Paths and Transformations along a Path 23

2.2.2 Computation of Rα and rα . 25

2.2.3 Characterization of Paths . 25

2.2.4 Computations and Path Covers of an FSMD 25

2.3 Equivalence of FSMDs . 26

2.3.1 The Basic Equivalence Checking Method 28

2.3.2 Normalization of Arithmetic Expressions 30

2.4 Conclusions . 33

3 Scheduling Verification 35

7

8 CONTENTS

3.1 Introduction . 35

3.2 Objective of Scheduling Verification . 37

3.3 Verification Issues . 37

3.4 The Scheduling Verification Algorithm . 42

3.4.1 The Algorithm . 42

3.4.2 Correctness of the algorithm . 43

3.4.3 Complexity of the algorithm . 44

3.5 Verification of Different Scheduling Algorithms 45

3.5.1 Basic Block Based Scheduling . 45

3.5.2 Path Based Scheduling . 46

3.6 Performance on Several HLS Transformations 48

3.6.1 Renaming . 48

3.6.2 Common Sub-Expression Elimination . 49

3.6.3 Code Transformation to Increase Conditional Reuse of Hardware 51

3.6.4 Reverse Speculation . 52

3.6.5 Early Condition Execution . 55

3.6.6 Conditional Speculation . 56

3.6.7 Conditional Branch Balancing . 57

3.6.8 Speculation . 57

3.6.9 Loop Shifting and Compaction . 59

3.7 Conclusions . 61

4 Allocation and Binding Verification 63

4.1 Introduction . 63

4.2 Objectives . 65

4.3 Verification of Allocation and Binding of Functional Units 65

4.4 Register Sharing Verification . 65

4.4.1 The Mapping Functions . 66

4.4.2 Verification Issues . 68

4.4.3 Verification Algorithm . 69

4.4.4 An Example . 69

4.4.5 Performance of the Algorithm . 71

CONTENTS 9

4.5 Conclusions . 73

5 Data-path and Controller Verification 75

5.1 Introduction . 75

5.2 Verification Goal . 78

5.3 Construction of the FSMD M3 . 78

5.3.1 Construction of the FSMD M3: An Example 82

5.3.2 A Rewriting Method . 84

5.3.3 Correctness and Complexity of Algorithm 2 86

5.4 Verification During Construction of FSMD M3 89

5.4.1 Redundancy Optimization in the Data-path and in the Controller 90

5.5 Verification by Equivalence Checking . 91

5.6 Conclusions . 91

6 Development of a High-level Synthesis Tool (SAST) 95

6.1 Introduction . 95

6.2 Target Architecture . 95

6.3 SAST Synthesis Steps . 98

6.3.1 CDFG Generation . 99

6.3.2 Preprocessing . 102

6.3.3 Scheduling . 106

6.3.4 Register Allocation and Binding . 114

6.3.5 Data-path and Controller Generation . 118

6.3.6 Verilog Code Generation . 121

6.4 Generation of the FSMDs for Verification . 122

6.4.1 Construction of FSMD from the CDFG 123

6.4.2 Construction of FSMD from the Scheduled Behaviour 123

6.4.3 Construction of FSMD from the Allocation and Binding Results 125

6.4.4 Construction of FSMD from RTL Design 126

6.5 Conclusions . 128

7 Experimental Results 129

7.1 Introduction . 129

7.2 Synthesis and Verification Results . 129

7.2.1 Effects of the Architectural Parameters on Synthesis Results 129

7.2.2 Comparison with other Synthesis Tools 131

7.2.3 Verification vs. Synthesis . 132

7.3 Conclusions . 133

8 Conclusions and Future Scope of Work 135

8.1 Summary of the Work . 135

8.2 Future Scope of Work . 136

A Synthesis with SAST: A Case Study 139

B Publications out of this work 155

C Bio-data 157

Bibliography 159

List of Figures

1.1 Hierarchy of Synthesis Flow . 2

1.2 The steps of high-level synthesis . 4

1.3 Hand-in-hand synthesis and verification . 14

2.1 The FSMD corresponding to the GCD behaviour given in example 1 22

2.2 A typical path, its condition of execution and its simple data transformation 24

2.3 FSMD designations in the hand-in-hand synthesis and verification flow 30

3.1 Phase-wise modification of an example input behaviour by a basic block based

scheduler . 36

3.2 Working of the proposed algorithm on an example. (a) M0: An FSMD before

scheduling (b) M1: Corresponding FSMD after scheduling 40

3.3 Scheduling of a relational operation . 41

3.4 A CDFG and its corresponding FSMD structure 46

3.5 The FSMDs of the GCD example (a) M0: before scheduling (b) M1: after schedul-

ing using a path-based scheduler . 47

3.6 Scheduling using variable renaming technique: An example 48

3.7 Scheduling using elimination of common sub-expressions: An example 50

3.8 Conditional reuse to reduce execution time: An example 52

3.9 Reverse speculation technique: An example . 53

3.10 Reverse speculation: A special case . 54

3.11 Early Condition Execution: An example . 55

3.12 Conditional speculation technique: An example 56

3.13 Conditional branch balancing: An example . 57

3.14 Speculation technique: An example . 58

11

3.15 Loop shifting and compaction: An example . 60

4.1 An illustration of allocation and binding process: a. Scheduled behaviour b. After

allocation and binding . 64

4.2 DIFFEQ Example: a. FSMD after scheduling b. FSMD after allocation & binding . 66

5.1 Data-path generation: An example . 76

5.2 The structure of the RTL description produced by any HLS tool 77

5.3 Data-path with control signals . 77

5.4 The steps of data-path and controller verification 79

6.1 Schematic of structured architecture. 96

6.2 An Architecture Block . 97

6.3 SAST synthesis steps . 99

6.4 CDFG representation of GCD behaviour . 100

6.5 Steps involved in CDFG generation. 102

6.6 Data flow diagram for preprocessor before scheduling 103

6.7 A sample behavioural description . 105

6.8 Partial order for the behavioural description given in figure 6.7. 105

6.9 Generating initial attributes of offspring by crossover. 109

6.10 Completion algorithm. 113

6.11 The block-diagram of the controller . 120

6.12 Generating Write Enable signals. 121

6.13 Timing diagram for control and write enable signals. 122

6.14 DIFFEQ example to show how the FSMD M0 is constructed from CDFG 125

6.15 DIFFEQ example: the scheduled behaviour and the FSMD M1 126

7.1 Graphical User Interface for SAST . 130

7.2 Synopsys DA output for EWF. 133

7.3 The typical number of variables and the number of registers required for different

HLS benchmarks . 134

List of Tables

2.1 Conditions on c1 and c2 for which
�
s1 � c1 � R10 implies

�
s2 � c2 � R20 32

4.1 Mapping of the registers to the variables for DIFFEQ example 67

4.2 Computation of data transformation of the path q1 � 0 � q1 � 11 in M1 71

4.3 Computation of data transformation of the path q2 � 0 � q2 � 11 in M2 72

5.1 The function fmc from the set � to the set � . 83

5.2 Construction of the set � A from the function fmc for the control assertion pattern

A �	� 1
 0
 1
 1
 1
 0 � . 83

6.1 Schedule of operations of the code for DIFFEQ given in figure 6.7. 106

6.2 Crossover of scheduling attributes of operation ‘3’ of figure 6.7 111

7.1 Synthesis results for some HLS benchmarks for different architectural parameters . 131

7.2 Comparison of results with a few other synthesis tools. 132

7.3 Results for different high-level synthesis benchmarks 132

7.4 Scheduling verification results for different high-level synthesis benchmarks . . . 134

Chapter 1

Introduction, Background and Motivation

1.1 General Introduction

Very Large Scale Integrated Circuit (VLSI) technology provides densities of several million gates

of random logic per chip. Chips of such complexity are very difficult, if not impossible, to design

using the traditional capture and simulate design methodology. Furthermore, VLSI technology has

also reached such a maturity level that it is well understood so as to no longer provide a competitive

edge by itself. Instead, time to market is usually equally, if not more, important than area or speed.

The industry has started looking at the product development cycle comprehensively to reduce the

design time and to gain a competitive edge in the time-to-market race. Automation of the entire

design process from conceptualization to silicon or a describe-and-synthesize design methodology

has become necessary [1].

As the complexity of the chips increases, so does the need for design automation on higher

levels of abstraction where functionality is easier to understand and trade-offs are more influen-

tial. There are several advantages to automating part or all of the design process and expanding

the scope of automation to higher levels. First, automation assures a much shorter design cycle.

Secondly, it allows for more exploration of different design styles since different designs can be

generated and evaluated quickly. Finally, if synthesis algorithms are well understood, design au-

tomation tools may out-perform average human designers in meeting most of the design constraints

and requirements.

Synthesis is the process of interconnecting primitive components at a certain level of abstrac-

tion (target level) to realize a specification at a higher level of abstraction (source level). Synthesis,

1

2 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

system specification

verification

behavioral
verification

verification
logic
synthesis

transistor circuit description

RTL structural description

verification

VLSI mask layout

layout

logic

high level
synthesis

synthesis
systemsystem

layout
synthesis

behavioural specification

Figure 1.1: Hierarchy of Synthesis Flow

sometimes called design refinement, adds an additional level of detail that provides information

needed for the next level of synthesis or for manufacturing the design. This more detailed design

must satisfy design constraints supplied along with the original behavioural description or gener-

ated by a previous synthesis step. The source and target levels categorize the various synthesis

systems. Several levels of the synthesis process is shown in figure 1.1. The system synthesis step

takes as input a system specification involving processors and memories and outputs an equivalent

functional specification. The high level synthesis (HLS) step takes an algorithmic or high level

behaviour as input and outputs the register transfer level (RTL) behaviour consisting of functional

units, storage and interconnection units. The logic synthesis step takes Boolean equations as in-

puts and generates a gate level design after performing logic optimizations of the input. The layout

synthesis step takes the gate level specification and outputs the physical layout implementing the

gate level specification.

1.1. GENERAL INTRODUCTION 3

1.1.1 High-level Synthesis

A behavioural description is used as the starting point for HLS. It specifies the behaviour in terms

of operations, assignment statements, and control constructs in a hardware description language

(HDL) (e.g., VHDL [2] or Verilog [3]). The output from a high-level synthesizer consists of two

parts: a data path structure at the register-transfer level (RTL) and a specification of the finite state

machine to control the data path. At the RTL level, a data path is composed of three types of

components: functional units (e.g., ALUs, multipliers, and shifters), storage units (e.g., registers

and memory), and interconnection units (e.g., buses and multiplexors). The finite state machine

specifies every set of micro-operations for the data path to be performed during every control step.

In the first step of HLS, the behavioural description is compiled into an internal representa-

tion. This process usually includes a series of compiler like optimizations. In addition, it may

also apply some hardware-specific transformations such as, syntactic variances minimization, re-

timing and those exploiting the associativity and commutativity properties of certain operations.

A control/data flow graph (CDFG) is a commonly used internal representation to capture the be-

haviour. The control-flow graph (CFG) of the CDFG captures sequencing, conditional branching

and looping constructs in the behavioural description; the data-flow graph (DFG) captures data-

manipulation activities described by a set of assignment statements (operations).

The following three steps form the core of transforming a behaviour into an RTL description:

scheduling, allocation and binding. Scheduling assigns operations of the behavioural description

into control steps. A control step usually corresponds to a cycle of the system clock, the basic time

unit of a synchronous digital system. Allocation chooses functional units and storage elements

from the component library. There may be several alternatives among which the synthesizer must

select the one that matches the design constraints best and maximizes the optimization objective.

Binding assigns operations to functional units, variables to storage elements and data transfers to

wires or buses such that data can be correctly moved around according to the scheduling.

The final step of high-level synthesis is data-path and controller generation. Depending upon

the scheduling and the binding information of the operations and the variables, proper intercon-

nection between the data-path components is set up. Finally, a finite state machine is generated to

control all the micro-operations over the date-path. The high-level synthesis steps are depicted in

figure 1.2.

4 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

compilation

scheduling

binding

design
scheduled

intermediate
representation

specification
functional

allocation

controller generation
data−path and

RTL

operations to FU
variables to registers

mapping

and FUs
allocation of registers

Figure 1.2: The steps of high-level synthesis

Requirements of High-level Synthesis Verification

The use of high-level synthesis systems becomes increasingly crucial to deal with the increasing

complexity of today’s VLSI designs, shorten the design cycle, search the design space and re-

duce the design errors. Several HLS systems like Maha [4], Hercules [5], HAL [6], Chippe [7],

STAR [8], SAM [9], GABIND [10], SPARK [11] are now available to support the HLS of digi-

tal systems. Constant evolution and concurrent changes in the HLS synthesis process and in the

component libraries, however, have made the synthesis steps so intricate that neither the synthesis

procedures nor the component libraries can be assumed to be correct by construction. Also, there

is no one-to-one correspondence between the input and the output of the HLS process. Moreover,

there are several optimizations that are performed during the synthesis process, like minimization

1.1. GENERAL INTRODUCTION 5

of the control steps in scheduling, that of registers and functional units in allocation and binding,

optimization of the data-path interconnections in data-path generation, minimization of control sig-

nals in the controller generation, etc. It is, therefore, necessary to carry out extensive verification

of the RTL design before going to the next level synthesis.

1.1.2 Formal Verification

Formal verification consists in formally establishing a relationship between an implementation and

a specification. The fact that this reasoning has to be formal requires that some kind of formalism

be used to express all three entities, implementation, specification, and the relationship between

them.

An implementation consists of a description of actual hardware design that is to be verified.

A specification is a description of the intended/required behaviour of a hardware. Formal verifi-

cation involves furnishing a proof that an implementation “satisfies” a specification. The notion

of satisfaction also has to be formalized, typically in the form of requiring that a certain formal

relationship holds between the descriptions of the implementation and the specification. Various

notions have been used by the researchers, the semantics for each of these ensuring that the in-

tended satisfaction relation is met. The formal verification techniques can be classified in four

categories:

� Theorem proving: The relationship between a specification and an implementation is re-

garded as a theorem in logic, to be proved within the context of a proof calculus, where

the implementation provides axioms and assumptions that the proof can draw upon. For

most of the cases, the logic has to be beyond propositional logic. Thus, we confront the

undecidability result ruling out a completely automated prover.

� Model Checking: The specification is in the form of logic formula, the truth of which is

determined with respect to a semantic model provided by an implementation. This approach

is more suitable for property checking whereas the HLS verification is a problem of estab-

lishing behavioural equivalence.

� Language Containment: The language accepted by the automaton representing an imple-

mentation is shown to be in the language accepted by the automaton representing a speci-

fication. This approach cannot encompass integers or beyond and hence does not apply to

HLS of say, arithmetic circuits.

6 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

� Equivalence Checking: The equivalence of a specification and an implementation is checked.

In the synthesis process, the design representations are transformed from one abstraction

level to its lower abstraction level. Naturally, the equivalence checking is a more suitable

choice than the three approaches mentioned above for verifying the synthesis process.

Another aspect in formal verification is the model used to represent the specification and the

implementation. In this work, we use FSMD (finite state machine with data-paths) instead of an

FSM (finite state machine) for modeling purpose. The FSMD is a universal specification model

[12], that can represent all hardware designs. An FSM (finite state machine) model works well

for up to several hundred states. Beyond that, the model becomes incomprehensible to human

designers. The designer tackles this problem by resorting to a control path - data path partitioning

of the circuit in which all the data storage registers and the data transformation / status detection

circuits are put in the data path (DP) and the sequential aspects of the behaviour are taken care

of in the control path (CP) of the circuit. Starting from the initial state, the control path invokes

signals which set up paths for the register transfer operations in the data path as specified in the

behavioural specification; the results of these operations are available to the control path through

certain status outputs of the data-path; depending upon the states of these lines, the control path

assumes the next state. The entire data path state space is partitioned by some data predicates

captured by the status output lines. In fact, the data path space influences the control flow of the

underlying algorithm only at some time steps; at each of these steps, the data path contains at most

2n subsets where n is the number of status lines. This notion is captured in the FSMD model. If the

data path contains m k-bit registers, then the data space cardinality is 2mk. In practice, n is never

more than ten, whereas the product mk can easily be as high as one thousand. These figures clearly

indicate the reduction in input state space achieved by resorting to such CD-DP partitioning. The

control path, accordingly, can be modeled as an FSM with has much less number of states than

what would have been possible had the entire circuit been modeled as an FSM.

1.2 Literature Survey on High-level Synthesis Verification

The correctness of synthesis can be ascertained before, during or after the synthesis process.

Hence, synthesis verification can be classified into three categories [13, 14] - pre-synthesis ver-

ification, formal synthesis verification, and post synthesis verification. In this section, we give a

brief survey of literature on each of these categories.

1.2. LITERATURE SURVEY ON HIGH-LEVEL SYNTHESIS VERIFICATION 7

1.2.1 Pre-synthesis Verification

Pre-synthesis verification means proving the correctness of the synthesis procedure, i.e., it has to

be proved, that the synthesis program always produces correct synthesis results with respect to

the synthesis input. This is to be done by means of software verification techniques [15, 16]. In

pre-synthesis verification the correctness is proved once and for all instead of deriving the correct-

ness proof for each synthesis run separately. Software verification, however, is extremely tedious

especially, for large sized programs such as the synthesis tools. Therefore, there are only a few

works reported where this method is adopted for circuit synthesis verification.

Chapman et al. proposed a pre-synthesis verification technique and employed it in BEDROC

HLS tool [15]. Using this tool, part of the high-level synthesis process such as, translation from

high-level behavioral description language called Hardware-pal to Dependence flow graphs, and

some scheduling algorithms were verified.

1.2.2 Formal Synthesis Verification

Formal synthesis means deriving formally the synthesis result within some logical calculus. In

conventional synthesis, hardware is represented by arbitrary data structures and there are no re-

strictions on the transformations on these data structures. In formal synthesis, hardware is repre-

sented by means of terms and formulae and only correctness preserving logical transformations

are allowed. Restricting synthesis to only correctness preserving logical transformations guaran-

tees the correctness of the synthesis procedure in an implicit manner. In contrast to conventional

synthesis, the result is not only some hardware implementation but also a proof of its correctness

with respect to the specification.

In [17], a formal synthesis tool, called HASH, is developed and applied in scheduling verifica-

tion. Each transformation in HASH takes the current design state and the result of some synthesis

heuristic and returns a new design state along with the correctness theorem, starting that the old de-

sign state is equivalent to (or implied by) the new design state. Exploiting the idea of separating the

design space exploration from the formal derivation, the HASH project defines a set of guidelines

to formalize both the behaviour and the design decisions taken as higher-order λ-expressions. The

system uses theorem prover HOL to decide the soundness of those decisions. Although HASH

performs the verification automatically, the formalism used to represent the behaviours and the

circuits has limited expressive power and the verification time grows exponentially unless HOL

8 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

kernel is modified.

Another formal synthesis system called FRESH was built and a new technique for verification

was proposed in [18]. In this method, the input behaviour is described by using equational specifi-

cation (ES) and a set of derivation rules is applied consecutively on the ES. This formal synthesis

verification technique is used to check the correctness of scheduling, allocation and binding steps.

The distinctive characteristic of these formal synthesis systems is the development of formal design

environments where the mathematical representation of a behaviour can be transformed only by

the application of sound rules. But the weak relationship between the formal transformations and

their underlying hardware concepts forces these systems to be manually driven by the designer,

who has to understand the mathematical formalism.

1.2.3 Post-synthesis Verification

Post-synthesis verification is the most frequently used approach today [13]. In post-synthesis ver-

ification the synthesis step is first performed in a conventional manner and then the correctness of

the synthesis output with respect to the synthesis input is proved. It is independent of the synthesis

procedure. The only information available is the synthesis input and the synthesized output. There

is no information on how the output was derived from the input. The work, proposed in this thesis,

belongs to this category. Several post-synthesis verification techniques of high-level synthesis are

reviewed in the following.

Simulation-based Verification Approaches

In simulation based verification, the design to be verified is simulated with a suite of test vectors

and the output responses are compared with that of a golden model. Ernst et al. proposed a

simulation-based verification for high-level synthesis in [19]. Their system, called Satya, maps

an algorithmic description to a logic circuit description, compares the two descriptions to detect

semantic errors and identify the causes of those errors. The authors have used Satya to verify

the Bridge synthesis system [20]. Limitation of this system is that verification is at the level of

scheduled specification and in the original behavioural level [21].

In [22], a technique for augmenting simulation based verification at RTL level is reported.

In this method, the designer of an RTL circuit embeds a small amount of well understood extra

functionality or behaviour into the circuit verification. This extra behaviour is inserted into both

1.2. LITERATURE SURVEY ON HIGH-LEVEL SYNTHESIS VERIFICATION 9

the golden model and the also the circuit under verification. During simulation based verification,

this extra behaviour is used along with the existing behaviour of the circuit to exercise the design

more throughly. Once the circuit is throughly verified for the functionality, the extra behavioural

constructs can be removed to produce the original verified design. Embedding the extra behaviour

automatically in the RTL design produced by an HLS, however, is the main bottleneck of this

approach.

Another simulation-based methodology, called Observable time windows (OWT), is proposed

in [21] for verification of high-level synthesis results. In this work, the notion of equivalence

between the the behaviour before scheduling (specification) and the implementation is defined.

OWTs correspond to the instants in the simulation run of the implementation which can be directly

compared with those in the simulation result of the specification. This approach is implemented in

the HIS system reported in [23].

As the complexity of digital systems increases, normal simulation based methods of design

validation are becoming impractical due to the large number of internal states [24]. Also, a sim-

ulation based approach cannot prove that the result of synthesis is correct as formal verification

would do because the former is non-exhaustive.

End-to-end Verification of High-level Synthesis

A set of high-level synthesis systems is validated using formally verified transformations in [25].

This tool examines the output of a high-level synthesis system and derives a sequence of behaviour-

preserving (correct) transformations (witness) that leads to the same effect as the applied HLS

algorithm. If every transformation, identical in the derived sequence, is applied in the presence of

a set of preconditions (which are proved to lead to a correct design), then the resulting RTL design

is correct. The approach is as follows. A set of elementary structural transformations is specified

and proved for correctness in PVS. Now, given a high-level behaviour, an initial design is derived

by interpreting the control and data flow graph (CDFG) to form a unique ALU in the data-path

to implement each operation in the behaviour, a unique register to store each value and a unique

wire to carry each data flow. The transformations are applied to this initial design. It has a witness

generator which takes the output of an existing synthesis tool for that given high-level behaviour

as input and generates a sequence of elementary transformations which, when applied to the RTL

design, achieve the same outcome.

10 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

A formal approach to address the correctness of transformations in high-level synthesis is pro-

posed in [26]. This work was part of the SPRITE project at philips research laboratories. Both the

specification at the behavioural level and the implementation at the RTL level are encoded in SIL

[27] in this work. A small set of properties (axioms) corresponding to the SIL graph is asserted

to be true. These axioms capture the general notion of refinement of the CDFG used in various

synthesis frameworks. Other properties are checked to be true by applying a small number of in-

ference rules on properties that have already been verified. The practicality of the tool, however,

was not established as it was not integrated with any HLS CAD tool.

An equivalence checking between behavioural and RTL descriptions with virtual controllers

and data-paths is reported in [28]. In order to compare the behavioral and the RTL descriptions

in a uniform way, a framework for verification and reasoning of the descriptions based on map-

ping to virtual datapaths/controllers from these descriptions is developed in this work. Once those

mappings have been established, the real comparison can be based on the data transfer analysis

controlled by finite state machines; and the verification of arithmetic/logic functionality can be

done separately. Virtual datapaths are essentially in net-list form and virtual controllers are repre-

sented as finite state machines. There are two key ideas behind this approach. One is to convert

equivalence checking on the two descriptions to equivalence checking on their virtual controllers

by using the same virtual datapaths for the two descriptions to be checked. The other is to reduce

the comparison between two finite state machines to pure topological analysis on the structure of

the finite state machines by utilizing equivalence classes on the sets of sub-machines. Normally,

equivalence checking between the two descriptions can be made by reachability analysis which

is very expensive. In this work, the same virtual data path has been used for the two virtual con-

trollers to be compared thereby easily reducing the problem to the one of the comparison of two

virtual controllers only. How the equivalence checking works when the two descriptions are very

different and they cannot be mapped to the same data path, however, is not discussed in this work.

In [29], the RTL generated by an HLS tool is verified against its input specification. This

technique of determining the correctness of the RTL design depends upon comparing the values

of certain critical specification variables in certain critical behavioural states with those of certain

critical RTL registers in certain critical controller states, provided they match at the start state.

It is accomplished by showing that for each critical path between a pair of critical states, if the

critical variables match the critical registers at the originating state, then they will match them at

the terminating state. The technique is integrated with DSS [30] high-level synthesis system. This

1.2. LITERATURE SURVEY ON HIGH-LEVEL SYNTHESIS VERIFICATION 11

approach, however, necessitates that the control flow branches in the behaviour specification are

preserved and no new control flow branches are introduced. This condition may not hold for the

path-based scheduler.

The end-to-end HLS verification techniques are not efficient enough as it is not only error prone

but also unable to find the exact sub-task in which the error occurs. Also, the sub-tasks of HLS are

interdependent on each other. If an error occurs in the early steps in the synthesis process, it has to

be fixed at that moment. Otherwise, it will propagate to the subsequent steps resulting in avoidable

wastage of time and longer design cycles.

Verification of the High-level Synthesis Sub-tasks

To overcome the problem discussed above, several approaches are proposed in the literature to

verify the sub-tasks of the HLS process. They are typically scheduling verification, allocation and

binding verification and RTL verification. Some of the allocation and binding verification methods

treat the allocation, binding and the data-path and controller generation steps into one by verifying

the final RTL against the scheduled behaviour. In the following, the verification of different sub-

tasks of HLS are discussed.

Scheduling Verification

Verification of As-Soon-As-Possible (ASAP) scheduling algorithm is reported in [31]. The high-

level design description is represented as a state table format (STF) here. The STF semantics are

embedded using a library of some inductively defined relations and functions which make up the

scheduling algorithm. The relations and the functions are defined using the standard recursive and

non-recursive definition mechanisms of HOL [32].

A formal specification and proof of correctness of widely used Force-Directed List Scheduling

(FDLS) algorithm for resource-constrained scheduling in high-level synthesis systems is presented

in [33]. In this approach, the base specification model for the scheduling task is identified first.

Next, the specification model is formalized as a collection of theorems in a higher-order logic

theorem proving environment. Finally, the formal description of the algorithm is verified against

the base theorems.

The above two approaches, however, are applicable only to a certain class of scheduling algo-

rithms.

12 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

A formal verification of scheduling process using finite state machines with data-path (FSMD)

is reported in [34]. In this paper, break-points are introduced in both the FSMDs followed by

construction of the respective path sets. Each path of one set is then shown to be equivalent to

some path of the other set. This approach necessities that the path structure of the input FSMD is

not disturbed by the scheduling algorithm in the sense that the respective path sets obtained from

the break points are assumed to be bijective. This property, however, does not necessarily hold

because the scheduler may merge the segments of the original specification into one segment or

distribute operations of a segment over various segments for optimization of time steps.

An automatic verification of scheduling by using symbolic simulation of labeled segments of

behavioural descriptions has been proposed in [14]. In this paper, both the inputs to the veri-

fier, namely the specification and the implementation, are represented in the Language of Labeled

Segments (LLS). Two labeled segments S1 and S2 are bisimilar iff the same data-operations are

performed in them and control is transformed to the bisimilar segments. The method described

in this paper transforms the original description into one which is bisimilar with the scheduled

description.

Most of the methods discussed above are well suited for basic block based scheduling [35, 36]

where control structure of the input does not get changed by the scheduler; they fail for path-based

scheduling algorithms [37, 38] as well as when some code motion techniques [39, 40, 41, 42] are

used by the scheduler.

Allocation and Binding Verification

A compositional model for the functional verification of high-level synthesis is proposed in

[43]. The method is applicable to the verification of the final synthesis steps in which both the

inputs to the verifier, the specification and the implementation, are encoded as FSMDs. The FSMD

corresponding to the implementation comprises two parts, namely the operative part FSMD or

the data-path and the controller FSMD. Demonstrating the equivalence of the composed FSMD

(functional composition of control and operative part) with the scheduled FSMD accomplishes the

functional verification.

A formal methodology for verification of various register allocation schemes was proposed

in [44]. The scheduled and the RTL description are encoded as extended finite state machines

(EFSMs) in this work. The method consists in determining the equivalence of critical states, critical

variables and critical paths of two EFSMs. A preliminary version of this work, reported in [29],

1.3. MOTIVATION AND OBJECTIVES OF THE PRESENT WORK 13

which can be integrated with synthesis systems which performs little register optimization. One

may, however, encounter an infinite number of execution paths from the initial state during showing

the equivalence between two critical states in the presence of loops in the behaviour.

The method in [45] checks the correctness of the register transfer level (RTL) description with

respect to the scheduled behaviour. The major contribution of this work is the partitioning of

the equivalence checking task into two simpler subtasks, verifying the validity of register sharing

and verifying the correctness of synthesis of the RTL interconnection and the controller. The

irrelevant portions of the design are automatically abstracted out simplifying the register sharing

verification task, the later being performed by a model checker. Verifying the RTL is reduced to a

combinational equivalence check; a novel and fast RTL technique for combinational equivalence

check instead of using slower global gate level checking is also presented.

The work proposed in [46] handles the high-level verification in two steps: verification of

scheduling and verification of allocation and final architecture generation. This paper mainly high-

lighted the verification of allocation and final architecture generation tasks. The goal is achieved by

ensuring that the correct FU has been chosen, the correct functionality of the FU has been chosen,

the communication network has been correctly generated to allow the necessary data flow for a

specified operation and the control signals have been assigned for each operation of the behaviour.

The approach, however, ignores register sharing verification.

1.3 Motivation and Objectives of the Present Work

An end-to-end verification method for HLS is very tough and also inadequate in locating the exact

source(s) of errors. A phase-wise verification technique with scope to handle the difficulties of each

synthesis sub-task separately is necessary for high-level synthesis because of the following reasons.

First, the input behavioural specification is given at a very high abstraction level compared to the

abstraction level of the output (RTL); secondly, the complexity of the present day VLSI systems

is very high; thirdly, the HLS process consists of several sub-tasks such as, scheduling, allocation,

binding, data-path and controller design, etc., which are performed sequentially and each sub-task

depends mainly on the result of the previous stages. In contrast to end-to-end verification if the

correctness of the intermediate results is verified after every sub-task of the HLS process, then we

can also easily find the origin of the errors.

� In this work, the correctness of the HLS process is verified in three phases. Phase-I verifies

14 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

the scheduling process. In phase-II, the allocation and binding process is verified against the

scheduled behaviour. Phase-III ensures the correctness of the data-path interconnections and

the controller. The proposed hand-in-hand synthesis and verification framework is shown in

figure 1.3.

Scheduling

CDFG

behavioral specification

Verification

RTL

generation

information
Synthesis tool

Verification

FSMD
scheduled

Verification

Scheduling

Alloc. & Bind. info.
FSMD from

Input as FSMD

FSMD from CP−DP

Verification tool

Data−path & Controller

Data−path & Controller

Preprocessing

Allocation and Binding
Allocation and Binding

Figure 1.3: Hand-in-hand synthesis and verification

Several works proposed in the literature for verification of different phases of HLS are not

strong enough in the sense that they fail in some circumstances which are very common to the

modern HLS tools. For example, the proposed methods in the literature for scheduling verification

are likely to fail for path-based scheduling algorithms as well as when code motion techniques [47]

are used by the scheduler. Hence, more sophisticated verification methodologies are required to

cope with these difficulties.

� In this work, an equivalence checking method is proposed which is equipped to handle these

difficulties. This method can be applied to the first two phases of HLS verification. The input

and output of each of these two phases are encoded as finite state machines with data-paths

(FSMDs) and our proposed method finds the equivalence between these two FSMDs.

The verification of the data-path interconnections and the controller behaviour is not an easy

task. It consists in analyzing the data-path to find a spatial sequence of concurrent micro-operations

1.4. CONTRIBUTIONS OF THE PRESENT WORK 15

needed to accomplish a register transfer (RT) operation and ensuring that the controller generates

correct control signals in each control step to perform the required RT operations in the data-path.

To the best of our knowledge, no work has been reported in the literature for handling these tasks

separately.

� In this work, a state based equivalence checking method is proposed for this phase to accom-

plish all these tasks. The method uses a rewriting procedure to find the spatial sequence of

the concurrent micro-operations to establish that the control assertion pattern in each control

step is correct.

1.4 Contributions of the Present Work
� Equivalence problem formulation

A formal method for checking equivalence between two FSMDs is formulated. The method

consists in introducing cutpoints in one FSMD, visualizing its computations as concate-

nations of paths from cutpoints to cutpoints and finally, identifying equivalent finite path

segments in the other FSMD; the process is then repeated with the FSMDs interchanged.

� Normalization of arithmetic expression over integers

Finding equivalence between two paths involves checking equivalence between two sets of

arithmetic expressions. Hence, checking equivalence of two paths reduces to the validity

problem of first-order logic which is undecidable; thus, a canonical form does not exist for

integer arithmetic. Instead, in this work we adapt a normal form [48] for the arithmetic ex-

pressions over integers. The normalization process renders many computationally equivalent

formulas syntactically identical as it forces all the formulas to follow a uniform structure.

� Hand-in-hand verification of high-level synthesis

Our goal is to find equivalence between the behavioural description given as input to any

HLS tool and the RTL output of that HLS tool. This verification goal is achieved in three

phases as discussed in subsection 1.3 and the verification process needs to proceed hand-in-

hand with the synthesis process. The hand-in-hand synthesis and verification framework is

depicted in figure 1.3. An overview of these three phases of verification is as follows:

16 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

Scheduling verification: The goal of the scheduling process is to optimize the number of

control steps required to execute all the operations in the input behaviour meeting all the

constraints regarding the number of control steps, the delay, the power and the hardware

resources. A path-based scheduler [37] [38] may modify the control structure of the input

behaviour as it tries to merge some consecutive path segments of the input behaviour. Also,

use of several code motion techniques like speculation, reverse speculation, early condition

execution, branch balancing, common sub-expression elimination, loop shifting, renaming,

etc, [47, 49, 39, 41], in the scheduling process leads to different transformations in the in-

put behaviour of HLS. The goal of the scheduling verification process is to ensure that the

scheduling process preserves the input behaviour, irrespective of the scheduling technique

used. The FSMD equivalence checking method proposed in this work meets the require-

ments for this phase of verification.

Allocation and binding verification: The number of functional units (FUs) selected for per-

forming the operations is less than or equal to the number of operations. Similarly, the num-

ber of registers used to store the variables of the behaviour is less than or equal to the number

of variables. It is required to ensure that enough number of FUs and registers are allocated

and their binding with the operations and variables, respectively, are also proper. The veri-

fication of this phase consists of two tasks: (i) verification of the functional unit allocation

and binding, and (ii) verification of register sharing among the behavioural variables. Our

proposed equivalence checking method has been shown to be applicable to register sharing

verification.

Data-path and controller verification: The objective of the data-path generation is to maxi-

mize sharing of interconnections and thus minimize the interconnection cost avoiding con-

flict during data transfers required by the register transfer (RT) operations. Similarly, min-

imum number of control signals are used by the controller to control all the data transfers

among the data-path elements. The controller, represented as an FSM, assigns a value to

each control signal in each control step to execute all the required data-transfers and proper

operations in the FUs. The verification task in this phase is to ensure the correctness of the

data-path interconnections and the controller. The verification involves the following tasks:

(i) construction of an FSMD from the data-path and the controller FSM and (ii) showing

equivalence between the input FSMD and the output FSMD.

1.5. ORGANIZATION OF THE THESIS 17

� Development of a high-level synthesis tool

We have developed the above hand-in-hand synthesis and verification framework, called

structured architecture synthesis tool (SAST). It takes a synthesizable behavioural descrip-

tion and produces an RTL code in Verilog. SAST is an interconnection aware high-level

synthesis tool as it produces a structured data-path (structured architecture) by avoiding

random interconnections among the data-path components. The tool provides required infor-

mation for verification from its intermediary synthesis results and supports the hand-in-hand

synthesis and verification. Finally, it produces a correct RTL behaviour in Verilog.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2: In this chapter, the equivalence problem of FSMDs has been formulated, the basic

method has been devised and the correctness of the method has been proved. A normal form for

the expressions and several simplifications that have been carried out on the normalized expressions

are discussed next.

Chapter 3: This chapter discusses the scheduling verification phase. The objective of the schedul-

ing verification is identified first. The required modifications on the basic equivalence checking

method are given. An algorithm for verifying the correctness of the scheduling result is proposed

and its correctness and complexity have been analyzed subsequently. The performance of this al-

gorithm for different scheduling algorithms and on various code motion techniques are discussed

next. Some upgradations of the algorithm, needed to handle the above tasks, are also proposed in

this chapter.

Chapter 4: This chapter discusses the allocation and binding verification phase. The objectives

of the this phase of verification is enlisted. The verification of FU allocation and binding is given

next. It is followed by the register sharing verification. Some mapping functions are defined and

also the modification required on definition of equivalence of paths is discussed. A register sharing

verification method is proposed next. The working of the algorithm is discussed with an example.

The performance of this method for different register optimization schemes as well as for various

nature of the input specification have been provided.

Chapter 5: This chapter discusses the verification of data-path and controller synthesis. The

objectives of this phase are identified first. The construction of the FSMD from the control-path and

18 CHAPTER 1. INTRODUCTION, BACKGROUND AND MOTIVATION

data-path information is discussed. A rewriting algorithm involved in the construction mechanism

is given next. Termination, soundness and completeness of the method have been proved and

the complexity of the method is also analyzed. The construction process is described with an

illustrative example. The verification of the data-path and the controller during FSMD construction

is given next. Finally, a state-based verification method for verifying the functionality of the RTL

behaviour is proposed.

Chapter 6: This chapter discusses the proposed target data-path, the details of the synthesis phases

of SAST and the method for generating the FSMD from the input and the output of each synthesis

phase.

Chapter 7: This chapter provides some synthesis and verification results.

Chapter 8: The chapter contains some concluding remarks and identifies some future research

directions.

Chapter 2

The Equivalence Problem Formulation

2.1 Introduction

This chapter is concerned with the theoretical issues behind our proposed verification methodolo-

gies of different phases of high-level synthesis. The finite state machine with data-path (FSMD)

proposed in [12] has been adapted for design representation in this work. The notion of paths

in FSMD, the transformations along a path and the computation and path cover of an FSMD are

defined. The equivalence of two FSMDs has been derived and proved. The basic method for

checking equivalence of two FSMDs is also provided. The normal form of the expression and the

simplifications over the normalized expressions are also discussed in this chapter.

2.2 Finite State Machines with Data-paths

An FSMD (finite state machine with data-path) is a universal specification model, proposed by

Gajski et al. in [12], which can represent all hardware designs. The model is used in the present

work with the addition of a reset state, for encoding the designs to be verified. This reset state is also

called the start state of the FSMD. The FSMD is defined as an ordered tuple � Q
 q0
 I
 V
 O
 f
 h � ,
where

1. Q ��
 q0
 q1
 q2
�������
 qn � is the finite set of control states,

2. q0 � Q is the reset state,

3. I is the set of primary input signals,

19

20 CHAPTER 2. THE EQUIVALENCE PROBLEM FORMULATION

4. V is the set of storage variables,

5. O is the set of primary output signals,

6. f : Q � 2S � Q, is the state transition function and

7. h : Q � 2S � U , is the update function of the output and the storage variables, where S and

U are as defined below.

(a) S ��
 L � ER � L is the set of Boolean literals of the form b or � b, b � B � V is a

Boolean variable and ER ��
 e R 0 � e � EA ��� ; it represents a set of status expressions

over I � V , where EA represents a set of arithmetic expressions over the set I � V of input

and storage variables and R is any arithmetic relation. R �
����
"!�#
%$&
%'�
%(&
*) � .
(b) U �+
 x , e � x � O � V and e � EA � ER � represents a set of storage or output assign-

ments.

Conjunction is assumed to be the implicit connective among the relational expressions belonging

to 2S. Parallel edges between two states capture disjunction of status expressions. Thus, the next

(control and data) state and the output depend not only on the present state and the input signals

but also on the conjunction of the status expressions that indicate whether a predicate holds on the

data state of the storage and the input variables. An FSMD is inherently deterministic, that is, the

state transition function f satisfies the property s j � sk � f
�
qi
 s j � � f

�
qi
 sk � . It may be noted

that we have not introduced final states in the FSMD model as we assume that a system works in

an infinite outer loop.

The behavioural description of the extended euclidean algorithm for finding the greatest com-

mon divisor (GCD) of two integer numbers [50] is given below and its FSMD is shown in the figure

2.1.

Example 1 Behavioural description of GCD is:

begin

main process: process

Input: P0, P1;

Output: yout;

Variable : res, y1, y2 : integer;

begin

2.2. FINITE STATE MACHINES WITH DATA-PATHS 21

mainloop: loop

y1 , P0;

y2 , P1;

res , 1;

while(!
�
y1 ��� y2 �) loop

if(even
�
y1 �) then

if(even
�
y2 �) then

begin

res , res - 2;

y1 , y1 . 2 ;

y2 , y2 . 2 ;

end

else

y1 , y1 . 2;
else if(even

�
y2 �) then

y2 , y2 . 2;
else if

�
y1 $ y2 � then

y1 , y1 / y2;

else

y2 , y2 / y1;

end if;

end loop;

res , res - y1;

yout , res;

end loop mainloop;

end process main process;

end behv; 0

Example 2 The FSMD model M0 for the behavioural specification of GCD example is given be-

low and depicted in figure 2.1.

� M0= � Q
 q0
 I
 V
 O
 f
 h � , where

22 CHAPTER 2. THE EQUIVALENCE PROBLEM FORMULATION

q00

q01

q02

q03

q05

q04

even 1 y2 243

!even 1 y2 253

even 1 y1 25376
!even 1 y2 24386

even 1 y2 2536�3 OUT 1 yout 9 res 2

q06

y1 : y1 3 2

y1 ;<; y2 3 res : res = y1

y2 : y2 3 2

6�3 y1 : P00 9 y2 : P10 9 res : 1

res : res = 2
y1 : y1 3 2 9
y2 : y2 3 2

! 1 y1 ;�; y2 24386

!even 1 y1 24386 !y1 > y2 3

y1 > y2 3 y1 : y1 6 y2

y2 : y2 6 y1

β

Figure 2.1: The FSMD corresponding to the GCD behaviour given in example 1

� Q �?
 q00
 q01
 q02
 q03
 q04
 q05
 q06 � ,
� q0 = q00,

� V ��
 res
 y1
 y2 � ,
� I �+
 P00
 P10 � ,
� O �?
 yout � ,
� U �@
 y1 , P00
 y2 , P10
 res , res - 2
 y1 , y1 . 2
 y2 , y2 . 2
 y1 , y1 / y2
 y2 ,

y2 / y1 � ,
� S ��
 even

�
y1 �
 even

�
y2 �
 y1 $ y2 � , where even(y) indicates y mod 2 � 0,

� f and h are defined as in the transition graph shown in figure 2.1.

� Some typical values of f and h are as follows:

– f
�
q00
 true � � q01,

– f
�
q05
 y1 $ y2 � � q02,

2.2. FINITE STATE MACHINES WITH DATA-PATHS 23

– h
�
q05
 y1 $ y2 � �?
 y1 , y1 / y2 � ,

– h
�
q03
 even

�
y2 ��� �+
 res , res - 2 � . 0

2.2.1 Paths and Transformations along a Path

Definition 1 Path α from qi to q j:

A (finite) path α from qi to q j, where qi
 q j � Q, is a finite transition sequence of states of

the form � qi � q1 /� c1
q2 /� c2

���A� / �cn B 1
qn � q j � such that C l
 1) l) n / 1
ED cl � 2S such that

f
�
ql
 cl � � ql F 1, and qk, 1) k) n / 1, are all distinct. The end state of the path, i.e., qn, may be

identical to any state qk, i) k) n / 1, along the path.

A path, say β, is indicated by the bold arrows in figure 2.1. Here, β is q00
� q01 /A/G/G/H/ �! I y1 JKJ y2 L q02/M/G/H/ �

! I even I y1 L q04 /M/H/ �even I y2 L q01. Since there may be more than one transition from a state qi to a state q j

(with different conditions cl associated with them), a sequence of states alone does not uniquely

characterize a path and has been used only when there is no ambiguity. The state sequence

q01
� q02

� q03
� q01 in figure 2.1, for example, does not uniquely represent a path as

there is more than one transition between the two states q03 and q01. Whereas, the state sequence

q00
� q01

� q02
� q03 in this figure represents a path uniquely.

Definition 2 The condition of execution of a path α (Rα):

Let α �N� ql0 /� c0
ql1 /� c1

ql2 ����� / �ck B 1
qlk � be a path. The condition of execution Rα of the path

α is a logical expression over I � V such that Rα is satisfied by the (initial) data state at ql0 iff the

path α is traversed.

Thus, Rα is the weakest precondition of the path α [51].

For example, the condition of execution Rβ of the path β of figure 2.1 is !
�
P00 ��� P10 �PO !even

�
P00 �

O even
�
P00 � . It is assumed that the inputs and the outputs occur through named ports. The ith input

from port P is a value represented as Pi. Thus, if some variable v stores an input from port P (for

the ith time along a path), it is equivalent to the assignment v , Pi. The variable ‘y1’ in the GCD

algorithm of example 1 is updated by the 0th input from the port P0. This is shown as y1 , P00

in the corresponding FSMD in figure 2.1. Similarly, the variable ‘y2’ stores the 0th input from the

port P1 and is shown accordingly as y2 , P10 in the FSMD in figure 2.1. In essence, Pi’s comprise

the input variable set I.

24 CHAPTER 2. THE EQUIVALENCE PROBLEM FORMULATION

Definition 3 The simple data transformation of a path α over V
�
sα � :

It is an ordered tuple � ei � of algebraic expressions over the variables in V and the inputs in I

such that the expression ei represents the value of the variable vi after the execution of the path

in terms of the initial data state (i.e., the values of the variables at the initial control state) of the

path.

The data transformation sβ of the path β in figure 2.1 is � P00
 P10 . 2
 1 � , where the order of the

variables is y1 Q y2 Q res.

The above definition does not take into account the outputs that may occur in a path. The output

of an expression e to a port P is represented as OUT
�
P
 e � and put as a member of a list preserved

for each path. Taking into account the outputs that may occur in a path, the data transformation of

a path may be defined as follows.

Definition 4 The data transformation rα of a path α over V is the ordered pair � sα
 Oα � , where sα

is the simple data transformation of α and the output list Oα �NROUT
�
Pi1
 e1 �
 OUT

�
Pi2
 e2 �
��A���TS .

For every expression e output to port P along the path α, there is a member of the form OUT
�
P
 e �

in the list, in the order in which the outputs occurred.

c1
�
v � . v , g1

�
v �

c2
�
v � . v , g2

�
v �

c3
�
v � . v , g3

�
v �

qi F 2

qi F 3

qi F 1 UC1 1 v 259 g1 1 v 2WV

U true 9 v V

UC2 1 g1 1 v 242YX C1 1 v 259 g2 1 g1 1 v 242WV

qi

backward forwardUC3 1 g2 1 v 242YX C2 1 v 259 g3 1 g2 1 v 242WV

U true 9 v V

UC3 1 g2 1 g1 1 v 2<X C2 1 g1 1 v 242YX C1 1 v 259 g3 1 g2 1 g1 1 v 24242WV

UC3 1 v 259 g3 1 v 2WV

UC3 1 g2 1 g1 1 v 24242<X C2 1 g1 1 v 242YX C1 1 v 259 g3 1 g2 1 g1 1 v 24252WV
Figure 2.2: A typical path, its condition of execution and its simple data transformation

2.2. FINITE STATE MACHINES WITH DATA-PATHS 25

2.2.2 Computation of Rα and rα

Computation of the condition of execution Rα can be by backward substitution or by forward sub-

stitution. The former is based on the following rule: If a predicate c
�
y � is true after assignment

y Z g
�
y � , then the predicate c

�
g
�
y ��� must have been true before the assignment [52]. The transfor-

mation sα is found indirectly using the same principle. The forward substitution method of finding

Rα is based on symbolic execution. The ordered pairs at various points in figure 2.2 represents the

values of
�
Rα
 sα � at that point.

2.2.3 Characterization of Paths

The characteristic formula τα
�
v
 v f
 O � of the path α is Rα

�
v �<O � v f � sα

�
v ����O � O � Oα

�
v ��� , where

sα is the data transformation and Oα is the output list in the path α, v represents a vector of values

of the variables of I � V
 v f represents a vector of values of the variables of V . The formula captures

the following: if the condition of execution Rα of the path α is satisfied by the (initial) vector v

at the beginning of the path, then the path is executed and after execution, the final vector v f of

variable values becomes sα
�
v f � and the output Oα

�
v � is produced.

Let τα
�
v
 v f
 O � : Rα

�
v ��O � v f � sα

�
v ���<O � O � Oα

�
v ��� be the characteristic formula of the path

α and τβ
�
v
 v f
 O � : Rβ

�
v ��O � v f � sβ

�
v �A�<O � O � Oβ

�
v �A� be the characteristic formula of the path β.

The characteristic formula for the concatenated path αβ is ταβ
�
v
 v f
 O � �[D vα D O1 D O2

�
τα
�
v
 vα
 O1 �\O

τβ
�
vα
 v f
 O2 ��� � Rα

�
v �]O Rβ

�
sα
�
v ���]O � v f � sβ

�
sα
�
v ������O � O � Oα

�
v � Oβ

�
sα
�
v ����� � O is the concate-

nated output list of Oα
�
v � and Oβ

�
sα
�
v ��� �

2.2.4 Computations and Path Covers of an FSMD

A computation of an FSMD is a finite walk from the reset state q0 back to itself without having

any intermediary occurrence of q0. Such a computational semantics of an FSMD is based on

the assumption that a revisit of the reset state means the beginning of a new computation and

each computation terminates. In other words, the behavioural representation has a non-terminating

outermost loop from the reset state and each inner loop has a state from which there is a transition

out of the loop. A computation µ of an FSMD M may be characterized as τµ
�
vi
 v f
 O � : Rµ

�
vi �MO�

v f � sµ
�
vi ���MO � O � Oµ

�
vi ���
 where vi is the vector of initial input with which the computation is

started, Rµ is a satisfiable condition over the domain of I, sµ is a function over this domain to the

codomain of values over V and Oµ is the concatenation of the output lists resulting from output

26 CHAPTER 2. THE EQUIVALENCE PROBLEM FORMULATION

operations along µ.

Definition 5 Two computations µ1 and µ2 having the characteristic formulae τµ1 and τµ2 , respec-

tively, are said to be equivalent if Rµ1 � Rµ2 and rµ1 � rµ2 .

The computational equivalence of two computations µ1 and µ2 is denoted as µ1 ^ µ2. The

computational equivalence of two paths p1 and p2 can be defined in a similar manner and is denoted

as p1 ^ p2. Equivalence checking of paths, therefore, consists in establishing the computational

equivalence of the respective conditions of execution and the respective data transformations.

Any computation µ of an FSMD M can be looked upon as a computation along some concate-

nated path Rα1α2α3 �_�`� αk S of M such that the path α1 emanates from and the path αk terminates in

the reset state q0 of M, for 1) i) k, αi terminates in the initial state of the path αi F 1 and αi’s may

not be all distinct. If ταi

�
vi
 vi F 1 �
 1) i) k, be the characteristic formula of the path αi, then the

characteristic formula of the concatenated path Rα1α2α3 �_�`� αk S is the formula

Rα1

�
v1 ��O Rα2

�
sα1

�
v1 ���<Oba�a�acO Rαk

�
sαk B 1

� a�a�a � sα1

�
v1 ����a�a�aW����O R vk F 1 � sαk

�
sαk B 1

� aAa�a � sα1

�
v1 ����a�aAad��� S

O O � Oα1

�
v1 � Oα2

�
sα1

�
v1 ����a�a�a Oαk

�
sαk B 1

� a�aAa � sα1

�
v1 ����a�a�ae�

where vi and vi F 1 represent the vectors of inputs and the data variables before and after the path

αi
 1) i) k. Recalling that the characteristic formula of µ is Rµ
�
v1 ��O R vk F 1 � sµ

�
v1 �\O O � Oµ

�
v1 � S8

clearly

Rµ
�
v1 � � Rα1

�
v1 ��O Rα2

�
sα1

�
v1 ����Ofa�aAagO Rαk

�
sαk B 1 �`�_� � sα1

�
v1 ��� �_�`� ���

sµ
�
v1 � � sαk

�
sαk B 1

� �_�`� � sα1

�
v1 �A� �`�_� ��� and

Oµ � Oα1

�
v1 � Oα2

�
sα1

�
v1 ����a�a�a Oαk

�
sαk B 1

� a�aAa � sα1

�
v1 ����a�a�ae� �

Definition 6 Path cover of an FSMD: A finite set of paths P �h
 p0
 p1
 p2
A�����A
 pk � is said to

cover an FSMD M if any computation µ of M can be looked upon as a concatenation of paths from

P. P is said to be a path cover of the FSMD M.

2.3 Equivalence of FSMDs

Let M0 �+� Q0
 q00
 I
 V0
 O
 f0
 h0 � and M1 �	� Q1
 q10
 I
 V1
 O
 f1
 h1 � be the two FSMD representa-

tions corresponding to the input and the output of any phase of high-level synthesis. Our main goal

is to verify whether M0 behaves exactly as M1. This means that for all possible input sequences,

M0 and M1 produce the same sequences of output values and eventually, when the respective re-

set states are re-visited, they are visited with the same storage element values. In other words,

2.3. EQUIVALENCE OF FSMDS 27

for every computation from the reset state back to itself of one FSMD, there exists an equivalent

computation from the reset state back to itself in the other FSMD and vice-versa.

Definition 7 An FSMD M0 is said to be contained in an FSMD M1, symbolically M0 i M1, if for

any computation µ0 of M0, there exists a computation µ1 of M1 such that µ0 ^ µ1.

Definition 8 Two FSMDs M0 and M1 are said to be computationally equivalent, if M0 i M1 and

M1 i M0.

An FSMD may contain an infinite number of computations. So, it is not feasible to enumerate

all possible computations in one FSMD and find their equivalent computations in the other FSMD.

To overcome this problem, the following theorem is deduced.

Theorem 1 For any two FSMDs M0 and M1, M0 i M1, if there exists a finite cover P0 �j
 p00
 p01
��A���A
 p0l �
of M0 for which there exists a set P0

1 �N
 p0
10
 p0

11
����A�A
 p0
1l � of paths of M1 such that p0i ^ p0

1i,

0) i) l.

Proof 1 M0 i M1, if for any computation µ0 of M0, there exists a computation µ1 of M1 such that

µ0 and µ1 are computationally equivalent [by definition 7].

Now, let there exist a finite cover P0 ��
 p00
 p01
 a�a�a
 p0l � of M0 � Corresponding to P0
 let a set

P0
1 ��
 p0

10
 p0
11
 a�aAa
 p0

1l � of paths of M1 exist such that p0i ^ p0
1i, 0) i) l.

Since P0 covers M0, any computation µ0 of M0 can be looked upon as a concatenated path

[p0i1 p0i2 a�a�a p0in] from P0 starting from the reset state q00 and ending again at this reset state of M0.

From the above hypothesis, it follows that there exists a sequence Π1 of paths [p0
1 j1 p0

1 j2 a�a�a p0
1 jn]

of P0
1 where p0ik ^ p0

1 jk
, 1) k) n. So, in order that Π1 represents a computation of M1, it is

required to prove that Π1 is a concatenated path of M1 from its reset state q10 to the reset state.

The following definition is in order.

Definition 9 Corresponding states: Let M0 �k� Q0
 q00
 I
 V0
 O
 f0
 h0 � and

M1 �@� Q1
 q10
 I
 V1
 O
 f1
 h1 � be the two FSMDs having identical input and output sets, I and

O, respectively, and q0i
 q0k � Q0 and q1 j
 q1l � Q1.

� The respective reset states q00
 q10 are corresponding states.

� If q0i � Q0 and q1 j � Q1 are corresponding states and there exist q0k � Q0 and q1l � Q1 such

that, for some path α from q0i to q0k in M0, there exists a path β from q1 j to q1l in M1 such

that α ^ β, then q0k and q1l are corresponding states.

28 CHAPTER 2. THE EQUIVALENCE PROBLEM FORMULATION

Now, let p0i1 : R q00 � q0 f1 S . Since p0
1 j1 ^ p0i1 , from the above definition of corresponding states,

p0
1 j1 must be of the form R q10 � q1 f1 S , where � q00, q10 � and � q0 f1 , q1 f1 � are corresponding states.

Thus, by repetitive application of the above argument it follows that if p0i1 : R q00 � q0 f1 S , p0i2 :

R q0 f1 � q0 f2 S8
 aAa�a
 p0in : R q0 fn B 1 � q0 fn � q00 S , then p0
1i1 : R q10 � q1 f1 S , p0

1i2 : R q1 f1 � q1 f2 S8
 a�aAa
 p0
1in :

R q1 fn B 1 � q1 fn � q10 S , where � q0 fm
 q1 fm � , 1) m) n
 are pairs of corresponding states. Hence, Π1

is a concatenated path representing a computation of M1.

2.3.1 The Basic Equivalence Checking Method

Theorem 1 suggests a verification method for checking equivalence of two FSMDs which consists

of the following steps:

1. Construct the set P0 of paths of M0 so that P0 covers M0. Let P0 ��
 p00
 p01
 a�a�a
 p0k � �
2. Show that C p0i � P0
 there exists a path p1 j of M1 such that p0i ^ p1 j �
3. Repeat steps 1 and 2 with M0 and M1 interchanged.

Because of loops it is difficult to find a path cover of the FSMD comprising only finite paths.

So any computation is split into paths by putting cutpoints at various places in the FSMD so

that each loop is cut in at least one cutpoint. The set of all paths from a cutpoint to another

cutpoint without having any intermediary cutpoint is a path cover of the FSMD. The method of

decomposing an FSMD by putting cutpoints is identical to the Floyd-Hoare’s method of program

verification [53, 54, 55]. Choice of cutpoints, however, is non-unique and it is not guaranteed that a

path cover of one FSMD obtained from any choice of cutpoints in itself will have the corresponding

set of equivalent paths for other FSMD. Therefore, it will be necessary to search for a suitable

choice of cutpoints. The question remains whether such a choice can be algorithmically hit upon,

the answer to which is no [52].

The equivalence problem of FSMDs (EPFSMD) is the same as the equivalence problem of

flowchart schemas [56, 52] which is undecidable and not even partially decidable [52]. However,

since the final targeted hardware has only a finite data-path, the restricted problem can be reduced

to the equivalence problem of finite state machine models (EPFSM) which is decidable. Unfortu-

nately, an FSMD with an n-bit data-path results in a number of states of the order of 2kn, where

k is the number of storage elements of n bits. The value of kn easily exceeds several hundreds.

Thus, deciding EPFSMD with a finite data-path by reducing them to EPFSM is of little use in

2.3. EQUIVALENCE OF FSMDS 29

practice. On the other hand, specialized analytical treatments, such as the work described here,

may aid in revealing problems in the working of the algorithm which may never use the finiteness

in producing the output which is to be checked. In this case, the equivalence checking algorithm

would identify paths that are not matched, which could be particularly helpful in fixing the errors

in different phases of the high-level synthesis process. This benefit would normally be lost by

reducing a finite EPFSMD to EPFSM.

Therefore, we devise a good strategy for setting the cutpoints which would work for many

cases but not for all cases. We choose the cutpoints in any FSMD as follows.

1. The reset state is chosen.

2. A state qi is a cutpoint if there is a divergence of flow from qi. More formally, qi is a cutpoint

if D c1
 c2 � S such that c1 !� c2 and � qi
 c1
 q j � � f and � qi
 c2
 ql � � f and q j
 ql are not

necessarily distinct.

Obviously, cutpoints chosen by the above rules cut each loop of the FSMD in at least one cutpoint,

because each internal loop has an exit point (ensured by our notion of computation in §2).

This basic steps of equivalence checking, i.e., constructing the path cover by inserting cutpoints

in one FSMD and finding the equivalent path of each member of this path cover in the other FSMD,

can be applied to the first two phases of high-level synthesis verification. The choice of cutpoints

in the scheduling verification phase may differ from the way they will be chosen described in this

section. The computation of equivalence in register sharing verification phase involves additional

entities like mapping from the variables to the registers, mapping from the states of one FSMD

to the states other FSMD. Also, the definition of equivalence of paths has to modify in these two

phases depending upon the requirements of each phase. These issues along with the verification

methodology based on equivalence checking are discussed in the subsequent two chapters. The

last phase of HLS verification, i.e., the data-path and the controller verification, however, does not

require path-based equivalence checking. Checking the condition and the register transfer (RT)

operations performed in each transition of the two FSMD suffices for equivalence checking. In

other words, the state based equivalence checking is capable of verifying the correctness of this

phase. In the rest of the dissertation, the FSMDs corresponding to the behaviours at the input to

HLS, after scheduling, after allocation and binding and at the output of HLS will be designated as

M0 �l� Q0
 q00
 I
 V0
 O
 f0
 h0 �m
 M1 �N� Q1
 q10
 I
 V1
 O
 f1
 h1 �n
 M2 �l� Q2
 q20
 I
 V2
 O
 f2
 h2 � and

M3 �	� Q3
 q30
 I
 V3
 O
 f3
 h3 � , respectively. They are shown in the figure 2.3.

30 CHAPTER 2. THE EQUIVALENCE PROBLEM FORMULATION

0FSMD M

Scheduling

CDFG

behavioral specification

Verification

RTL

generation

Synthesis tool

Verification

Verification

Scheduling

Allocation and Binding

Verification tool

Data−path & Controller

Data−path & Controller

Preprocessing

FSMD M

FSMD M

FSMD M

1

2

3

Allocation and binding

Figure 2.3: FSMD designations in the hand-in-hand synthesis and verification flow

2.3.2 Normalization of Arithmetic Expressions

While finding the equivalent path for a path, it is required to check the equivalence of the respective

conditions as well as the data transformations of the paths. Since the condition of execution and

the data transformation of a path involve the whole of integer arithmetic, checking equivalence of

paths reduces to the validity problem of first order logic which is undecidable; thus, a canonical

form does not exist for integer arithmetic. Instead, in this work we use the following normal

form adapted from [48, 57]. The normalization process reduces many computationally equivalent

formulas syntactically identical as it forces all the formulas to follow a uniform structure [48]. In

the following, the normal form chosen for the formulas and the simplification carried out on the

normal form during the normalization phase are briefly described.

A condition of execution (formula) of a path is a conjunction of relational and Boolean literals.

A Boolean literal is a Boolean variable or its negation. A relational literal is an arithmetic relation

of the form s r 0
 where s is a normalized sum and r �
])�
A'�
E�
o!� � � The relation $ (() can be

reduced to ' ()) over integers. For example, x / y $ 0 can be reduced to x / � y / 1 � $g� 0.

Negated relational literals are suitably modified to absorb the negation.

The data transformation of a path is an ordered tuple � ei � of algebraic expressions such that

the expression ei represents the value of the variable vi after execution of the path in terms of the

initial data state. So, each arithmetic expression in data transformation can be represented in the

2.3. EQUIVALENCE OF FSMDS 31

normalized sum form. A normalized sum is a sum of terms with at least one constant term; each

term is a product of primaries with a non-zero constant primary; each primary is a storage variable,

an input variable or of the form abs
�
s �
 mod

�
s1
 s2 �
 exp

�
s1
 s2 � or div

�
s1
 s2 �
 where s
 s1
 and s2

are normalized sums. This syntactic entities are defined by means of production of the following

grammar.

Definition 10 Grammar of normalized sum:

1. S � S � T � cs, where cs is any integer.

2. T � T - P � ct , where ct is any integer.

3. P � S p Ce � abs
�
S �q� � S � mod

�
S �q� S r Cd � cm, where cm is a symbolic constant.

4. Ce
� S p Ce � S

5. Cd
� S r Cd � S.

Thus, the exponentiation and the (integer) division are depicted by infix notation and all functions

have arguments in the form of normalized sums.

In addition to the above structure, any normalized sum is arranged by lexicographic ordering of

its constituent subexpressions from the bottom-most level, i.e., from the level of simple primaries.

Example 3 The expression
�
x � 3y � 7 ' 0 O 4x2 � 3yz � 2 !� 0 O x p y ' 0 � will have

the normal form

R 1 - x � 3 - y � 7 ' 0 S O R 4 - x - x � 3 - y - z � 2 !� 0 S O R � 1 - x � 0 � p � 1 - y � 0 �s� 1) 0 S0

Various simplifications that can be carried out at the normalization phase are as follows:

� Simplification at the arithmetic expression (normalized sum) level:

– Any expression involving only integer constants is immediately evaluated, e.g.,
�
5 r 2 �

is evaluated to 2.

– In an expression, common sub-expressions are collected together. For example,

x2 � 3x � 5z � 4x is reduced to x2 � 7x � 5z.

� Simplifications at the relational expression (relational literal) level:

32 CHAPTER 2. THE EQUIVALENCE PROBLEM FORMULATION

– Any relational expression built from constant arithmetic expressions may be immedi-

ately evaluated to “true” or “false”. For example, 4 / 1 ' 0 is evaluated to true.

– Common constant factors are extracted from the normalized sum and the relational

expression is consequently simplified. For example, 3x2 � 9xy � 6z � 7 ' 0 is

mapped to x2 � 3xy � 2z � 2 ' 0, where t 7 r 3 uv� 2.

� Simplification at the formula level:

– Some literals of the formula can be deleted by the rule “if
�
A � B � then

�
A O B w A � ”.

For this step of simplification, it becomes necessary to detect implication among liter-

als. It is possible to detect whether a relational literal implies another relational literal

when they involve the same non-constant sums. Let the literals be l1 :
�
s1 � c1 � R10

and l2 :
�
s2 � c2 � R20. If s1 � s2 � s, then table 2.1 depicts the relationship between

the constants c1 and c2 depending upon R1 and R2, which must be satisfied for l1 to

imply l2. Removal of repetitions of literals in a formula is possible using this rule as

for any literal l1, l1 � l1 is always true. For example, the literal a ' b has multiple

occurrences in the formula a ' b O c) d O a ' b. So, this formula is simplified

to a ' b O c) d.

During this phase of simplification it is also checked whether l1
� � l2, whereupon

l1 O l2 is reduced to false. For example, the formula a ' b O c) d O !
�
a ' b � is

evaluated to “false”.

R2
�

R1

� ' !�)� c1 � c2 c2 ' c1 c1 !� c2 c2) c1' c2 ' c1 c2 $ c1x !� c1 � c2) c2 (c1 c2) c1

Table 2.1: Conditions on c1 and c2 for which
�
s1 � c1 � R10 implies

�
s2 � c2 � R20

It can be easily seen that some of the properties of '&
�)&
y� and !� are accommodated in course

of normalization and simplification of formulas. For example, the symmetry property of
��#
z!� � is

taken care of by choosing the normal form of relational literals as s
 R � 0 and by imposing ordering

on the constituent sub-expressions at all levels. Thus, both x � y and y � x will be expressed either

2.4. CONCLUSIONS 33

as x / y � 0 or y / x � 0, consistently. Similar is case for !� . Again, the reflexivity of
]'&
{�
*) �
and the irreflexivity of
|!� � are accommodated by collecting the common sub-expressions in a

sum. For example, x ' x changes to x / x ' 0, whereupon the left-hand side reduces to “0” by

collecting the common subexpressions x; accordingly, x ' x reduces to “true” by normalization.

2.4 Conclusions

The equivalence problem of two FSMDs is formulated in this chapter. The path, condition of

execution of a path and data transformation along a path, computations on an FSMD and the path

cover of an FSMD are defined. The equivalence of two FSMDs is defined and has been proved.

The basic equivalence checking method is given. This method involves checking equivalence

between two expressions over integers which is undecidable as canonical form does not exist for

integer arithmetic. In this work, a normal form is adapted from [48, 57] to represent the arithmetic

expressions over integers. This normal form is discussed in this chapter. Several simplifications

that are carried out during normalization phase are also discussed in this chapter.

34 CHAPTER 2. THE EQUIVALENCE PROBLEM FORMULATION

Chapter 3

Scheduling Verification

3.1 Introduction

The goal of the scheduler is to optimize the number of control steps required to execute all the

operations in the input behaviour meeting all the constraints regarding the number of control steps,

the delay, the power and the hardware resources. The input to the scheduler is a CDFG of the input

behaviour. Most of the scheduling algorithms [35, 6, 58, 59, 60, 61] are basic block based in the

sense that they consider the basic blocks of the input CDFG one by one (starting from the initial

block) and schedule the operations of each basic block independent of the operations of the other

blocks. As a result, the input behaviour may be modified in the following ways:

1. The order of the operations can be changed.

2. New state(s) can be inserted in the FSMD corresponding to the the output of the scheduler.

Example 4 Let us consider the example given in figure 3.1. It is assumed that in this example, the

input behaviour consists of only one basic block. The order of the operations in the basic block

is shown in figure 3.1(a). The FSMD M0 corresponding to the input behaviour is shown in figure

3.1(b). The FSMD M0 is constructed from the data flow graph (DFG) of the input behaviour. The

scheduled FSMD M1 is shown in figure 3.1(c) and the corresponding ordering of the operations is

shown in figure 3.1(d). It is clear from figures 3.1(a) and 3.1(d) that the order of the operations

are changed by the scheduler; for example, the operations x , x � dx is moved from the 3rd step

to the 9th step. Also, the scheduler introduces one state in the scheduled behaviour; specifically,

the FSMD M0 of figure 3.1(b) has five states whereas the FSMD M1 of figure 3.1(c) has six states.

35

36 CHAPTER 3. SCHEDULING VERIFICATION

New state is inserted in the scheduled behaviour due to resource constraints.

(a) Original behaviour (b) FSMD M0

10. u } v4 -v5

2. v1 } 3*x
3. x } x+dx
4. v3 } 3 * y
5. v6 } u*dx

8. y } y+v6
9. v4 } u -v2

1. v0 } u * dx

7. v5 } dx * v3

-/v1 ~ 3*x,v6 ~ u*dx

-/x ~ x+dx,

-/v4 ~ u-v2, v5 ~ dx*v3

-/v0 ~ u*dx, v3 ~ 3*y

q10

q11

q12

q13

q14

q15

u ~ v4-v5

(c) FSMD M1 (d) Scheduled behaviour

6. v2 } v0*v1
y ~ y+v6

q02

q03

q04

-/v4 ~ u-v2

-/u ~ v4-v5

q00

q01

- / v0 ~ u*dx, v1 ~ 3*x,

x ~ x+dx
v3 ~ 3*y, v6 ~ u*dx,

- / v2 ~ v0*v1, v5 ~ dx*v3
-/v2 ~ v0*v1, y ~ y+v6

8. v5 } dx*v3

10. u } v4 - v5

1. v1 } 3*dx
2. v6 } u*dx

4. v3 } 3*y

6. y } y+v6
7. v4 } u-v2

9. x } x+dx

3. v0 } u*dx

5. v2 } v0*v1

Figure 3.1: Phase-wise modification of an example input behaviour by a basic block based sched-
uler 0

There is another type of scheduler called path-based scheduler [37, 38]. As a result of this type of

scheduling algorithm, the control structure of the input behaviour may be modified as the scheduler

tries to merge some consecutive path segments of the input behaviour. Let us consider, for example,

the FSMDs given in figure 3.2. Here, the scheduler merged the path segment p00 of the FSMD M0

with the path segments p01 and p02. Consequently, the control structure of the scheduled FSMD

M1 is different from that of the FSMD M0.

There are several modern high-level synthesis tools, like SPARK [11], wavesched [62, 39],

etc., which incorporate in the scheduling process several code motion techniques like, specula-

tion, reverse speculation, early condition execution, branch balancing, common sub-expression

elimination, loop shifting, renaming, etc., [47, 49, 39, 40, 41, 42, 63, 64]; these techniques lead

to different transformations in the input behaviour. For example, some of the operations may be

moved beyond the conditional statement (speculation, reverse speculation) [65, 40], the control

structure of the input may be modified (conditional speculation, branch balancing) [66, 47], ex-

tra variables may be used to rename some of the variables in the input behaviour (renaming)[47],

some of the variables and operations of the input behaviour may be eliminated (dead code elimi-

nation) [47], common sub-expressions may be eliminated [67] and also some extra operations may

be added in the behaviour (speculation, loop shifting) [65, 68].

3.2. OBJECTIVE OF SCHEDULING VERIFICATION 37

3.2 Objective of Scheduling Verification

As discussed above, the results of scheduling do not always have a one-to-one correspondence with

the input. So, the goal of this verification phase is to ensure that the scheduling process preserves

the behaviour of the original specification, irrespective of the scheduling technique used. The

input and the output of the scheduler are encoded as FSMDs and the correctness of the scheduling

process is ensured by checking for equivalence of these two FSMDs.

3.3 Verification Issues

It is clear from the discussion of the last section that the input to the scheduler may get transformed

significantly during the scheduling process. Due to such transformations, the output FSMD M1

may not have a one-to-one correspondence with the input FSMD M0. Consequently, some modifi-

cations are needed in the equivalence checking method formulated in chapter 2 in order to verify

the scheduling process. These modifications are as follows.

Case 1: The sets of variables V0 of M0 and V1 of M1 are not equal.

Some of the code motion techniques, like renaming and dead-code elimination during schedul-

ing, may result in different storage variable sets V0 of M0 and V1 of M1. Since a path can start from

any cutpoint of an FSMD, its condition of execution and the data transformation are in terms of the

input signals and the variables. Thus, a path p0 of M0 may involve variables from the set V0 while

the corresponding path p1 of M1 may involve variables from V1, where V0 !� V1. To handle this

difficulty, we have to consider the following restrictions. The condition of execution of any path of

M0 (M1) is a logical expression which should be restricted over the set I of input signals and the set

V0 � V1 of common variables. Similarly, the algebraic expressions that represent the final values of

the variables in the data transformation should also be restricted over the set I and V0 � V1. Also,

we only consider the final values of the variables that reside in V0 � V1 while checking the equiv-

alence of the data transformations of the two paths. Restriction of the condition of execution and

the data transformation of a path α to the variable set V0 � V1 are denoted as Rα �V0 � V1 and rα �V0 � V1 ,

respectively.

The restricted condition of execution and the restricted data transformation of a path in M0

and in M1 are defined if they are expressed in terms of the variables in V0 � V1. For example, let

V0 ��
 v0
 v1
 v2 � and V1 �+
 v1
 v2
 v3 � . So, V0 � V1 is
 v1
 v2 � . Let the condition of execution of

38 CHAPTER 3. SCHEDULING VERIFICATION

a path in M1 be v2 / v1) 10. So, this condition of execution is defined when restricted to V0 � V1.

Let us consider another path in M1 with condition of execution
�
v1 / v2 $ 0 O v1) v2 � v3 � which

is undefined when restricted to V0 � V1 as v3 occurs in the expression. Let the data transformation

of a path in M1 be ��� v1 / v2
 v2 � 2
 v3 / v1 �m
�/�� , where the order of the variables is v1 Q v2 Q v3.

Under restriction to
 v1
 v2 � , the transformation is ��� v1 / v2
 v2 � 2 �n
�/g� . It may, therefore, be

noted that the transformation of this path is defined even if the final value of the variable v3 is not

restricted to V0 � V1, because the final values of v0 and v3 are not considered during checking the

equality of data transformations restricted to V0 � V1 of the two paths of M0 and M1. Consider

another path in M1 whose data transformation is ��� v1 / 1
 v2 � v3
 v2 � 1 �n
A/�� . This transformation

becomes undefined when restricted to
 v1
 v2 � as v3 occurs in the expression that represents the

value of the variable v2 � V0 � V1 after execution of the path.

However, the situations when the condition of execution or the data transformation of a path

becomes undefined usually do not occur as argued below.

� Some of the variables of V0 may not exist in V1:

It happens when the scheduler eliminates some dead code involving the variables in (V0 / V1).

Clearly, they have no effect on the condition of execution or in the data transformation of

any path in M0; that is the reason why the scheduler removes that part of the code. Hence,

they will not occur in the condition of execution or in data transformation of any path in M0.

� Some of the variables of V1 may not exist in V0:

The scheduler generally uses some extra variables to reduce the data dependencies among

the variables to increase the parallelism among the operations in the behaviour. These vari-

ables are first assigned some values in terms of V0 � V1 and I, and used subsequently. Ob-

viously, these variables (in V1 / V0) will not occur in the condition of execution or the data

transformation of any path in M1.

� V0 � V1 is empty:

This case does not occur for any scheduling algorithm. The scheduler may exclude some

variables from V0 (not all of them) or may introduce some extra variables.

It is clear from the above discussion that the restriction on the condition of execution and on the

data transformation of any path has no effect in the equivalence checking. The following definition

is in order.

3.3. VERIFICATION ISSUES 39

Definition 11 A path α of M0 ��� Q0
 q00
 I
 V0
 O
 f0
 h0 � and a path β of M1 ��� Q1
 q10
 I
 V1
 O
 f1
 h1 �
are said to be equivalent if Rα, rα, Rβ and rβ are defined over V0 � V1 and Rα �V0 � V1 � Rβ �V0 � V1 and

rα �V0 � V1 � rβ �V0 � V1 .

Case 2: The control structure of the input behaviour is modified or some operations are

moved beyond the conditional statements.

As the control structure of the input behaviour may be modified by the path based scheduler

and also some operations in the behaviour may be moved beyond the conditional statements by

application of code motion techniques like speculation, reverse speculation, early condition exe-

cution, etc., the rules to find the cutpoints defined in subsection 2.3.1 do not work always. In the

following, one algorithm is proposed which combines the first two steps of the equivalence check-

ing method described in subsection 2.3.1 into one. More specifically, the method constructs a path

cover by inserting cutpoints in M0 initially using the rules given in subsection 2.3.1 and in course

of finding its equivalent path set in M1, the actual set of cutpoints of M0 is identified dynamically.

The process starts with selecting cutpoints in M0 according to the rules defined in subsection

2.3.1 and finding the initial set of paths, say P �0, from one cutpoint to another without having any

intermediary cutpoint. Now, the actual path cover P0 of M0 and an equivalent path of M1 for

each member of P0 are to be found. The algorithm takes each member of P �0 and tries to find an

equivalent path in M1. If an equivalent path is found for a path, p say, of P �0, then p is put in P0.

However, no path may exist in M1 which is equivalent to p. Let p be R q0i � q0 j S . The path p is

extended by concatenating to itself all the paths of P �0 which emanate from q0 j in P �0. It should be

noted that all such extended paths should not violate the basic definition of a path that only the

initial and the the final states can be identical; in other words, the extension process should not

move through (and beyond) q0i. All these concatenated paths are added to P �0 and p is deleted from

P �0. This process terminates when the equivalent paths for all the paths of P �0 are found in M1. The

fact that the constructed set P0 is also a path cover of M0 is proved shortly.

The following example illustrates the process of path extension.

Example 5 Let us consider the FSMDs in figure 3.2. The cutpoints are denoted as shaded nodes

in this figure and P �0 �
 p00
 p01
 p02 � . The path p00 of P �0 does not have any equivalent path in

FSMD M1. So, p00 will be concatenated with p01 and p02 of P �0. The concatenated paths are p �00

and p �01 as denoted in figure 3.2(a). Now, the equivalent path exists for each of these concatenated

paths. The computed path cover P0 consists of p �00 and p �01 and their respective equivalent paths

40 CHAPTER 3. SCHEDULING VERIFICATION

in M1 are p10 and p11.

..
.

..
..

.
.

.
.

.

..
.

..
.

.
.

.

.
.

.

/g. a � a � b

c $ b . c � c / b

c $ b .!c $ b .
a � a � b

c � c � b

/g. a � a / c

a � a � b

c � c / d

/g. a � a / c

p10

p02

p11
p �01

p00

p01

p �00

(a) M0

(b) M1

!c $ b . c � c � b

Figure 3.2: Working of the proposed algorithm on an example. (a) M0: An FSMD before schedul-
ing (b) M1: Corresponding FSMD after scheduling 0

Case 3: The condition of state transitions in M1 is Boolean.

The scheduler schedules not only the arithmetic operations of the behaviour but also the re-

lational operations over the set I � V0 that represents the condition of state transition in M0. The

relational operation used in a state s has to be scheduled prior to s. It is assumed here that the

scheduler introduces a Boolean variable for each relational operation to store the result of that op-

eration. This Boolean variable is used in the subsequent conditional statement(s) in the scheduled

FSMD M1.

Example 6 Let us consider the input behaviour M0 in figure 3.3. The relational operation v1) v2

controls the state transitions from the state q0i1 in figure 3.3(a). This operation is scheduled before

the state q0i1 and the result is stored in the Boolean variable ‘le’, as shown in the FSMD M1 of

figure 3.3(b). The variable ‘le’ now controls the state transition. 0

Since the conditions for state transitions in the FSMD M1 are represented in terms of Boolean

variable(s), the condition of execution of each path in the FSMDs M1 would involve only the

3.3. VERIFICATION ISSUES 41

...

...
...

...
...

...

le . v1 , v3 � v4!le . v1 , v3 / v4v1) v2 .!
�
v1) v2 � .

v1 , v3 / v4

le , v1) v2

(a) M0 (b) M1

v1 , v3 � v4

q1i3

q1i1

q1i2

q1i4
q0i3

q0i1

q0i2

Figure 3.3: Scheduling of a relational operation

Boolean variable(s) whereas the same for M0 would be over I � V0. Due to this reason, the condition

of execution of any path β in M0 never matches with the same of any path α of M1 even if the

(Boolean) expression Rα actually represents Rβ. For example, the path β � q0i1 /�/ �v1 � v2 q0i3 in the

FSMD M0 (with Rβ � v1) v2) and its equivalent path α � q1i2 /� le q1i4 in the FSMD M1 (with

Rα � le) of figure 3.3 provides a case in point.

It is, therefore, necessary to find the value of each Boolean variable that occurs in the condition

of execution of any path p, say, in the FSMD M1 during equivalence checking between the FSMDs

M0 and M1. In other words, the relational expression that defines a Boolean variable in the condi-

tion of execution of p needs to be found out. This is achieved by performing a backward breadth

first search from the start node of p. Next, the occurrences of the Boolean variable in the condition

of execution of p is replaced by the the corresponding relational expression found by the backward

breadth first search. For example, the Boolean variable ‘le’occurs in the condition of execution of

the path α (i.e., Rα � le) in the FSMD M1 of figure 3.3. The backward breadth first search from

the state q1i2 , the start node of the path α, finds the relational expression le , v1) v2 as the value

of the Boolean variable ‘le’. So, Rα becomes v1) v2. A Boolean variable is said to be undefined

if more than one relational expressions are found during the backward breadth first search.

42 CHAPTER 3. SCHEDULING VERIFICATION

3.4 The Scheduling Verification Algorithm

3.4.1 The Algorithm

Input: The FSMDs M0 and M1.

Output: P0: a path cover of M0,

E: ordered pairs � β
 α � of paths of M0 and M1, respectively, such that β � P0 and β ^ α.

Step 1: Let η be the set of corresponding state pairs. Let η Z � q00
 q10 � . Insert cutpoints in M0

using the rules stated in the subsection 2.3.1. Let P �0 be the set of all the paths of M0

from a cutpoint to a cutpoint having no intermediary cutpoint. Let P0 and E be empty.

Step 2: If P �0 � empty, then return P0 as a path cover of M0 and E as a set of ordered pairs of

equivalent paths of M0 (from P0) and M1 and exit (success); else go to step 3.

Step 3: Find a path of the form � q0i � q0 f � from P �0 s.t. q0i has a corresponding state q1 j. If no

path is obtained, then go to step 4; else go to step 5.

Step 4: If P �0 !� empty, then report “M0 may not be contained in M1” and exit (failure);

else return P0 as a path cover of M0 and E as a set of ordered pairs of equivalent paths

of M0 (from P0) and M1 and exit (success).

Step 5: Let the path obtained in step 3 be β �?� q0i � q0 f � . Let � q0i
 q1 j � be the corresponding state

pair in η. If Rβ or rβ is undefined, then report “The Rβ and/or rβ of β is not defined and

exit (failure); else find a path of M1 emanating from q1 j which is equivalent to the path β.

If such a path is found, then go to step 6; else go to step 7.

Step 6: Let this path of M1 be α. η Z η ��
<� endState
�
β �
 endState

�
α � � � , E Z E �
<� β
 α � � ,

P0 Z P0 �
 β � , P �0 Z P �0 /�
 β � . go to step 2.

Step 7: P �0 Z P �0 /�
 β � . Extend β (��� q0i � q0 f �) in M0 by moving through the cutpoint q0 f till

the next cutpoints but without moving through the reset state or any cutpoint more than

once. Let Bm be the set of all such extensions of the path β. P �0 Z P �0 /�
 paths of P �0 from

q0 f which got appended to β � . P �0 Z P �0 � Bm. go to step 8.

Step 8: If Bm � empty, then report “β does not have any equivalent in M1 and cannot be extended”

and exit (failure); else go to step 2.

The above algorithm examines whether M0 i M1. In order to examine the computational

equivalence between M0 and M1, the above algorithm is rerun with M0 and M1 interchanged to

determine whether M1 i M0 or not.

3.4. THE SCHEDULING VERIFICATION ALGORITHM 43

3.4.2 Correctness of the algorithm

Theorem 2 (Termination): The algorithm always terminates.

Proof 2 There are two loops namely, � 2
 3
 5
 6
 2 � and � 2
 3
 5
 7
 8
 2 � . The first loop pertains to

the situation where the equivalent of a path β � P �0 is found and β is deleted from P �0. Thus, when

step 2 is revisited after one execution of this loop, the cardinality � P �0 � of P �0 decreases by 1. The

second loop pertains to the situation where the equivalent of β �	R q0i � q0 f S � P �0 is not found. In

this case β is extended by concatenating to itself all the paths of P �0 which emanate from q0 f and

satisfy the condition stated in step 7 of the algorithm. There are � Bm � such paths. In step 7, the

path β and the original � Bm � paths emanating from q0 f are deleted and � Bm � extended paths are

added amounting to a net reduction of � P �0 � by 1. Hence,each execution of either loop reduces

� P �0 � by 1. Since � P �0 � is in the well-founded set [52] of non-negative numbers having no infinite

decreasing sequence, the algorithm cannot execute (any combination of) the loops indefinitely.

Theorem 3 If the algorithm terminates in step 2 or in the else-clause of step 4, then M0 i M1.

Proof 3 From theorem 1, it follows that M0 i M1 if P0 is a path cover of M0 and E is the set of

ordered pairs of equivalent paths of P0 and those of M1. Step 5 and step 6 of the algorithm ensure

that E contains only pairs of equivalent paths of M0 (belonging to P0) and M1; this property of E,

therefore, is an invariant. So, what remains to be proved is that P0 is a path cover of M0 which

follows from the following lemma.

Lemma 1 When the algorithm terminates successfully the set P0 gives a path cover of M0.

Proof: Let C be the set of cutpoints in M0. Let C ��� C such that every cutpoint in C � has a

corresponding state in M1, that is, they form pairs of the set η.

There are two “success”-exits, one in step 2 and the other in step 4. The algorithm ensures that on

its “success”-exits, P0 contains all the paths of the form � q0l � q0m � , where q0l
 q0m � C � , and in

the paths, there is no other intermediary cutpoint belonging to C � . This follows from the following

observations. If C �]� C, then the final set P0 is the same as the initial set P �0 whose members are

ensured to satisfy the above property in step 1. If C �]� C, then some of the original paths had to be

extended in step 7. Since such extensions took place in all possible ways, that is, up to all possible

successor cutpoints deleting the intermediary cutpoints, the above assertion again holds.

44 CHAPTER 3. SCHEDULING VERIFICATION

Let P0 be not a path cover of M0, i.e., there exists some computation c1, say, of M0 that cannot

be represented by concatenation of the members of P0. Now, since P �0 is known to be a path cover of

M0, there exists a concatenated path Π1 �kR p � j1 p � j2 a�a�a p � jn S , p � jm � P �0
 1) m) n such that c1 ^ Π1.

Let p � jm be � q0 jm B 1 � q0 jm � . In particular, p � j1 �	� q0 j0 � q0 j1 � and p � jn �	� q0 jn B 1 � q0 jn � , where

q0 j0
 q0 jn � q00 � C � .
Let Π2 �lR p � jk p � jk � 1 a�a�a p � jl S be the first subsequence in Π1 such that the start state of p � jk and the

end state of p � jl are in C � i.e, q0 jk B 1
 q0l � C � and the end state of p � jk , the start state of p � jl and the

terminal states of p � jk � 1

 a�aAa
 p � jl B 1

are not in C � .
It is obvious that the prefix sequence in Π1 preceding Π2 is composed of paths from P0. The

fact that Π2 can be replaced by a subsequence of paths from P0 is established as follows. None

of p � jk
 aAa�a
 p � jl contains any intermediary cutpoint from C and hence, from C � . Therefore Π2 is

essentially a path between two cutpoints in C � without having any intermediary cutpoint from C � .
Since P0 contains all such paths, Π2 belongs to P0.

By repeated applications of above argument, all such subsequent instances of Π2 in Π1 can be

shown to be paths of P0. Thus, Π1 is rendered a concatenation of paths from P0 (Contradiction).

3.4.3 Complexity of the algorithm

The overall complexity of the algorithm depends on two issues; the complexity of finding an

equivalent path for a given path from a given state (step 5) and the number of iterations of the

algorithm. So, the complexity of the algorithm is of the order of number of iterations times the

complexity of finding an equivalent path.

Let the function f indequivalent find the path of M1 which starts from the state q1 j of M1 and is

equivalent to the path β of M0. Let us assume that there are n number of states in the FSMD

M1 and the maximum number of parallel edges between any two states is k. So, the maximum

possible state transitions from a state is k � n. All the transitions emanating from a state have distinct

conditions of execution. The function checks all transitions from q1 j. The condition of at most

one of these transitions matches (may be partially) with Rβ. Let the transition be q1 j
� q1k. The

partially constructed equivalent path α � then becomes q1 j
� q1k. If the condition and the data

transformation of α � match totally, then the equivalent path has been found. If it matches partially,

the function will concatenate the transitions from the end node of α � with this path one by one

and check for the equivalence. This process will continue until any repetition of nodes occurs

3.5. VERIFICATION OF DIFFERENT SCHEDULING ALGORITHMS 45

in α � other than between the start node and the end node or the equivalent path has been found.

In the worst case, the function iterates n times. So, the complexity of finding equivalent path is

O
�
kn � n � � O

�
kn2 � . However, the equivalent path can be found in O

�
1 � time when there is only

one transition from q1 j which is equivalent to β.

It is required to find the equivalent path for every path in P �0. Initially, this set contains at most

O
�
n2 � paths because in the worst case all the nodes of M0 are cutpoints and the number of paths

from one cutpoint to another without any intermediary cutpoint are n
�
n / 1 � . 2. In the best case, the

equivalent path for each member of this set can be found directly and no path extension is required.

In the worst case, one path may be required to be extended n times. In this case, we have to consider

k � � n / 1 ��� k2 � � n / 1 � � � n / 2 ��� �A��� � k I n � 1 L � � n / 1 � � � n / 2 � �����A��� 2 � 1 ^ k I n � 1 L � � n / 1 � I n � 1 L
number of paths.

So, the complexity of our algorithm O
�
k I n � 1 L � n / 1 � I n � 1 L � kn2 � � O

�
knn I n F 1 L � in the worst

case and O
�
n2 � 1 � � O

�
n2 � in the best case.

3.5 Verification of Different Scheduling Algorithms

3.5.1 Basic Block Based Scheduling

The input to the scheduler is a CDFG whereas the input to the verifier is its corresponding FSMD.

Hence, it is indeed important to find the relation between this two. A CDFG consists of a set of

basic blocks (BB) and a set of control blocks (CB). Each BB is essentially a data flow graph (DFG)

and the CB decides the control flow among the basic blocks. So, the state corresponding to each

CB is a cutpoint in the FSMD. Also, each path from one cutpoint to another without having any

intermediary cutpoints in the FSMD represents a BB of the CDFG. This fact is depicted in figure

3.4.

It is already discussed that the basic block based schedulers consider each BB of the input

CDFG independently and schedule the operations within that BB. As a result, whatever transfor-

mation occurs within the BB during scheduling would be limited to a path boundary. Consequently,

the control structure of the output FSMD remains the same as that of the input.

During verification, the initial path cover P �0 of M0 is computed in step 1 of the algorithm. As

the control structure of the input FSMD is not modified, no path extension is required here. The

equivalent of each path of P �0 will be found in step 5 of each iteration of the algorithm. Finally,

46 CHAPTER 3. SCHEDULING VERIFICATION

.

..
.
..

.

..

......

.

..
.
..

B.B.

(a) CDFG

C.B.

B.B. B.B.

a path

a path

a path

cutpoint

cutpoint

(b) Corresponding FSMD

...

...-
+

*

cutpoint cutpoint

correspondence

correspondence
DFG

Figure 3.4: A CDFG and its corresponding FSMD structure

if the scheduling process is correct, then the algorithm terminates successfully in step 2 of the

algorithm by producing P0 (, P �0) as the path cover of M0.

3.5.2 Path Based Scheduling

In this subsection, the working of the algorithm for the path-based scheduler is briefly discussed

with the GCD example depicted in figure 3.5 (a). The basic steps involved in a path-based schedul-

ing algorithm [37] are as follows.

1. Each loop is broken by removing the feedback edge.

2. All paths that start from the start node of the CDFG or from the start node of a loop and end

with nodes having no successors are computed.

3. The paths are scheduled independently for a given set of constraints.

4. The schedules for different paths are then combined to generate the final schedule of the

design.

3.5. VERIFICATION OF DIFFERENT SCHEDULING ALGORITHMS 47

(b)(a)

−/−

q00

q01

q02

q03

q05

q04

! � y1 ��� y2 � �T�
!even � y2 � �

even � y1 � �T�
!even � y2 � �T�

even � y2 � ���� OUT � yout � res �
!even � y1 � �T�

q06

res � res � 2 y1 � y2 � y1 � y1 � y2

y1 � y1 � 2

y1 ��� y2 � res � res � y1

y2 � y2 � 2
even � y2 � �
y1 � y1 � 2 �
y2 � y2 � 2

y2 � y2 � y1

��� y1 � P0 � y2 � P1 � res � 1��� y1 � P00 � y2 � P10 � res � 1

��� yout � res

q12

q13

q11

q10

!y1 � y2 �
! � y1 ��� y2 � & !even � y1 � & !even � y2 �

&y1 � y2 � y1 � y1 � y2

! � y1 ��� y2 � & even � y1 �
&!even � y2 � � y1 � y1 � 2

! � y1 ��� y2 � & !even � y1 � & !even � y2 �
&!y1 � y2 � y2 � y2 � y1

!even � y1 �
even � y2 �`�
y2 � y2 � 2
! � y1 ��� y2 � &

y1 ��� y2 � res � res � y1

y2 � y2 � 2y1 � y1 � 2 �res � res � 2&even � y2 �`�! � y1 ��� y2 � & even � y1 �

Figure 3.5: The FSMDs of the GCD example (a) M0: before scheduling (b) M1: after scheduling
using a path-based scheduler

The path-based scheduling algorithm has been applied on the GCD example in figure 3.5 (a)

and the scheduled FSMD is shown in figure 3.5 (b). It is clear from figure 3.5 that the consecu-

tive path segments of M0 are merged by the scheduling algorithm. Next, we will discuss how our

algorithm works when the path segments are merged by the scheduler. The initial set of cutpoints

is
 q00
 q01
 q02
 q03
 q04
 q05 � . The algorithm first finds q10
� q11 as the equivalent path of

q00
� q01. It next takes q01 /�/G/G/ �I y1 J�J y2 L q0e

� q00 and finds q11 /</G/G/ �I y1 JKJ y2 L q12
� q1e

� q10 as its

equivalent path. The algorithm next considers the path q01 /A/G/G/H/ �! I y1 J�J y2 L q02 and fails to find its equiv-

alent path as this path has been merged with its successor paths by the scheduler. So, this path will

be extended. The extended paths are q01 /A/G/G/H/ �! I y1 J�J y2 L q02 /�/|/ �even I y1 L q03 and q01 /�/G/G/H/ �! I y1 JKJ y2 L q02 /�/H/G/ �!even I y1 L q04.

The algorithm then considers the path q01 /�/G/G/G/ �! I y1 JKJ y2 L q02 /G/G/ �even I y1 L q03. This path also needs to be

extended and the extended paths are q01 /c/G/G/|/ �! I y1 J�J y2 L q02 /G/G/ �even I y1 L q03 /M/H/ �
even I y2 L q01 and q01 /A/G/G/H/ �! I y1 JKJ y2 L q02/G/G/ �

even I y1 L q03 /�/H/G/ �!even I y2 L q01. The algorithm finds the paths q11 /n/G/G/G/H/G/G/H/G/G/G/H/G/G/G/|/G/ �! I y1 JKJ y2 LG even I y1 LH even I y2 L q11 and

q11 /M/G/H/G/G/G/H/G/G/G/H/G/G/G/H/G/G/ �! I y1 JKJ y2 LG even I y1 LG !even I y2 L q11 as the respective equivalent paths. Similarly, the path

q01 /�/H/G/G/ �! I y1 JKJ y2 L q02 /¡/G/G/ �!even I y1 L q04 is also extended. The extended paths are q01 /�/G/H/G/ �! I y1 JKJ y2 L q02 /�/H/G/ �!even I y1 L q04/G/G/ �
even I y2 L q01 and q01 /c/|/G/G/ �! I y1 J�J y2 L q02 /¡/G/G/ �!even I y1 L q04 /¡/G/G/ �!even I y2 L q05. The equivalent path of q01 /c/|/G/G/ �! I y1 J�J y2 L
q02 /�/G/H/ �!even I y1 L q04 /G/G/ �even I y2 L q01 is q11 /G/G/G/G/H/G/G/G/H/G/G/H/G/G/G/|/G/ �

! I y1 JKJ y2 LG !even I y1 LG even I y2 L q11. The path q01 /A/G/G/H/ �! I y1 J�J y2 L q02/¡/G/G/ �
!even I y1 L q04 /�/G/H/ �!even I y2 L q05 will again be extended and the extended paths are q01 /�/G/G/H/ �! I y1 JKJ y2 L q02 /¡/G/G/ �!even I y1 L q04

48 CHAPTER 3. SCHEDULING VERIFICATION

/¡/G/G/ �
!even I y2 L q05 /¢/ �y1 £ y2 q01 and q01 /A/G/G/H/ �! I y1 JKJ y2 L q02 /¡/G/G/ �!even I y1 L q04 /�/H/G/ �!even I y2 L q05 /E/|/G/ �! I y1 £ y2 L q01. The paths

q11 /�/H/G/G/H/G/G/G/H/G/G/G/H/G/G/G/|/G/G/H/G/G/G/H/ �! I y1 JKJ y2 LG !even I y1 LG !even I y2 LG ¤I y1 £ y2 L q11 and q11 /c/G/G/H/G/G/G/|/G/G/G/H/G/G/H/G/G/G/H/G/G/G/H/G/G/ �! I y1 JKJ y2 LG !even I y1 LG !even I y2 LG ! I y1 £ y2 L q11

are found as the respective equivalent paths by the algorithm.

3.6 Performance on Several HLS Transformations

The quality of synthesis results for most high-level approaches is strongly affected by the con-

trol structure and the data dependencies among the variables in the input behaviour. It might be

possible to transform the input behaviour to some equivalent description which results in a more

efficient implementation. This fact underlines the need for incorporating high-level compiler trans-

formations in the scheduling phase of synthesis to overcome the effects of programming style on

the quality of generated circuits. Needless to say, these transformations increase the scheduling

verification challenges. In this section, several code transformation techniques, along with how

these can be handled by our algorithm, are discussed. In the examples of this section, the FSMDs

that are considered are segments from a cutpoint to cutpoint(s) of the original FSMDs.

3.6.1 Renaming

Extra variables are used to rename some variables of the original behaviour. It provides for parallel

execution of some operations which were sequential due to data dependency among the variables

in the input behaviour [47]. As a result, the total execution time of the scheduled behaviour is

reduced.

(a). M0, the original behaviour

m : a ¥ b

n : m 6 c

m : a ¥ b 9 m1 : d 6 e
6¦36¦3

6§3
6§3

m : d 6 e

6¨3
o : m ¥ f

6§3
(b). M1: Scheduled behaviour

m : m1
n : m 6 c 9 o : m1 ¥ f

q0i0

q0i1

q0i2

q0i3

q0i4

q1 j2

q1 j1

q1 j0

Figure 3.6: Scheduling using variable renaming technique: An example

3.6. PERFORMANCE ON SEVERAL HLS TRANSFORMATIONS 49

Consider the FSMD M0 in figure 3.6. There is a read-after-write dependency between the

operations m , a � b and n , m / c as well as between m , d / e and o , m � f . Also, there

is a write-after-write dependency between m , a � b and m , d / e in the behaviour. So, no

parallel execution is possible for the code and it requires four time steps to schedule the behaviour.

In contrast, use of an extra variable m1 to store the result of the operation d / e removes the

write-after-write dependency in the behaviour. Consequently, m , a � b and m1 , d / e can be

scheduled in parallel in the first time step as well as n , m / c and o , m1 � f can be scheduled

in parallel in the second time step. The scheduled behaviour is shown in figure 3.6 (b). As a result,

the execution time is reduced by two clock cycles.

The proposed scheduling verification algorithm demonstrates the equivalence between the FS-

MDs M0 and M1 of figure 3.6 in the following way. Here, V0, the (ordered) set of variables in M0,

is � a
 b
 c
 d
 e
 m
 n
 o � and V1, the (ordered) set of variables in M1, is � a
 b
 c
 d
 e
 m
 n
 o
 m1 � .
We are only concerned about the data transformation of the variables in V0 � Vi ��� a
 b
 c
 d
 e
 m
 n
 o � ;
the extra variable(s)

�
m1 � used to reduce the data dependencies are not considered for equivalence

checking of paths. There is only one path in each FSMD. The condition of execution is T RUE for

both the paths. The data transformation is �©� a
 b
 c
 d
 e
 d / e
 a � b / c
 d / e � f �m
©/g� for the

path in M0 and �©� a
 b
 c
 d
 e
 d / e
 a � b / c
 d / e � f
 d / e �n
©/�� for the path in M1. So, the

final values of the common variables are the same for both the paths. Hence, they are adjudged to

be equivalent by the algorithm.

3.6.2 Common Sub-Expression Elimination

Common Sub-expression elimination (CSE) is a well-known transformation that detects the repeat-

ing sub-expressions in a piece of code, stores each of them in a variable and reuses the variable

wherever the corresponding sub-expression occurs subsequently [67]. Consider the FSMD M0 in

figure 3.7. Let two adder/subtracters and a multiplier be available for the design. Then, it requires

at least four time steps to schedule the operations in M0. On the other hand, if the sub-expression

b � c is stored in a variable e � and is reused subsequently, then this behaviour can be scheduled in

three time steps as shown in the figure 3.7(b). Note that the sub-expression b - c of the operations

q , b - c and f , b - c cannot be replaced by a common variable as the variable b is updated by

the operation b , b � c in between these two operations. The situation obtained by ignoring this

aspect is shown in the FSMD M �1 in figure 3.7 (c). Our algorithm can find the non-equivalence

50 CHAPTER 3. SCHEDULING VERIFICATION

q0i1

q0i3

q0i2

q0i0

q0i4

q1 j0

q1 j1

q1 j2

q1 j2

q1 j1

q1 j4

q1 j3

q1 j0

q1 j3

�Hª p ~ q F r�
e «�~ b F c

(b). M1: scheduled behaviour

��ª e ~ e «¬� b ~ e «
f ~ b ­ c � q ~ p F b
�gª e ~ e F q

q ~ b ­ c �
�gª
��ª
��ª
e ~ e F q

e ~ b F c �
b ~ b F c �
�®ª
q ~ p F b

p ~ q F r� q « ~ b ­ c

f ~ q «¬�

��ª
p ~ q F r

��ª
��ª

(a). M0: original behaviour

q ~ b ­ c
e ~ e F q

e ~ b F c �
b ~ b F c �
�gª
f ~ b ­ c �q ~ p F b

r ~ b � cr ~ b � c
r ~ b � c

(c). M «1, a scheduled behaviour where
sub-expression eliminination
has changed the behaviour

q ~ q «d�

Figure 3.7: Scheduling using elimination of common sub-expressions: An example

between paths if the replacement of any sub-expression is not proper.

The algorithm considers only the variables belonging to V0 � V1. Since, the extra variables used

to store the common sub-expressions do not belong to V0 � V1, they have no effect in equivalence

checking by the algorithm.

For instance, the computation of data transformation by forward substitution method for the

path β � � q0i0 � q0i4 � of M0 comprises the following steps: ��� b
 c
 e
 f
 p
 q
 r �m
y/g� �
�§� b
 c
 e
 f
 q � r
 q
 r �n
¨/�� � �¨� b
 c
 b � c
 f
 q � r
 b - c
 b / c �m
§/g� � �¨� b � c
 c
 b �
c � b - c
 f
 q � r
 b - c
 b / c �n
¯/g� � �¯� b � c
 c
 b � c � b - c
 � b � c � - c
 q � r
 q � r � b �
c
 b / c �n
s/�� . For the path � q1 j0 � q1 j3 � of M1, the computation consists of the following steps.

��� b
 c
 e
 f
 p
 q
 r
 e �°�n
�/g� � ��� b
 c
 e
 f
 q � r
 q
 r
 b � c �m
±/�� � ��� b � c
 c
 b � c
 f
 q �
r
 b - c
 b / c
 b � c �n
²/g� � �³� b � c
 c
 b � c � b - c
 � b � c � - c
 q � r
 q � r � b � c
 b / c
 b �
c �n
±/g� . The final values of all the variables of V0 � V1 ��
 b
 c
 e
 f
 p
 q
 r � are the same for both

the paths. Hence, they are adjudged to be equivalent by the algorithm. On the other hand, the final

values of the variables for the path � q1 j0 � q1 j4 � of M �1 are �K� b � c
 c
 b � c � b - c
 b - c
 q � r
 q �
r � b � c
 b / c
 b - c �n
¦/�� where the variables are in the order b Q c Q e Q f Q p Q q Q r Q q � .
Here, the final value of the variable f differs from that for β and the algorithm will report this

non-equivalence.

3.6. PERFORMANCE ON SEVERAL HLS TRANSFORMATIONS 51

3.6.3 Code Transformation to Increase Conditional Reuse of Hardware

An FSMD model is deterministic. So, all the conditional branches from a state, q0i say, are mu-

tually exclusive, i.e., at any instant when the system is in the state q0i, the condition of only one

branch from q0i evaluates to true by the data state of the variable. So, the operations in different

conditional branches can be scheduled in the same time step and executed by the same hardware. It

means that the same hardware is conditionally reused [69] to execute several operations of differ-

ent conditional branches in the same time step. Consider, for example, the FSMD M0 in figure 3.8

(a). Let the condition c1
 c2 do not change due to the data transformations. Here, the conditions

of two branches from the state q0i0 (or from the state q0i1) are mutually exclusive. So, the opera-

tions t , a � b and t , c � d can be executed by an adder in the first time step and the operations

s , c - d and s , a - b can be executed by a multiplier in the second time step. The possibility

of conditional reuse, however, is restricted by the way in which specifications are written by the

designers. It might be possible to transform the original behaviour to some equivalent one for

which there is a better possibility of conditional reuse of resources. For example, the FSMD M0

of figure 3.8 can be transformed to the equivalent one shown in M �0. Here, the conditions of the

transitions q �0i0
� q �0i1 and q �0i2 /� c1 q �0i3 are the same with no constraint of data dependency in the

corresponding operations. So, the operations of these two transitions can be scheduled in the same

time step. The same situation is also reflected for the transitions q �0i0
� q �0i2 and q �0i2 /�!c1 q �0i3 .

The modified FSMD is represented by M �´�0 and the corresponding scheduled behaviour is shown

in M1. It is clear that the conditional reuse of resources (the adder and the multiplier) are more

in M1 compared to M0. Also, the transformed behaviour (M �´�0) is scheduled in one time step (M1)

whereas the behaviour in M0 will take two time steps to execute using the same hardware.

The verification task here is to check the correctness of transformation as well as the scheduling

process involved. Thus, the algorithm is given to check the equivalence between the original

behaviour M0 and the scheduled behaviour M1.

Consider the execution of the algorithm for the example described in figure 3.8. The cut-

points in M0 are q0i0
 q0i1
 q0i2 . Let � q0i0
 q1 j0 � be the corresponding state pair. The paths

starting from the state q0i0 will be checked first. Step 5 of our algorithm fails to find the equiv-

alent path of q0i0 /¡/G/G/ �!c1 µ !c2q0i1 in M1. So, this path is extended through its immediate successor

paths. The extended paths are q0i0 /¡/G/H/ �!c1 µ !c2 q0i1 /� c1 q0i2 and q0i0 /¶/G/G/ �!c1 µ !c2 q0i1 /�!c1 q0i2 . For

the path q0i0 /¶/G/G/ �!c1 µ !c2 q0i1 /� c1 q0i2 , the condition of execution is
�
!c1 · !c2 �¸O c1 w c1 O !c2.

The corresponding equivalent path in the scheduled behaviour is q1 j0 /_/H/G/ �c1 !c2 q1 j1 . For the path

52 CHAPTER 3. SCHEDULING VERIFICATION

a. M0

c. M « «0
b. M «0

c1 ª¡�
!c1 ¹ !c2 ª c1&c2 ª

t ~ a F b

c1 ª
t ~ a F b
c2 ª!c2 ª

!c1 ª
!c1 ª�� c1 ª

!c2 ª c2 ª
t ~ a F b

c1 ª
s ~ c ­ d

s ~ a ­ b

t ~ c F d

s ~ c ­ d
s ~ c ­ ds ~ a ­ b

s ~ a ­ bt ~ c F d
!c1 ª

t ~ c F d

!c1 ª
t ~ c F d

t ~ c F d

d. M1

c1&!c2 3
t : c ¥ d 9
s : c = d

c1&c2 3
t : a ¥ b 9
s : c = d!c1 3

t : c ¥ d 9
s : a = b

q1 j1

q1 j0q « «0i0

q « «0i1

q « «0i2

q «0i3

q «0i2

q «0i1

q «0i0
q0i0

q0i1

q0i2

Figure 3.8: Conditional reuse to reduce execution time: An example

q0i0 /¡/G/G/ �!c1 µ !c2 q0i1 /�!c1 q0i2 , the condition of execution is
�
!c1 · !c2 �®O !c1 w !c1. Its equivalent path

is q1 j0 /�!c1 q1 j1 . These equivalent paths are found successfully by the algorithm. Similarly, while

trying to find the path of M1 equivalent to the other path q0i0 /º/G/ �c1 c2 q0i1 , the algorithm detects the

need to extend this path. The extended path q0i0 /º/G/ �c1 c2 q0i1 /�!c1 q0i2 becomes infeasible because

its condition of execution is computed to be c1 O c2 O !c1 w f alse. The other extended path

q0i0 /º/G/ �c1 c2 q0i1 /� c1 q0i2 is successfully processed by the algorithm by finding its equivalent path

q1 j0 /º/H/ �c1 c2 q1 j1 .

3.6.4 Reverse Speculation

In reverse speculation, the operations before a conditional are moved into the blocks subsequent

to the conditional [65]. In general, reverse speculation leads to duplication of operations into both

the conditional branches. This technique is also known as lazy execution [40]. For example, in

figure 3.9, the operation d is reverse speculated into the conditional branches. From now onwards,

the operations are represented as alphabets in the figures for brevity. An operation a indicates that

the variable a is updated by this operation. For example, the operation x , y � z is represented

by x and an operation c , x (y is represented as c. Obviously, a conditional state (from which

the conditional branches start) is a cutpoint in our algorithm. Let q0i be such a state and α be a

path that ends in q0i. As some of the operations from α are moved into the conditional branches

by reverse speculation, the equivalent of path α does not exist in the scheduled FSMD. Hence, the

algorithm extends the path α through q0i. If the equivalent of the the paths obtained by extending

α exist in the scheduled FSMD, they can be found by our algorithm. For example, let α be the

3.6. PERFORMANCE ON SEVERAL HLS TRANSFORMATIONS 53

(b) (a)

c 3 b !c 3 e

6]3 a
6�3 c 9 d

!c 3 d
6]3 ec 3 b 9 d

6]3 a 9 c

M0 M1

q0i3 q0i4

q0i2

q0i1

q0i0

q1 j2

q1 j1

q1 j0

q1 j4

q1 j3

Figure 3.9: Reverse speculation technique: An example

path q0i0
� q0i1

� q0i2 in figure 3.9(a). No equivalent of this path exists in M1 of figure 3.9(b).

Hence α will be extended through q0i2 . The extended paths are q0i0
� q0i1

� q0i2 /� c q0i3 and

q0i0
� q0i1

� q0i2 /� !c q0i4 . The corresponding equivalent paths in M1 are q1 j0
� q1 j1 /� c q1 j2

and q1 j0
� q1 j1 /� !c q1 j3

� q1 j4 , respectively and are found by the algorithm.

However, the scheduler may move an operation, o say, before the conditional into only one

conditional branch in some special case of reverse speculation. This is possible when the operations

in the other branch as well as all the operations following the merging of the conditional branches

are not dependent on the result of operation o. Consider the example in figure 3.10. The operation

‘d , a � b’ of the original behaviour is moved to only one conditional branch with condition

!b $ c. This is possible because the operations in the conditional branch with condition b $ c and

all possible execution paths following the merging node q0i5 of M0 do not use the value of d which

is a � b. Our algorithm fails in this case. However, one modification in step 5 of our algorithm

will suffice for equivalence checking. Let β be a path in M0 of the form � q0i � q0 j � and � q0i
 q1k �
be a corresponding state pair. Let the step 5 of the algorithm fail to find the equivalent path of β.

Let there exist a path starting from q1k in M1, say α, whose condition of execution matches with

that of β but the data transformation does not match. In such a case, we will check whether there

is any variable of V0 � V1 which is modified along β but not modified in the path α. Let vl be such

a variable. Without any loss of generality, let the values of all the variables in V0 � V1 other than vl

at the end of execution of α be the same as those for β. Now, if we can show that the transformed

value of vl in β is not used in any execution path starting from q0 j, then α is equivalent to β even if

their respective data transformations match partially (only on the other variables). In other words,

if the variable vl is always used only after it is defined in the subsequent execution paths from q0 j,

54 CHAPTER 3. SCHEDULING VERIFICATION

Bº» a ¼ b � c

Bº» d ¼ a � b

!b ½ c » c ¼ c B b

Bº» e ¼ c � d

Bº» d ¼ e � b
(b). M1

Bº» e ¼ c � d

Bº» d ¼ e � b

Bº» a ¼ b � c

b ½ c »

Bº» b ¼ d � a

Bº» b ¼ d � a

b ½ c »

Bº» e ¼ a B c

¾ b ¼ b B c

¾ b ¼ b B c

Bº» e ¼ a B c

!b ½ c » c ¼ c B b¾ d ¼ a � b

dc ¿ uc ¿ ub

de ¿ uc ¿ udde ¿ ua ¿ uc

dd ¿ ue ¿ ub

db ¿ ud ¿ ua

dd ¿ ua ¿ ub

da ¿ ub ¿ uc

db ¿ ub ¿ uc

(a). M0

(c) Kripke structure of the FSMD M0

q0i6

q0i5

q0i4q0i3

q0i2

q0i1

q0i0

q1 j2 q1 j3

q1 j0

q1 j1

q1 j4

q1 j5

q0i6

q0i5

q0i3

q0i2

q0i1

q0i0

q0i4

Figure 3.10: Reverse speculation: A special case

then there is no use of the operation that updates vl in β and we can remove this operation during

scheduling.

So, the question arises how we can ensure that the variable vl is not used before it is defined

in any execution path starting from q0 j. We convert the FSMD M0 into an equivalent Kripke

structure [70] by some logical transformations. A dummy state will be added for every transition

of the FSMD. For example, figure 3.10 (c) represents the Kripke structure of the FSMD in figure

3.10 (a). The dummy states are denoted as shaded circles in the model. There would be two

propositions, dv and uv, for each variable in V0 � V1, where dv and uv represent defined v and used

v, respectively. The proposition dv will be true in a dummy state if the variable v is defined by

some operation in the corresponding transition in the FSMD. Similarly, uv will be true in a dummy

state if the variable v is used in some operation in the corresponding transition in the FSMD. For

example, the propositions da
 ub
 uc are true in the dummy state between the states q0i0 and q0i1

in figure 3.10 (c) as the variable a is defined and b
 c are used in the operation a , b � c in the

corresponding transition in M0 in figure 3.10 (a). By convention, if any proposition is not present

in any state of the Kripke structure, then the negation of the proposition is true in that state. Now,

the required property that there does not exist any path in which vl has not been defined before

it is used can be written as the CTL formula � E R � � dvl � W uvl S , where W represents the week-

until operator. The formula E R φ W ψ S true in a state s of a Kripke structure K iff there is a path

s1
� s2

� s3
� ����� in K, where s1 equals s, and either C i, si � � φ or there is some si along

3.6. PERFORMANCE ON SEVERAL HLS TRANSFORMATIONS 55

the path such that si � � ψ and C j (i, we have s j � � φ. This formula can be easily verified using

any CTL model checker such as NuSMV [71]. If this formula is true in the state q0 j, then step 5

declares β as the equivalent path of α.

Consider the example in figure 3.10. The algorithm considers β � q0i0
� q0i1

� q0i2 of M0

and fails to find the equivalent path in M1 in step 5. It finds α � q1 j0
� q1 j1 in M1 which has the

same condition (true) as that of β but the variable d is transformed along β but not along α; the

other variable a gets transformed identically. It, next, finds that the formula � E R � � dd � W ud S is

not true in state q0i2 in the Kripke structure of the FSMD M0. So, the control goes to step 7 and

extends β. The extended paths are β � q0i0
� q0i1

� q0i2 / �b £ c q0i3
� q0i5

� q0i6
� q0i0 and

q0i0
� q0i1

� q0i2 / �!b £ c q0i4
� q0i5

� q0i6
� q0i0 . The equivalent path of the latter one in M1 is

q1 j0
� q1 j1 / �!b £ c q1 j3

� q1 j4
� q1 j5

� q1 j0 . Step 5 fails to find the equivalent path of the former

path; it then finds the path α � q1 j0
� q1 j1 / �b £ c q1 j2

� q1 j4
� q1 j5

� q1 j0 in M1 which has the

same condition of execution with β. Again, the variable d is transformed along β but not along α.

It, next, finds that the formula � E R � � dd � W ud S is true in state q0i0 in the Kripke structure of the

FSMD M0. So, α is equivalent to β. In this way, the equivalence of M0 and M1 can be established.

3.6.5 Early Condition Execution

This transformation involves restructuring the original code so as to execute the conditional opera-

tions as soon as possible. This, in effect, means that the conditional operation is “moved-up” in the

Bº» a
Bº» c ¾ b

c » d
Bº» e

Bº» h
!c » g

Bº» a ¾ c

(b). M1

(a). M0

Bº» e
Bº» h
Bº» g

c » b ¾ d !c » b
q0i0

q0i1

q1 j2

q1 j0

q1 j4

q1 j5

q0i5

q0i4

q0i3

q0i2 q1 j3

q1 j1

Figure 3.11: Early Condition Execution: An example

design, and hence, all the operations before the conditional operation are reverse speculated into

56 CHAPTER 3. SCHEDULING VERIFICATION

the conditional branches [65]. In figure 3.11, the conditional statement c is executed one step early

in the scheduled behaviour and the operation b is reverse speculated in the conditional branches.

This is also a kind of reverse speculation which, however, can be handled in its entirety by our

algorithm.

3.6.6 Conditional Speculation

There may be idle resources in some control steps of the conditional branches. To utilize such

idle resources, the operations that lie after the conditional branches can be duplicated up into

the conditional branches. This technique is known as conditional speculation [47]. Consider the

example in figure 3.12. Let there be one adder/subtracter and one multiplier available for the

design. It means that the multiplier is idle in both the conditional branches. Hence, the operation

z , x - y that lies after the conditional branch can be duplicated-up or conditionally speculated

into both branches thereby reducing the total execution time by 1 unit.

�Hª c
a ~ x � y

c ª !c ª
a ~ x F y z ~ x ­ y

�Hª c

�Gª z ~ x ­ y

!c ª a ~ x � y �
z ~ x ­ yc ª a ~ x F y �

(a). M0 (b). M1

q0i0

q0i1

q0i2

q0i3

q1 j2

q1 j1

q1 j0

q1 j3

Figure 3.12: Conditional speculation technique: An example

The conditional speculation essentially involves moving up some operations within a path en-

suring that the paths remain the same in both the FSMDs, that is, each path has the same con-

dition of execution and data transformation. Hence, the equivalence can be found by the algo-

rithm. For the FSMD M0 in figure 3.12, the paths are q0i0
� q0i1
 q0i1 /� c q0i2

� q0i3 and

q0i1 /� !c q0i2
� q0i3 . The corresponding equivalent paths in figure 3.12 (b) are q1 j0

� q1 j1
 q1 j1 /� c q1 j2

and q1 j1 /� !c q1 j2 , respectively and are found successfully by the algorithm.

3.6. PERFORMANCE ON SEVERAL HLS TRANSFORMATIONS 57

3.6.7 Conditional Branch Balancing

Design descriptions often have situations where one conditional branch has more operation(s) than

the other. This is known as unbalanced conditional branches [66]. A typical situation is depicted

in the FSMD M0 in figure 3.13(a). The data dependencies between the operations of M0 are shown

within the dotted rectangle in figure 3.13 (b). In a data dependency graph, the expression a � b

indicates that the operation b depends on the result of the operation a.

(a)

a d

b e6]3 d
6�3 e

6�3 b
6]3 c

c 3 a
!c 3 g

M0: original

(b). data denendency
in the M0

6]3 e
6]3 b

6]3 c
c 3 a 9 d

!c 3 g 6]3 c
!c 3 g
6�3 e6]3 b 9 e

c 3 a 9 d
g

(c) M1: scheduled

(d) M À1: transformed

q0i5

q0i4

q0i3

q0i2

q0i1

q0i0

q1 j0

q1 j1

q1 j2

q À1 j3

q À1 j1

q À1 j2

q À1 j4

q À1 j0

q1 j4

q1 j3

Figure 3.13: Conditional branch balancing: An example

The scheduled FSMD M1 is shown in figure 3.13(c). In this case, it might be possible to insert

a new scheduling step in the branch with fewer scheduling steps, that is, the branch with condition

!c without affecting the longest delay path. This extra step enables the conditional speculation of

operation e (figure 3.13(d)) which effectively shortens the longest delay path by one scheduling

step. The conditional branch balancing is a special type of conditional speculation. So, this can

also be handled by our algorithm.

3.6.8 Speculation

Speculation execution refers to the unconditional execution of instructions that were originally

supposed to be executed conditionally [65]. In this approach, the result of a speculated operation

is stored in a new variable. If the condition under which the operation was to execute evaluates to

true, then the stored result is copied to the variable from the original operation, else the stored result

is discarded. In figure 3.14, the operation d , x � y is speculated out of the branch with condition

!c of the FSMD M0 and the result of the operation is stored in d � . It may be noted that if we do not

58 CHAPTER 3. SCHEDULING VERIFICATION

store the value in d � , then the variable a gets the wrong value (by the operation a , b � d) when

the execution is through the branch with condition c of the FSMD M1.

Bº» a ¼ b � d

Bº» e ¼ d � e

c »

(b). M1

(a). M0

Bº» a ¼ x B y ¾ c
!c »

c »
Bº» a ¼ x B y ¾ c ¾

b ¼ a � b

Bº» a ¼ b � d

b ¼ a � b
d ¼ d Á ¾
e ¼ d Á4� e

!c »
d Á�¼ x � y

d ¼ x � y

q0i4

q0i3

q0i2

q0i1

q0i0 q1 j0

q1 j1

q1 j2

q1 j3

Figure 3.14: Speculation technique: An example

Our algorithm fails in this case. The algorithm uses any node with more than one outward

transition as a cutpoint. So the node q0i1 in M0 of figure 3.14 is a cutpoint. The algorithm first

tries to find an equivalent of the path β � q0i0
� q0i1 . It finds α � q1 j0

� q1 j1 as the equivalent

path of β because the condition of execution (TRUE) and the data transformation of the common

variables (a
 b
 c
 d
 e
 x and y) are the same for β and α. Next, the algorithm tries to find

the equivalent of the path β � q0i1 /� c q0i3
� q0i4 . The corresponding equivalent path found

by the algorithm is α � q1 j1 /� c q1 j2
� q1 j3 . Now, it tries to find the equivalent of the path

β � q0i1 /� !c q0i2
� q0i3

� q0i4 . The algorithm fails to find the equivalent path of β because the

data transformation of β is �Â� b � x � y
 b
 c
 x � y
 x � y � e
 x
 y �n
©/g� where the variables are in

the order a Q b Q c Q d Q e Q x Q y. There is no path in M1 starting from q1 j1 with the same data

transformation.

Actually, the path α � q1 j1 /� !c q1 j2
� q1 j3 of M1 is equivalent to the path β. As we are using

symbolic simulation to find the data transformation, the final values of d
 a and e in α will be in

terms of d � . Specifically, the data transformation of α is �P� b � d ��
 b
 c
 d ��
 d � � e
 x
 y
 d �5�n
P/g� ,
where the variables are in the order a Q b Q c Q d Q e Q x Q y Q d � and will not match that of

β. But if we use the right hand side expression x � y of the operation d ��, x � y that defines d � in
the path q1 j0

� q1 j1 as the initial symbolic value of d � , then the data transformation in the path α

becomes �©� b � x � y
 b
 c
 x � y
 x � y � e
 x
 y
 x � y �n
&/Ã� which is equal to that of β. Thus, α

can be ascertained to be equivalent to β.

3.6. PERFORMANCE ON SEVERAL HLS TRANSFORMATIONS 59

The following simple modifications in our algorithm can handle this code motion technique.

We put cutpoints in M1 by the rules proposed in the subsection 2.3.1 and find the set P �1 of paths

from one cutpoint to another without having any intermediate cutpoints. While finding the equiv-

alent of a path, say β, of M0 in M1, paths starting from the corresponding state of the start node of

β are considered one by one. Let β be of the form � q0i � q0 j � and � q0i
 q1k � be the corresponding

state pair. So, the paths starting from q1k will be checked one by one until an equivalent path is

found, failing which it is concluded that no equivalent path exists for that path. Let α be a path

which starts from q1k. If it is found that the some variables not belonging to V0 � V1 are used be-

fore they are defined along α during computation of Rα and rα, then we will find the set of paths

from P �1 which terminate in q1k. Next, the last operations defining these variables in those paths

will be found out. This can be done by backward breadth first search from q1k. The right hand

side expressions of those operations will be used as the initial symbolic values of these variables.

Consider, for example, the path q0i1 /� !c q0i2
� q0i3

� q0i4 as β in figure 3.14. The state q1 j1 is the

corresponding state of q0i1 . Consider the path q1 j1 /� !c q1 j2
� q1 j3 as α. The variable d � (.� V0 � V1)

is used (in the operation d , d �) before it is defined along β. Now, the paths q1 j0
� q1 j1 is the

only path which terminates in q1 j1 and the operation d � , x � y defines d � in that path. So, the

expression x � y will be used as the initial symbolic value of d � while computing the condition of

execution and the data transformation of α. With this modification, the path α will be found as

the equivalent path of β. However, the initial symbolic value obtained for every variable should

be unique in all the paths that terminate in q1k. If more than one expression are found for a par-

ticular variable or no operation is found which defines a variable in one path, we will ignore α for

equivalence checking and consider the next path from q1k.

3.6.9 Loop Shifting and Compaction

Loop shifting [68] is a technique whereby an operation op is moved from the beginning of the

loop body to the end of the loop body. To preserve the correctness of the program, a copy opc of

the operation op is also placed before the start of the loop. Consider the example in figure 3.15.

Operations a and c of the original behaviour are shifted to the end of the loop body as well as

placed at the entry edge(s) of the loop. The modified FSMD is shown in figure 3.15 (b).

It is important to note that shifting operation(s) in a loop reduces the data dependencies among

the operations within the loop body. For example, if we consider the ith iteration of the loop in

60 CHAPTER 3. SCHEDULING VERIFICATION

(c) (d)

(a)
(b)

M Ä Ä0 , after compaction

!p Å
Æ Å p ¿a ¿ c

x ¿ y

q Ä Ä1 j0

q Ä Ä1 j1

q Ä Ä1 j2 q Ä Ä1 j4

p Å b ¿ a
Æ Å c ¿ d

M1, after adjustment

p Ç b È a ÉeÊ�Ë !p Ç x Ë y

a É Ë c ÉÌ Ç p Ëq1 j0

q1 j4q1 j2

q1 j1

a Í a É5Ë
a É

Ì Ç d È c É ÊAË
c Í c É Ë c É

a
b

d

c

data dependencies
in M0

Ì Ç p

!p Çp Ç
a Ë c

Ì Ç d

Ì Ç b
x Ë y

q0i0

q0i1

q0i4q0i2

q0i3

M0, original

Ì Ç d
p Ç b !p Ç

x Ë y

Ì Ç p Ë
a Ë cÌ Ç

a Ë c

q É1 j0

q É1 j2

q É1 j3

q É1 j1

q É1 j4

M «0 , after loop shifting

a cb
d

dependencies
within the loop body

in M Ä1

in M1

data dependencies

cba
d

c Îa Î

Figure 3.15: Loop shifting and compaction: An example

the original behaviour in the FSMD M0 of figure 3.15 (a), the value of the variable b depends on

a and the value of d depends on c. But, if we consider the ith iteration of the loop in M �0, then

the operations a and c of the loop body represent the operations corresponding to the
�
i � 1 � th

iteration of M0. So, the operations b and d in the loop body do not depend on the operations a and

c, respectively. The modified data dependencies in the shifted loop is shown in the dotted block in

figure 3.15 (b). As a result, the scope of concurrent execution of the operations increases within

the loop body. Specifically, it is possible to execute the operations b concurrently with a and the

operation c concurrently with d. The compacted FSMD is shown in figure 3.15(c).

Shifting an operation results in execution of the operation one more time than in the original

code. For example, if we consider n number of iterations of the loop body, then the operations a

and c execute n � 1 times in the compacted FSMD (figure 3.15 (c)) whereas they would execute

n times in the original description (figure 3.15 (a)). It needs to ensure that executing the shifted

operation one extra time does not change the behaviour of the program. In order to do so, it is

required to perform the following steps. Let the shifted operation be v Z f
� � . The first step is to

create an operation “w Z f
� � ” in place of the shifted operation, where w is a new variable. In the

3.7. CONCLUSIONS 61

second step, all the instances of the operation v Z f
� � in the loop body in the original behaviour

are replaced by two operations“v Z w” and “w Z f
� � ” in parallel. Finally, the operations

that use the variable ‘v’ in the loop body will now use the variable w instead of variable v. It is

demonstrated in figure 3.15 (d). The results of the shifted operations a and c are stored in a � and

c � , respectively. The operation a is replaced by a , a � and a � in the loop body. Thus, by the ith

iteration, a � is computed i � 1 times but a assumes the value of ith iteration. Similarly, the operation

c is also replaced. In the original behaviour, the operation b uses the variable a and the operation

d uses the variable c. Hence, they will now use the variable a � and c � , respectively. In the figure

3.15 (d), b
�
a � � indicates that the operation b uses the variable a � . Similarly, d

�
c � � indicates that

the operation d uses the variable c � .
This situation is similar to the speculation described in the subsection 3.6.8. So, the proposed

modification of the algorithm in that subsection can handle this situation. Here, we need to check

the equivalence between the FSMDs M0 in figure 3.15 (a) and M1 in figure 3.15 (d). For the paths

q0i0
� q0i1 and q0i1 /� p q0i4 in M0, q1 j0

� q1 j1 and q1 j1 /� p q1 j4 , respectively, are ascertained to be

the equivalent paths in M1. Now, while finding the equivalent path of β � q0i1 /� p q0i2
� q0i3

�
q0i1 , it was found that the variables a �
 c � (� V1 / V0) are used before they are defined along α �
q1 j1 /� p q1 j2

� q1 j1 . Hence, we need to find the paths that terminate in the state q1 j1 . The paths

q1 j0
� q1 j1 and q1 j1 /� p q1 j2

� q1 j1 are such paths. In both the paths, the same operations a �
and c � update the variables a � and c � , respectively. In fact, if the right hand side of the respective

operations is used as the input assertions for a � and c � , then α will become the equivalent path of β.

3.7 Conclusions

The verification of the scheduling process is discussed in this chapter. The difficulties of schedul-

ing verification have been identified. The modifications required in our basic equivalence checking

method are discussed. A scheduling verification algorithm is proposed. The correctness of the

algorithm is proved and the complexity of the algorithm is analyzed. Verification of basic block

based and path based scheduling algorithms are discussed next. It is found that our algorithm

works for both the cases. Performance of our algorithm for several code motion techniques are

discussed. It is shown that our algorithm verifies successfully the code motion techniques like,

renaming, common sub-expression elimination, early condition execution, conditional branch bal-

ancing, conditional speculation. The algorithm, however, fails for the case of speculation, reverse

62 CHAPTER 3. SCHEDULING VERIFICATION

speculation, loop shifting. The modifications of the algorithm are also proposed to handle these

code transformation techniques.

Chapter 4

Allocation and Binding Verification

4.1 Introduction

The scheduler assigns time steps to the operations of the input behaviour. The next task is to

identify suitable functional units (FUs) and storages units (registers) for the operations and the

variables, respectively, of the scheduled behaviour. This task is called allocation and binding. It

consists of four subtasks: FU allocation, FU binding, storage allocation and storage binding.

� FU allocation: A component library contains multiple types of functional units, each with

different characteristics (e.g., functionality, size, delay, etc.) and each implementing one or

several different operations. For example, an addition can be carried out by either a simple

but slow ripple carry adder or by a more complex but fast carry look-ahead adder. Also,

an adder or an adder/subtracter can be used to perform an addition operation. Thus, the

functional unit allocation subtask consists in selecting the number and the respective types

of different functional units from the component library.

� FU binding: After selection of all the functional units, the operations in the behaviour are

mapped into the set of selected FUs. This task is called FU binding.

� Storage allocation: The minimum number of registers required for storing the variables of

the scheduled behaviour is decided by storage allocation. The variables of the scheduled

behaviour having non-overlapping lifetimes may share the same register. The lifetime of a

variable v is the time interval between its first value assignment (that is, the first appearance

63

64 CHAPTER 4. ALLOCATION AND BINDING VERIFICATION

+ +

a b c d

e f

g h

(a)

++

s1

s2

b, e, g

ADD1

o1
 o3

(b)

ADD2

da
r1 r2 r3 r4

o3 o4

o1 o2

c, f, h

o2
 o4

Figure 4.1: An illustration of allocation and binding process: a. Scheduled behaviour b. After
allocation and binding

of v on the left-hand side of an assignment statement) and its last use (that is, the last ap-

pearance of v on the right-hand side of an assignment statement). The number of registers

allocated should be less than or equal to the number of variables in the behaviour.

� Storage binding: The variables of the behaviour are mapped to the selected registers by the

storage binding subtask.

Example 7 The allocation and binding process is illustrated in figure 4.1. Let us consider the

scheduled behaviour (given as a DFG) of figure 4.1(a). There are four operations o1
 o2
 o3
 o4 in

the behaviour and they are scheduled in two time-steps (s1 and s2). Also, there are eight variables

a
 b
 c
 d
 e
 f
 g
 h in the behaviour. Let us assume that two adders ADD1 and ADD2 are

selected by the FU allocation task. The operations o1, o3 and o2, o4 bind to ADD1 and ADD2,

respectively, as shown in figure 4.1(b). Also, there are only four registers allocated for the eight

variables. The variable sets
 a � ,
 b
 e
 g � ,
 c
 f
 h � and
 d � map to registers r1, r2, r3 and r4,

respectively.

0

4.2. OBJECTIVES 65

4.2 Objectives

The FUs and the registers are shared by the operations and the registers, respectively, of the sched-

uled behaviour. The objective of this phase of verification is to ensure the correctness of the

allocation and the binding process. This is achieved in two steps in this work. In the first step,

the correctness of the functional unit allocation and binding is ensured and in the second step, the

correctness of register sharing among the behavioural variables is verified.

4.3 Verification of Allocation and Binding of Functional Units

The objective of this step of verification is to ensure that the result of the functional unit allocation

and binding task satisfies the following two properties.

� Enough FUs are allocated: It needs to be ensured that the number of FUs performing a

certain type of operation must be equal to or greater than the maximum number of operations

of that type to be performed in any control step. In the example in figure 4.1, at most two

addition operations are performed in any control step. So, at least two adders have to be

allocated for this example.

� The operations of each control step are properly mapped to the FUs: The operations

that are scheduled in the same control step cannot be mapped to the same FU. For example,

the operations o1 and o2 cannot be mapped to the same adder in the example in figure 4.1

because they must be performed in the same control step s1. Similarly, the operations o3 and

o4 cannot be mapped to the same adder in this example. It may be noted that the operations

o1 and o3 can share a single adder because they are carried out in different control steps.

Thus, the operations o1 and o3 are both mapped to ADD1.

These two properties, however, need not be explicitly verified on the FU allocation and binding

results. They are automatically accounted for during the rewriting process in the data-path and the

controller verification phase; this will be discussed in the next chapter.

4.4 Register Sharing Verification

Several variables can be made to share a register if there respective lifetimes do not overlap. Con-

sider the situation in example 7 (figure 4.1). Here, only four registers are used to store eight

66 CHAPTER 4. ALLOCATION AND BINDING VERIFICATION

q2 � 0
q2 � 1
q22

q2 � 3
q2 � 4

q2 � 5
q2 � 6
q2 � 7
q2 � 8

Bº» R03 ¼ R01 Ï R12

Bº» R04 ¼ R20 Ï R00

Bº» R21 ¼ R02 Ï R03

Bº» R20 ¼ R20 B R02

Bº»�B

q2 � 9

Bº» v1 ¼ 3 Ï x
Bº» v6 ¼ u Ï dx

Bº» u ¼ v4 B v5

Bº» u ¼ P22

x Ð a » v1 Ñ 3 Ï x Bº» v2 ¼ v0 Ï v1

¾ v4 ¼ u B v2

q1 � 0
q1 � 1
q12

q1 � 3
q1 � 4

q1 � 5
q1 � 6
q1 � 7
q1 � 8
q1 � 9

¾ R10 ¼ P31

¾ R11 ¼ P12

Bº» R02 ¼ R01 Ï R11¾ R20 ¼ R20 B R21Bº» R11 ¼ R11 � R04¾ R02 ¼ R00 Ï R02

R03 Ñ R01 Ï R12

R12 Ð R10 »

q2 � 10

q2 � 11

Bº» R12 Ð R10

(b) M2

q2 � 13

Bº» Out Ò P2 ¾ R11 Ó ¾ Out Ò P1 ¾ R20 Óq2 � 12

! Ò R12 Ð R10 Ó » Out Ò P1 ¾ R12 Ó

(a) M1

q1 � 13

Bº» Out Ò P2 ¾ y Ó ¾ Out Ò P1 ¾ u Óq1 � 12

q1 � 11

Bº» x Ð a

q1 � 10

! Ò x Ð a Ó » Out Ò P1 ¾ x ÓBº»ÔB

Bº» v3 ¼ 3 Ï y

¾ y ¼ P12Bº» x ¼ P21

Bº» v0 ¼ u Ï dx

Bº» v5 ¼ dx Ï v3

Bº» dx ¼ P11 ¾ a ¼ P31

¾ x ¼ x � dx

¾ y ¼ y � v6

Bº» R00 ¼ P11 ¾ R01 ¼ 3

Bº» R12 ¼ P21

Bº» R20 ¼ P22

Bº» R12 ¼ R12 � R00¾ R02 ¼ R02 Ï R00

Figure 4.2: DIFFEQ Example: a. FSMD after scheduling b. FSMD after allocation & binding

variables. The objective of this verification step is to ensure that the registers are shared properly

among the variables. The equivalence checking method formulated in chapter 2 is useful here. The

variable set V1 of the FSMD M1 (the scheduled behaviour) and the variable set V2 of the FSMD M2

(the behaviour after allocation and binding), however, are different. Hence, the following mapping

informations are essential for equivalence checking and are to be provided by the synthesis tool.

4.4.1 The Mapping Functions

It may be recalled that the FSMD corresponding to the scheduled behaviour is denoted as M1 �� Q1
 q10
 I
 V1
 O
 f1
 h1 � and that corresponding to the output of the allocation and binding phase is

4.4. REGISTER SHARING VERIFICATION 67

denoted as M2 �+� Q2
 q20
 I
 V2
 O
 f2
 h2 � , where V2 is the set of registers. The following mappings

are introduced.

Definition 12 The state mapping function fsm : Q1 Õ Q2.

In the allocation and binding phase, the scheduler output is mapped to the hardware with specific

intention of using minimum number of registers, functional units (FUs), muxes, demuxes, etc.

Optimization like reduction of total time to execute has already been considered in the scheduling

phase. So, the FSMD structure in the output does not change from the input FSMD structure in

this phase. Hence, the function fsm is a bijection.

Definition 13 Register binding function frb: Q2 � V2
� V1 �¤
�Ö � maps the registers at each time

step in M2 to variables in M1, i.e., it defines the variable contained in a register at each state of

M2.

If frb
�
q2 � i
 r j � � vk � V1, then vk is said to be the variable corresponding to the register r j

and r j is said to be the register corresponding to the variable vk at the state q2 � i. The two basic

assumptions about the registers considered here are as follows.

1. The registers initially contain some garbage (undefined) values, denoted as Ö .

2. Once a value is stored in a register, it continues to hold it until the register has been updated

by some other value.

Register Lifetimes of the variables
R00 �8Ö
 q2 � 0
 q2 � 0 � , � dx
 q2 � 1
 q2 � 13 �
R01 �8Ö
 q2 � 0
 q2 � 0 � , � 3
 q2 � 1
 q2 � 13 �
R02 �8Ö
 q2 � 0
 q2 � 5 � , � v0
 q2 � 6
 q2 � 7 � , � v3
 q2 � 8
 q2 � 8 � , � v5
 q2 � 9
 q2 � 13 �
R03 �8Ö
 q2 � 0
 q2 � 3 � , � v1
 q2 � 4
 q2 � 13 �
R04 �8Ö
 q2 � 0
 q2 � 4 � , � v6
 q2 � 5
 q2 � 13 �
R10 �8Ö
 q2 � 0
 q2 � 0 � , � a
 q2 � 1
 q2 � 13 �
R11 �8Ö
 q2 � 0
 q2 � 1 � , � y
 q2 � 2
 q2 � 13 �
R12 �8Ö
 q2 � 0
 q2 � 1 � , � x
 q2 � 2
 q2 � 13 �
R20 �8Ö
 q2 � 0
 q2 � 2 � , � u
 q2 � 3
 q2 � 7 � , � v4
 q2 � 8
 q2 � 9 � , � u
 q2 � 10
 q2 � 13 �
R21 �8Ö
 q2 � 0
 q2 � 6 � , � v2
 q2 � 7
 q2 � 13 �

Table 4.1: Mapping of the registers to the variables for DIFFEQ example

68 CHAPTER 4. ALLOCATION AND BINDING VERIFICATION

The function frb is total in the sense that any register contains either the value of a variable or

the garbage value Ö at each state. The function frb, however, may not be a bijection as the vari-

ables may have non-overlapping lifetimes and accordingly share the same register. Consequently,

the number of registers in M2 is less than or equal to the number of variables in M1. This mapping

function can be constructed from the lifetime information of the variables obtained from the allo-

cation and binding information provided by any high-level synthesis tool. The mapping function

frb produced by our SAST tool for the DIFFEQ example of figure 4.2 is shown in table 4.1. The

tuple � v
 start
 end � for a register R indicates that the value of the variable v is stored in register R

from the state ‘start’ to the state ‘end’. For example, the tuple � v0
 q2 � 6
 q2 � 7 � for the register R02

in table 4.1 means that the variable v0 remains stored in R02 from the state q2 � 6 to the state q2 � 7.

4.4.2 Verification Issues

The control structure of M2 does not get modified by the allocation and binding process. Hence,

the strategy to select cutpoints in an FSMD and the verification method described in chapter 2 can

be used in register sharing verification. We, however, need to modify the definition of equivalence

of paths as the FSMDs M1 and M2 involve different variable sets with different cardinalities. The

modification is as follows.

Given two FSMDs M1 �h� Q1
 q1 � 0
 I
 V1
 O
 f1
 h1 � and M2 �h� Q2
 q2 � 0
 I
 V2
 O
 f2
 h2 �
and the mapping functions fsm and frb as defined in the previous section, the equivalence between

an expression of M1 and an expression of M2 is defined as follows.

Let the expression e1 over V1 � I at a state q1 � i of the FSMD M1 be denoted as e1 � q1 ¾ i ; similarly,

an expression e2 over V2 � I at a state q2 � j of the FSMD M2 be denoted as e2 � q2 ¾ j . Let
 vi . ri
 1)
i) l � denote a substitution, where vi is a variable of the set V1 and ri is a register of the set V2.

For any expression e over V2, let the symbol e
 vi . ri
 1) i) l � denote the expression obtained by

simultaneous substitution of vi for all occurrences of ri in e, 1) i) l.

The expression e2 � q2 ¾ j having occurrences of r1
 ���A�A
 rl from V2 is computationally equivalent to

e1 � q1 ¾ i if fsm
�
q1 � i � � q2 � j and e2 � q2 ¾ j
 f

�
q2 � j
 rk � . rk
 1) k) l � � e1 � q1 Ï i , where ‘ �®� stands for

syntactic identity. This computational equivalence is denoted as e2 � q2 ¾ j ^ e1 � q1 ¾ i . 1

Let, α1 �N� q1 � p � q1 �m � and α2 �@� q2 � r � q2 � s � be two paths in M1 and M2, respectively. Let

there be n variables in the behavioural specification (M1) and k registers in the data-path (i.e., in the

1Computational equivalence is in general denoted by the symbol × in this work.

4.4. REGISTER SHARING VERIFICATION 69

FSMD M2) for the given problem. Let the conditions be Rα1 � c11 O c12 O ����� O c1x and Rα2 �
c21 O c22 O �A��� O c2x and the data transformations be rα1 �@� sα1
 Oα1 � and rα2 �N� sα2
 Oα2 � . In

particular, note that the ordered tuple sα1 ��� e11
 e12
 a�aAa
 e1n � , where each e1i
 1) i) n, is an ex-

pression over I � V1 representing the value of the variable vi after the execution of the path α1 in M1

in terms of the initial data state of the path. Similarly, sα2 �?� e21
 e22
 a�aAa
 e2k � , where each e2i
 1)
i) k, is an expression over I � V2 representing the value of register ri after the execution of the path

α2 in M2 in terms of the initial data state of the path. Let the output list of the path α1 be Oα1 �ROUT
�
Py1
 e11 �
 OUT

�
Py2
 e12 �
g�A���A
 OUT

�
Pyu
 e1u � S ; it is possible that Py j � Pyk for some j !� k.

Let the output list of the path α2 be Oα2 �kROUT
�
Pz1
 e21 �
 OUT

�
Pz2
 e22 �
����A�A
 OUT

�
Pzv
 e2v � S .

The condition Rα1 is equivalent to Rα2 , denoted as Rα1 ^ Rα2 , if c1i � q1 ¾m ^ c2i � q2 ¾ s
�C i
 1) i)
x. The simple data transformations sα1 and sα2 are equivalent, denoted as sα1 ^ sα2 , if C i
 1)
i) k
ED j
 1) j) n s � t v j � frb

�
q2 � s ri �"O e1 j � q1 ¾m ^ e2i � q2 ¾ s . The output lists Oα1 and Oα2 are

equivalent if (i) u � v, (ii) Pyi � Pzi
 1) i) u and (iii) e1i � q1 ¾m ^ e2i � q2 ¾ s
 1) i) u. Now, the data

transformations rα1 and rα2 are equivalent, if sα1 ^ sα2 and Oα1 ^ Oα2 . Hence, the path α1 is said

to be equivalent to the path α2 if Rα1 ^ Rα2 and rα1 ^ rα2 .

4.4.3 Verification Algorithm

We have already discussed in subsection 4.4.1 that the structures of both M1 and M2 would be

the same and have equal number of states. As a result, the number of cutpoints would be equal

in M1 and M2; also the path covers P1 and P2 of M1 and M2, respectively, have the same number

of paths. For any given path α from P1 of the form � q1 � 1 /� s1
q1 � 2 /� s2

 a�a�a
 / �sn B 1
q1 � n � , there may

exist a set P �2 of more than one path from P2 of the form � q2 � 1 /� s «1 q2 � 2 /� s «2
 a�a�a
 / �s «n B 1
q2 � n � such

that C i
 1) i) n
 q2 � i � fsm
�
q1 � i � as there may be parallel edges between two states. The path

equivalent to α is to be found from the set P �2. The verification algorithm is given as algorithm 1.

4.4.4 An Example

In this subsection, how the verification of register sharing works is described with the DIFFEQ

example. The scheduled FSMD M1 and the corresponding FSMD M2 after allocation and binding

for the DIFFEQ example are shown in figure 4.2. The mapping function for this example is shown

in table 4.1.

According to our definition, the cutpoints in M1 are q1 � 0 and q1 � 11. Similarly, the cutpoints in

70 CHAPTER 4. ALLOCATION AND BINDING VERIFICATION

Algorithm 1 Verification algorithm for allocation and binding phase
Input: The FSMDs M1, M2 and the mapping functions fsm, frb.
Output: The ‘yes/no’ answer for “M1 is equivalent to M2”.
Method:
Insert cutpoints in M1 and in M2.
Find the path covers P1 and P2, where P1 is the set of paths of M1 and P2 is the set of paths of M2
and each path spans from a cutpoint to a cutpoint with no intermediary cutpoint;

C α � P1
do

P �2 � getPath
�
α
 P2 � ;

/* This function returns a set of paths from P2 corresponding to the path α */
for each β � P �2
begin

match = checkEquivalent
�
α
 β
 frb � ;

/* This function returns 1, if α ^ β; 0, otherwise */
if (match) break;

end for;
if (!match) Report:“M1 and M2 are not equivalent”; exit;

end do;
Report: “M1 and M2 are equivalent”;

Function : checkEquivalent
�
α
 β
 frb �

/* This function checks the equivalence between the path α of M1 and the path β of M2*/
begin

notEquivalent = 0;
compute

�
Rβ
 rβ
 β � ;

compute
�
Rα
 rα
 α � ;

/* compute functions compute the condition of execution and the data transformations
of a path */

if (!Rα ^ Rβ �
notEquivalent=1;

if (!sα ^ sβ �
notEquivalent=1;

if (!Oα ^ Oβ) notEquivalent = 1;
if (notEquivalent = 0) return 1;
else return 0;

end

4.4. REGISTER SHARING VERIFICATION 71

State dx x y a u v0 v1 v2 v3 v4 v5 v6
q1 � 0 - - - - - - - - - - - -
q1 � 1 P11 - - P31 - - - - - - - -
q1 � 2 P11 P21 P12 P31 - - - - - - - -
q1 � 3 P11 P21 P12 P31 P22 - - - - - - -
q1 � 4 P11 P21 P12 P31 P22 - 3 Ø P21 - - - - -
q1 � 5 P11 P21 P12 P31 P22 - 3 Ø P21 - - - - P22 Ø P11
q1 � 6 P11 P21 Ù P11 P12 P31 P22 P22 Ø P11 3 Ø P21 - - - - P22 Ø P11
q1 � 7 P11 P21 Ù P11 P12 P31 P22 P22 Ø P11 3 Ø P21 P22 Ø P11 Ø 3 Ø P21 - - - P22 Ø P11
q1 � 8 P11 P21 Ù P11 P12 P31 P22 P22 Ø P11 3 Ø P21 P22 Ø P11 Ø 3 Ø P21 3 Ø P12 Ú P22 Û - P22 Ø P11

P22 Ø P11 Ø 3 Ø P21 Ü
q1 � 9 P11 P21 Ù P11 Ú P12 Ù P31 P22 P22 Ø P11 3 Ø P21 P22 Ø P11 Ø 3 Ø P21 3 Ø P12 Ú P22 Û P11 Ø 3 Ø P12 P22 Ø P11

P22 Ø P11 Ü P22 Ø P11 Ø 3 Ø P21 Ü
q1 � 10 P11 P21 Ù P11 Ú P12 Ù P31 Ú P22 Û P22 Ø P11 3 Ø P21 P22 Ø P11 Ø 3 Ø P21 3 Ø P12 Ú P22 Û P11 Ø 3 Ø P12 P22 Ø P11

P22 Ø P11 Ü P22 Ø P11 Ø 3 Ø P21 P22 Ø P11 Ø 3 Ø P21 ÜÛ P11 Ø 3 Ø P12 Ü
q1 � 11 P11 P21 Ù P11 Ú P12 Ù P31 Ú P22 Û P22 Ø P11 3 Ø P21 P22 Ø P11 Ø 3 Ø P21 3 Ø P12 Ú P22 Û P11 Ø 3 Ø P12 P22 Ø P11

P22 Ø P11 Ü P22 Ø P11 Ø 3 Ø P21 P22 Ø P11 Ø 3 Ø P21 ÜÛ P11 Ø 3 Ø P12 Ü
Table 4.2: Computation of data transformation of the path q1 � 0 � q1 � 11 in M1

M2 are q2 � 0 and q2 � 11. The paths from one cutpoint to another without traversing through another

cutpoint in M1 are � q1 � 0 � q1 � 11 � , � q1 � 11 � q1 � 11 � and � q1 � 11 � q1 � 0 � and the corresponding paths

in M2 are � q2 � 0 � q2 � 11 � , � q2 � 11 � q2 � 11 � and � q2 � 11 � q2 � 0 � , respectively. The equivalence of every

corresponding pair of paths would be checked one-by-one by our verification algorithm. Let us

consider the pair α �h� q1 � 0 � q1 � 11 � and β �l� q2 � 0 � q2 � 11 � . The condition of execution is true

for both the paths. The data transformation for α is shown in (the last row of table) table 4.2.

The same for the path β is shown in (the last row) of table 4.3. The algorithm compares the final

value of a register, r say, at the state q2 � 11 with the final value of the variable frb
�
q2 � 11
 r � at the

state f � 1
sm
�
q2 � 11 � � q1 � 11. For example, the final value of the register R20 at q2 � 11 and that of the

variable u � frb
�
q2 � 11
 R20 � at q1 � 11 (obtained from the mapping information in table 4.1) is equal

and is
�
P22 / P22 � P11 � 3 � P21 / P11 � 3 � P12 � . Similarly, the final values of all the registers and those

of the corresponding variables can be shown to be equal. Hence, these two corresponding paths

are equivalent. The equivalence of other corresponding pairs of paths can be shown in a similar

manner. Hence, for the DIFFEQ example, the FSMD M1 is adjudged to be equivalent to the FSMD

M2 by the algorithm.

4.4.5 Performance of the Algorithm

There are two types of register optimization schemes commonly found in high-level synthesis

tools. They are carrier based [72] and value based [73]. If two or more variables have non-

overlapping lifetimes, then they are mapped to the same register in the carrier based register opti-

mization scheme. In the value based approach, the register optimization is modeled as the problem

72 CHAPTER 4. ALLOCATION AND BINDING VERIFICATION

State R00 R01 R02 R03 R04 R10 R11 R12 R20 R21
q2 � 0 - 3 - - - - - - - -
q2 � 1 P11 3 - - - P31 - - - -
q2 � 2 P11 3 - - - P31 P12 P21 - -
q2 � 3 P11 3 - - - P31 P12 P21 P22 -
q2 � 4 P11 3 - 3 Ø P21 - P31 P12 P21 P22 -
q25 P11 3 - 3 Ø P21 P22 Ø P11 P31 P12 P21 P22 -
q2 � 6 P11 3 P22 Ø P11 3 Ø P21 P22 Ø P11 P31 P12 P21 Ù P11 P22 -
q2 � 7 P11 3 P22 Ø P11 3 Ø P21 P22 Ø P11 P31 P12 P21 Ù P11 P22 P22 Ø P11 Ø 3 Ø P21
q2 � 8 P11 3 3 Ø P12 3 Ø P21 P22 Ø P11 P31 P12 P21 Ù P11 P22 Û P22 Ø P11 Ø 3 Ø P21 P22 Ø P11 Ø 3 Ø P21
q2 � 9 P11 3 P11 Ø 3 Ø P12 3 Ø P21 P22 Ø P11 P31 P12 Ù P22 Ø P11 P21 Ù P11 P22 Û P22 Ø P11 Ø 3 Ø P21 P22 Ø P11 Ø 3 Ø P21
q2 � 10 P11 3 P11 Ø 3 Ø P12 3 Ø P21 P22 Ø P11 P31 P12 Ù P22 Ø P11 P21 Ù P11 Ú P22 Û P22 Ø P11 Ø 3 Ø P21 P22 Ø P11 Ø 3 Ø P21Û P11 Ø 3 Ø P12 Ü
q2 � 11 P11 3 P11 Ø 3 Ø P12 3 Ø P21 P22 Ø P11 P31 P12 Ù P22 Ø P11 P21 Ù P11 Ú P22 Û P22 Ø P11 Ø 3 Ø P21 P22 Ø P11 Ø 3 Ø P21Û P11 Ø 3 Ø P12 Ü
Table 4.3: Computation of data transformation of the path q2 � 0 � q2 � 11 in M2

of mapping the data values, produced and used by the operations, into registers. Register optimiza-

tion is possible when two or more operations use the same data value and the life spans of the two

values do not overlap.

The input behaviours are either data-intensive or control-intensive in nature. Symbolic model

checking [45] is suitable for formal verification of control-dominated applications. For the control

intensive behaviours, the control flow is dependent on the arithmetic bit vector operations; an

efficient representation of the transition behaviour under such situations is difficult to obtain due to

the state space explosion problem [74]. The data intensive descriptions can be verified by means

of symbolic simulation [75]. This method, however, allows only reasoning for a finite number of

steps. More specifically, the loops in the description cannot be verified for an arbitrary number of

iterations [74].

In this subsection, we analyze these two important issues and show how our algorithm works

for these cases.

Register Optimization Schemes

In the carrier based approach, two or more variables share a register if their respective lifetimes

do not overlap. One variable always maps to only one register. Therefore, the mapping from the

specification variables to the registers is a many-to-one relation. In the value based approach, two

or more variables are assigned the same register if they use the same data value or the life span of

at least one data value used by each variable is non-overlapping to each other. It is obvious that a

variable during its lifetime may assume different values. Also, it is possible that the same value is

assigned to different variables. So, the association of specification variables and the registers is a

many-to-many relation.

4.5. CONCLUSIONS 73

In both these cases, at any state, each register must contain the value of only one variable and

this variable is called the variable corresponding to the register, in question, in that state. Also,

one variable is mapped to only one register at each state. During equivalence checking of two

corresponding paths, our algorithm compares the value of each register at the end state of that path

with the value of corresponding variable. Hence, the algorithm is independent of the schemes used

for register optimization.

Nature of the Input Specification

Our algorithm is also independent of the nature of the input specification. The control intensive

behaviours are decomposed into path segments by inserting cutpoints in all the branch states. This

set of path segments constitutes a path cover of the FSMD. Each path segment is then checked

for equivalence with the corresponding path segment in M2. Equivalence of all the corresponding

paths of the two FSMDs implies that for any computation of one FSMD, there is an equivalent

computation in the other FSMD. It means that for all possible executions, the registers are shared

properly. On the other hand, data-intensive specification, in general, have only one path in each

FSMD. Equivalence between these two paths proves the correctness of register sharing.

4.5 Conclusions

The verification of allocation and binding phase is discussed in this chapter. The verification task is

achieved in two steps. In the first step, the verification of FU allocation and binding is treated and

in the second step, correctness of register sharing among the behavioural variable is verified. The

correctness of the FU allocation and binding is defined in this work by two properties which are

automatically accounted for during the rewriting process used in the subsequent verification phase.

The verification of register sharing is done using the equivalence checking method proposed in this

chapter. It, however, needs some additional information like mapping between the states of two

FSMDs and the mapping between the registers and the variables in each state. Also, definition of

equivalence of paths between two FSMDs has been needed to be redefined. It is shown that our

register sharing verification method is independent of the nature of the input specification and the

register optimization schemes.

74 CHAPTER 4. ALLOCATION AND BINDING VERIFICATION

Chapter 5

Data-path and Controller Verification

5.1 Introduction

The allocation and binding process binds the variables to a set of registers and the operations to a

set of functional units (FUs) in each control step. The next task is to set the data-path by providing

a proper interconnection path from the source(s) to the destination for every register transfer (RT)

operation. This process of interconnection generation is called data-path generation. The objective

of this step is to maximize the sharing of interconnection units and hence minimize the intercon-

nection cost, while supporting the conflict-free data transfers required by the RT-operations. The

data-path generation task, in general, consists in identifying the scope of sharing of interconnection

paths among data transfer operations which do not take place simultaneously.

Example 8 Let us consider the situation depicted in figure 5.1. Let there be three RT-operations

scheduled in three control steps (CS) involving three registers and one FU (addition/subtraction)

with the allocation and binding information as shown in figure 5.1(a). As there is only one FU,

all the operations are bound to that. The data-path for the example is shown in 5.1(b). Let the

registers r1
 r2
 and r3 (the left operands of the three RT-operations) be assigned to the left input

of the FU and r2 and r3 be assigned to the right input of the FU. Hence, a multiplexer M1 is used

for the left input f Lin and the multiplexer M2 is used for the right input f Rin of the FU. Also, the

FU output is stored in the register r1 in control step 2 and in the register r3 in the control steps

1 and 3. As such, any data transfer from an FU output to more than one register can share a

common bus even if they take place simultaneously. Accordingly, all the three transfers from the

75

76 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

+/-

1

2

3

RT-operationCS

r3 , r1 � r3

r1 , r3 / r2

Scheduled RT-operations

Set of registers

r1 r2 r3

(a) Allocation & binding results

Set of FU

r3 , r2 � r3

FU

M2M1

r1 r2 r3

fLin fRin

r1 out
r3 out

r2 out

fOut

(b) Generated data-path

FU

r1r2r3

M1

(c) An optimized data-path

Figure 5.1: Data-path generation: An example

FU output to the registers are performed using a single bus (f Out). It may be noted that the data-

path shown in figure 5.1(c) provides for the above three operations incurring less cost. Minimizing

such interconnection cost is what is accomplished during data-path generation. The data-path

shown in figure 5.1(b) is, however, considered as the running example in the rest of this chapter to

show different aspects of data-path and controller verification.

0

The minimum number of control signals required to control all the data transfers in each control

step is found next. Then, the functionality of each control signal is defined. Finally, the control

assertion pattern needed in each control step is found. These processes are collectively called

controller generation. The controller, represented as an FSM, assigns a value to each control

5.1. INTRODUCTION 77

signal, that is, a control assertion pattern, in each control step to execute all the required data-

transfers and proper operations in the FUs. As a result, a set of arithmetic operations as well as a

set of relational operations are performed in the data-path. The results of the relational operations

are stored in single bit registers whose outputs (status signal) are inputs to the controller. The state

transitions in the controller FSM depend on these status signals. Finally, a high-level synthesis

(HLS) tool produces an RTL with distinct control-path and data-path (CP-DP). The schematic of

the RTL produced by any HLS tool is shown in figure 5.2.

Contral signals

Status signals

ControllerData-path

Figure 5.2: The structure of the RTL description produced by any HLS tool

FU

M2M1

r1 r2 r3

fLin fRin

r2 out

r1 out

CS M11

r3 out

CS M10 CS M2

CS FU

fOut

CS r1Ld CS r3Ld

Figure 5.3: Data-path with control signals

Example 9 The data-path of figure 5.1(b) is redrawn as figure 5.3 with the control signals. Six

control signals are required for this data-path. The functionalities of the control signals are as

follows:

78 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

f Lin , r1 out : CS M11 � 0 O CS M10 � 0

f Lin , r2 out : CS M11 � 0 O CS M10 � 1

f Lin , r3 out : CS M11 � 1

f Rin , r2 out : CS M2 � 1

f Rin , r3 out : CS M2 � 0

f Out , f Lin � f Lin : CS FU � 0

f Out , f Lin / f Rin : CS FU � 1

r1 , f Out : CS r1Ld � 1

r3 , f Out : CS r3Ld � 1.

The interpretation of the statement f Lin , r1 out : CS M11 � 0 O CS M10 � 0 is as follows:

“if CS M11 � 0 and CS M10 � 0, then the micro-operation f Lin , r1 out occurs in the data-

path”. Other statements are interpreted likewise.

0

5.2 Verification Goal

The objective of this phase of verification is to ensure the correctness of both the data-path inter-

connections and the controller FSM. The goals are accomplished in two steps as shown in figure

5.4. First, the FSMD M3 is constructed from the data-path interconnection informations and the

controller FSM. Several inconsistencies, both in the data-path and the controller, are revealed dur-

ing construction of the FSMD M3. In the next step, equivalence between the FSMDs M2 and M3

is established to verify the correctness of the controller. For this phase of synthesis, a state based

equivalence checker suffices in contrast to the path-based one used for the previous phases 1.

5.3 Construction of the FSMD M3

The final output of the high-level synthesis is a control-path and a data-path (CP-DP) so that (i)

all the register transfer operations and the status condition checking operations in M2 are indeed

provided for by the DP components and their interconnections and (ii) the set of control signal

assertions generated and status signals sensed in the states of the controller FSMD M3 do realize

the corresponding register transfers of the FSMD M2.

1In a state based equivalence checker, the equivalence is established between the states of the two FSMDs; whereas,
in a path based equivalence checker, the equivalence is established between the paths of the two FSMDs.

5.3. CONSTRUCTION OF THE FSMD M3 79

step 1

FSMD
Construction

Equivalence

Checking

step2

data-path

... ...

FSMD M2

!s » r3 ¼ r3 B r4

B r1 ¼ r1 � r2 ¾
s » r4 ¼ r4 B r3

s ¼ r3 Ý r4... ...
Controller FSM

����Þ 1 � 0 � 0 � ß ß � 1 �
s ��Þ 1 � 1 � 0 � ß ß ß � 1 �

!s ��Þ 0 � 1 � 0 � ß ß ß � 0 �
control assertion

pattern

......

FSMD M3

!s à r3 á r3 Û r4

Û r1 á r1 Ù r2 â
s ¼ r3 Ý r4

s à r4 á r4 Û r3

yes/no

Figure 5.4: The steps of data-path and controller verification

Construction of the FSMD M3 consists of of following steps:

� Analyze the data-path vis-a-vis the control signal assertion pattern in each state of the con-

troller FSM to construct the RT-operations in that state.

� Replicate the control flow of the controller FSM for the FSMD M3.

The following two informations have to be extracted from the CP-DP description in order to find

the register transfer (RT)-operations in each state of the FSMD M3.

1. The set of all possible micro-operations in the data-path. Let this set be denoted as � .

A data movement from a data-path component y to another data-path component x is en-

coded by the micro-operation x , y. The data-path components essentially are storage el-

ements (registers), the functional units and the interconnection components (buses, muxes,

de-muxes, switches, etc.).

2. The control signal assertion pattern for every micro-operation in � . A control signal asser-

tion pattern needed for any micro-operation is represented as an ordered n-tuple of the form

80 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

� u1
 u2
A�����c
 un � , where ui represents the value of the control signal ci and n is the number of

control signals; ui �
 0
 1
 X �
 1) i) n
 is the asserted value of ci. ui � X implies that the

control signal ci is not required (relevant) for a particular micro-operation. Let � be the set

of all possible control assertion patterns. So, a function fmc is constructed from the set � of

all micro-operations possible in the given data-path to the set � of control signal assertion

patterns. The DP interconnection is achieved by common signal naming. In order words,

if a DP component’s output line is connected to another component’s input line, then they

have the same signal name. Thus, the data-path structure, in its entirety, is captured by the

function fmc. Obviously, all the elements of the set � are not involved in the function fmc.

Only t number of assertion patterns (one for each micro-operation) constitute the range of

fmc, where t is the umber of micro-operations possible in the DP. In other words, the function

fmc : � � � is a one-one (injective) mapping but not an onto (surjective) mapping.

In each state of the FSM, the controller generates a control signal assertion pattern to execute

a set of micro-operations in the data-path to accomplish a set of register transfer operations con-

currently. So, the next task is to obtain the set of micro-operations � A (�ã�) for a given control

assertion pattern A. It is, however, not possible to obtain the set � A of micro-operations directly

from the control signal assertion pattern A by examining its individual control signals because a

micro-operation may be accomplished by a set of control signals rather than an individual control

signal. There is no information available in an assertion pattern to group the control signals so that

each group defines a micro-operation around a data-path component. The following definition is

in order.

Definition 14 Superposition of Assertion patterns:

Let A1 and A2 be two arbitrary control signal assertion patterns. Let πi
�
A � denote the i-

th projection of an assertion pattern A which is the asserted value ui of the control signal ci.

The assertion pattern, A1 θ A2, obtained by superposition θ of A1 and A2, satisfies the following

conditions. For all i,

πi
�
A1 θ A2 � � πi

�
A1 �
 f or πi

�
A1 � � πi

�
A2 �� πi

�
A1 �
 f or πi

�
A1 � !� πi

�
A2 � and πi

�
A1 � � X

� unde f ined
�
U �
 f or πi

�
A1 � !� πi

�
A2 � and πi

�
A1 � !� X.

Using the above definition and the function fmc, it is possible to construct � A from the as-

sertion pattern A by the following definition of � A: � A=
 µi � fmc
�
µi � θ A � fmc

�
µi �m� . Let us

5.3. CONSTRUCTION OF THE FSMD M3 81

consider the superposition of the assertion pattern for a micro-operation µ and a given control as-

sertion pattern A. It may be noted that each bit in A is either ‘1’ or ‘0’ and does not contain any

‘X ’ as it is generated by the controller circuit and the output of any circuit can be either ‘0’ or ‘1’.

On the other hand, the ordered tuple that represents fmc
�
µ � may contain ‘X ’ in its ith position if

the ith control signal is not involved in µ. If any position i in the ordered tuple fmc
�
µ � contains

‘X ’, i.e., πi
�
fmc
�
µ �A� � X , then the corresponding position in fmc

�
µ � θ A, that is, πi

�
fmc
�
µ � θ A � ,

will also contain X . Now, consider a position j in fmc
�
µ � which contains 0 or 1. If µ is executed

by A, then the corresponding position in the ordered tuple A should contain the same value, that

is, π j
�
fmc
�
µ ��� � π j

�
A � . As a result, fmc

�
µ � θ A becomes fmc

�
µ � if it is performed by the assertion

pattern A. The superposition of the assertion pattern of each micro-operation in � and A will be

checked one by one to select each member of � A.

Each RT operation that appears in the RTL behaviour is accomplished by a set of concurrent

micro-operations. For example, an RT-operation r3 , r1 � r2 may be accomplished over the data-

path in figure 5.1(b) by the concurrent micro-operations r1 out , r1, r2 out , r2, f Lin , r1 out,

f Rin , r2 out, f Out , f Lin � f Rin, r3 , f Out. It is assumed that the FU performs addition

operation on its two input data. So, in order to find the concurrent RT-operations accomplished by

a control assertion pattern, it is necessary to find the operations realized by the set � of concurrent

micro-operations.

Finding an RT-operation from a given set of micro-operations is also not trivial because of

two reasons. First, there may be more than one RT-operation in that particular state of the FSM.

Secondly, there is a spatial sequence of concurrent micro-operations needed to accomplish an RT-

operation but these are available in an unordered manner in � A.

The RT-operations accomplished by the set � A of micro-operations are identified using a

rewriting method. The method also reveals the spatial sequence of data flow needed for an RT-

operation in a reverse order (from the destination register back to the source registers). The ba-

sic rewriting method consists in rewriting terms one after another in an expression. The micro-

operations in which a register occurs in the left hand side (lhs) are found first. Such a micro-

operation has the form r , r � in, where r is a register and r � in is its input terminal. Next, the right

hand side (rhs) expression “r � in” is rewritten by looking for a replacement (micro-operation) in

� A of the form “r � in , s” or “r � in , s1 (op $ s2”. So, after rewriting “r � in”, we have the rhs

expression, either of the form “s” or of the form “s1 (op $ s2”. In the next step, s (or s1 and s2

for the latter case) are rewritten provided they are not registers. When the expression in hand is

82 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

of the form “s1 (op $ s2” (and s1, s2 are not registers), then rewriting takes place from left to

right in a breadth-first manner. Thus, at any point of time, the expression in hand can be of the

form “
���

s1 (op1 $ s2 � (op2 $ s3 � (op3 $qä@����� ”, where the pointer indicates the signal to

be rewritten next. The process terminates successfully when all si’s in the expression in hand are

registers. The rewriting method is given in the subsequent subsection.

The control structure of the FSMD M3 can be obtained from the controller FSM and the RT-

operations of each control state can be constructed by the mechanism described above.

5.3.1 Construction of the FSMD M3: An Example

Let us consider the data-path shown in the figure 5.3. In this figure, r1
 r2
 r3 are registers, M1
 M2

are multiplexers, FU is a functional unit and r1 out
 r2 out
 r3 out
 f Lin
 f Rin
 f Out are in-

terconnection wires. The control signal names start with CS. The functionalities of the control

signals have been described earlier in example 9. The set of all micro-operations � possible in

the data-path of figure 5.3 is as follows:

� �+
 r1 out , r1
 r2 out , r2
 r3 out , r3

f Lin , r1 out
 f Lin , r2 out
 f Lin , r3 out

f Rin , r2 out
 f Rin , r3 out

f Out , f Lin � f Rin
 f Out , f Lin / f Rin

r1 , f Out
 r3 , f Out � .

Let the order of the control signals in a control signal assertion pattern be

CS M11 Q CS M10 Q CS M2 Q CS FU Q CS r1Ld Q CS r3Ld. It may be noted that the micro-

operations f Lin , r1 out and f Lin , r2 out depend on more than one control signal (on both

CS M11 and CS M10).

The function fmc from the set of micro-operations � to the set of all possible control assertion

patterns � is given in table 5.1. This function can be obtained from the output of any HLS tool

containing the RTL behaviour of each component used in the data-path.

Let A �k� 1
 0
 1
 1
 1
 0 � be the control assertion pattern in a particular state of the controller

FSM. The set of micro-operations � A for this control assertion pattern A is determined as follows.

The superposition of the control assertion pattern of each micro-operation and the pattern A is

checked one by one to decide whether to include that particular micro-operation in � A or not. This

process is tabulated in table 5.2. In the table, U denotes the undefined value. So, � A =
 r1 out ,

5.3. CONSTRUCTION OF THE FSMD M3 83

Micro-operations Corresponding control assertion patternå
CS M11 æ CS M10 æ CS M2 æ CS FU æ CS r1Ld æ CS r3Ld ç

r1 out è r1
å
X æ X æ X æ X æ X æ X ç

r2 out è r2
å
X æ X æ X æ X æ X æ X ç

r3 out è r3
å
X æ X æ X æ X æ X æ X ç

f Lin è r1 out
å
0 æ 0 æ X æ X æ X æ X ç

f Lin è r2 out
å
0 æ 1 æ X æ X æ X æ X ç

f Lin è r3 out
å
1 æ X æ X æ X æ X æ X ç

f Rin è r2 out
å
X æ X æ 1 æ X æ X æ X ç

f Rin è r3 out
å
X æ X æ 0 æ X æ X æ X ç

f Out è f Lin é f Rin
å
X æ X æ X æ 0 æ X æ X ç

f Out è f Lin ê f Rin
å
X æ X æ X æ 1 æ X æ X ç

r1 è f Out
å
X æ X æ X æ X æ 1 æ X ç

r3 è f Out
å
X æ X æ X æ X æ X æ 1 ç

Table 5.1: The function fmc from the set � to the set �
Micro-operation Control assertion pattern of µ fmc ë µ ì θ A in í A?ë µ ì ë fmc ë µ ìYì (yes/no)

r1 out è r1
å
X æ X æ X æ X æ X æ X ç å

X æ X æ X æ X æ X æ X ç yes
r2 out è r2

å
X æ X æ X æ X æ X æ X ç å

X æ X æ X æ X æ X æ X ç yes
r3 out è r3

å
X æ X æ X æ X æ X æ X ç å

X æ X æ X æ X æ X æ X ç yes
f Lin è r1 out

å
0 æ 0 æ X æ X æ X æ X ç å

U æ 0 æ X æ X æ X æ X ç no
f Lin è r2 out

å
0 æ 1 æ X æ X æ X æ X ç å

U æ U æ X æ X æ X æ X ç no
fLin è r3 out

å
1 æ X æ X æ X æ X æ X ç å

1 æ X æ X æ X æ X æ X ç yes
fRin è r2 out

å
X æ X æ 1 æ X æ X æ X ç å

X æ X æ 1 æ X æ X æ X ç yes
f Rin è r3 out

å
X æ X æ 0 æ X æ X æ X ç å

X æ X æ U æ X æ X æ X ç no
f Out è f Lin é f Rin

å
X æ X æ X æ 0 æ X æ X ç å

X æ X æ X æ U æ X æ X ç no
fOut è fLin ê fRin

å
X æ X æ X æ 1 æ X æ X ç å

X æ X æ X æ 1 æ X æ X ç yes
r1 è fOut

å
X æ X æ X æ X æ 1 æ X ç å

X æ X æ X æ X æ 1 æ X ç yes
r3 è f Out

å
X æ X æ X æ X æ X æ 1 ç å

X æ X æ X æ X æ X æ U ç no

Table 5.2: Construction of the set � A from the function fmc for the control assertion pattern
A �k� 1
 0
 1
 1
 1
 0 �

r1
 r2 out , r2
 r3 out , r3
 f Lin , r3 out
 f Rin , r2 out
 f Out , f Lin / f Rin
 r1 ,
f Out � .

The micro-operation in which a register occurs in the left hand side is r1 , f Out. The sequence

of rewriting steps for this micro-operation is as follows:

r1 , f Out

, f Lin / f Rin [by the micro-opn. f Out , f Lin / f Rin]
�
step 1 �

84 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

, r3 out / f Rin [by the micro-opn. f Lin , r3 out]
�
step 2 �, r3 out / r2 out [by the micro-opn. f Rin , r2 out]
�
step 3 �, r3 / r2 out [by the micro-opn. r3 out , r3]

�
step 4 �, r3 / r2 [by the micro-opn. r2 out , r2]

�
step 5 �

So, the RT-operation r1 , r3 / r2 is executed by the given control assertion pattern A of a state

of the FSM and the forward spatial sequence of the micro-operations for this RT-operation is the

reverse order in which they are used in the above rewriting steps; more specifically, therefore, the

forward sequence is r2 out , r2, r3 out , r3, f Rin , r2 out, f Lin , r3 out, f Out , f Lin /
f Rin, r1 , f Out.

The RT-operations for all other states of the FSM can be found out in a similar manner.

5.3.2 A Rewriting Method

Algorithm 2, given below, depicts the method of finding the set of RT-operations from a set � A of

micro-operations. This algorithm uses a function namely f indRewriteSeq to find an RT-operation

over the data-path using � A starting from a micro-operation having a register as its lhs term. This

function is given as algorithm 3.

Algorithm 2 Algorithm to find a set of RT-operations accomplished by a set of micro-operations
Input: The set of micro-operations � A for a given control assertion pattern A.
Output: A set of RT-operations RTA accomplished by � A.
Method:
Let � �A be
 µ � µ � � A � and µ has a register as its lhs term � ;
for each µ in �î�A

replaced � φ;
Seq R 0 S�, µ;
µ Z f indRewriteSeq

�
µ
K� A
 replaced
 Seq
 1 � ;

/* “µ” - initially a micro-operation which is finally transformed to an RT-operation by the function
“replaced” - used by the function to detect if a data flow loop is set up by the control assertion.
“Seq” contains the final sequence of micro-operations used in rewriting - depicts the data flow
in reverse, which obtains the RT-operation. */
RTA � RTA �z
 µ � ;�

5.3. CONSTRUCTION OF THE FSMD M3 85

Algorithm 3 The findRewriteSeq function
Function: f indRewriteSeq

�
µ
H� A
 replaced
 Seq
 i �

/* Starting with the micro-operation µ, this function finds an RT-operation from the set of micro-
operations � A. At the end of successful execution of the function, µ stores the computed RT-
operation. This function also stores the rewriting sequence in the array Seq in an ordered manner.
The variable replaced is used to store the terms which have been replaced during the rewrite
process. */

Let s be the leftmost non-register signal in the rhs expression of µ.
if (No non-register signal in the rhs expression of µ)

Report (“the RT operation found is µ”); /* terminates successfully */
return µ;�

else if (s � replaced)

Report (“loop set up in the data-path by the control assertion”);
return empty RT-operation;�

else

Let � s ï � A be the set of micro-operations s.t. each member of � s has s as its lhs signal.
if (� s ��� φ) /* No micro-operation found in � A which has s as its lhs signal */

Report(”Inadequate set of micro-operations”);
return empty RT-operation;�

else if (� � s � $ 1) /* � s contains more than one micro-operation */

Report (”data conflict”); /* more than one driver activated for a signal */
return empty RT-operation;�

else /* � s contains a single micro-operation. */

Let Ms �+
 m � ;
Seq R i S�� m;
replace the leftmost occurrence of s in the rhs expression of µ with the rhs expression of m;
replaced � replaced �z
 s � ;
return f indRewriteSeq

�
µ
H� A
 replaced
 Seq
 i � 1 � ;��� /* End of the function */

86 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

5.3.3 Correctness and Complexity of Algorithm 2

Correctness of the algorithm

The correctness of the rewriting algorithm depends directly on the correctness the function find-

RewriteSeq which is given by the following theorems.

Theorem 4 (Termination) The function f indRewriteSeq always terminates.

Proof 4 There are only a finite number of signals in the data-path. The function may terminate in

one of the four ways namely, (i) it returns after finding an RT-operation successfully, (ii) it detects

“loop set up in the data-path by the control assertion” and returns, (iii) it detect ”Inadequate set of

micro-operations” and returns or (iv) it detects “data-conflict” and returns. If a recursive invoca-

tion does not detect one of the error situations (ii), (iii) or (iv) above, then it must replace a term in

the rhs expression of µ and enhance the set “replaced”. Hence, if the function invokes itself more

number of times than the number of signals in the data-path, then the set “replaced” will finally

contain all the signals of the data-path and there will be no more terms in the rhs expression of µ

which is replaceable; the next invocation of the function should, therefore, terminate on situation

(i) or (ii).

Definition 15 Forward rewriting by a micro-operation:

An expression e is said to be obtained from an expression e � by forward rewriting by a micro-

operation s , er, if e can be obtained by replacing one or more occurrences of er in e � by s.

It may be noted that in the algorithm, the rewriting of an expression e1, at hand, by a micro-

operation µ of the form s , e2 is carried out by replacing the occurrence of the lhs signal s of µ in

the expression e1 by the rhs expression e2 of µ. In contrast, the forward rewriting does the opposite,

in keeping with the direction of data flow represented by the micro-operation (hence the name).

Lemma 2 (Realizability of an RT operation): An RT operation r , e is realizable over the data

path if there exists a sequence σ of micro-operations (over the data path) such that the expression

“r” is obtained from the expression e by forward rewriting of e by the members of, and according

to, the sequence σ.

Proof: Every micro-operation over a data path is realizable over it. Thus, if an expression e is

obtainable from an expression e � by forward rewriting of e � by some micro-operation, then an RT

5.3. CONSTRUCTION OF THE FSMD M3 87

of the form r , e � is realizable over the data path, if r , e is realizable over the same. The proof

follows by repeated applications of the above argument over the sequence σ.

Theorem 5 (Soundness): If the function findRewriteSeq terminates successfully, then the algo-

rithm finds an RT operation which is realizable over the data path by the control assertion pattern

A.

Proof 5 Let the function terminate successfully and the algorithm obtain “Seq” as � µ0
 µ1
 a�aAa
 µk �
and an RT operation r , e, p say. Let us consider the reverse of “Seq” = � µk
 a�a�a
 µ1
 µ0 �s� σ,

say. Since the algorithm changes only the right hand side (rhs) of µ0, the last member µ0 in σ must

have r as the lhs register. Let µ0 be r , e0. Let the (rhs) expression obtained after application of

µi in “Seq” be ei. Clearly, ek � e, the rhs of p, the RT operation returned by the algorithm. In the

following, we prove that the RT operation r , ei is realizable by the sequence � µi
 a�a�a
 µ1
 µ0 �m
 0)
i) k, by induction on i. Hence, in particular, r , ek (= p) is realizable by σ.

(Basis i � 0): r , e0 (� µ0) is realizable since all micro-operations are realizable.

(Induction step): Let r , ei be realizable by � µi
 a�a�a
 µ1
 µ0 � . Let ei be of the form e � se �´� , where s is

the leftmost non-register signal in ei, that is, e � contains only register signals. So, from the step(s)

of the algorithm, µi F 1 must be of the form s , er and the algorithm obtains ei F 1 as e � ere �T� . From

induction hypothesis it follows that the RT operation r , ei F 1
� � r , e � ere �´� � is realizable by the

sequence � µi F 1
 µi
 a�a�a
 µ1
 µ0 � .
Theorem 6 (Completeness) If there is an RT-operation p which is realizable using the micro-

operation in � A, then the algorithm returns the sequence of micro-operations corresponding to

the in-order traversal of the parse tree of p.

Proof 6 Let an RT operation p be realizable using the micro-operations in Ma; let p be of the form:

r , e. From lemma 2, there exists a sequence of micro-operations such that the expression “r” is

obtained by forward-rewriting of e by applying the sequence. Without loss of generality, let this se-

quence correspond to the traversal of the parse tree of p in the order � � realize � rightsubtree
 le f t

subtree
 root � which is a variation of the postorder traversal (with an interchange of order be-

tween the subtrees). We refer to this traversal order as postorder (ignoring the variation). Let the

sequence σ be � µ0
 µ1
 aAa�a
 µk � . We now prove that the algorithm realizes the in-order traversal of

the parse tree, that is, � root
 le f t subtree
 right subtree � (because of the “replace-leftmost-signal-

first” approach) and accordingly returns the sequence µ ��� µk
 µk � 1
 aAa�a
 µ0 � which is the reverse of

88 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

σ. We accomplish these two steps by induction on the depth i of the parse tree of the RT operation

p.

(Basis i � 1): The RT operation p is just a micro-operation, ν say. The parse tree comprises the

root and a leaf and the link corresponds to ν. In this case, µ � σ �k� ν � .
(Induction step): Suppose that the algorithm can find the sequence of micro-operations corre-

sponding to the in-order traversal of the parse tree of any realizable RT-operation of depth i. In

particular, therefore, this sequence minus its first element realizes the in-order of the parse tree of

the rhs expression of the RT operation.

Now, let the depth of the parse tree of the RT operation p be i � 1. We have the following two

cases:

case 1: p is of the form r , e. Let the sequence σ corresponding to the postorder traversal

of the parse tree of p be � µ0
 µ1
 a�a�a
 µk � . Obviously, the sequence σ � �k� µ0
 a�a�a
 µk � 1 � realizes (the

postorder traversal of the subtree of) e. The parse tree of e has depth i and hence, by induction

hypothesis,the algorithm finds the reverse of σ � , that is, the sequence µ F �l� µk � 1
 a�a�a
 µ0 � . The

last member µk � σ pertains to the realization of the root (according to postorder); also, from

the definition of realizability of RT operation it follows that µk must be of the form r , e so that

its application as the last one in the sequence σ renders e to r. Thus, it is found first by the

algorithm before finding µ F . So the algorithm realizes the the sequence µ �ð� µk
 µk � 1
 a�a�a
 µ0 �
which corresponds to the in order traversal of the parse tree of p and is the reverse of σ.

case 2: p is of the form r , e1 � op � e2. The sequence σ �@� µ0
 µ1
 a�a�a
 µk � corresponding to the

postorder traversal of the parse tree of p can be split into three subsequences σ2 ��� µ0
 µ1
 a�a�a
 µi � 1 � ,
σ1 ��� µi
 µi F 1
 a�aAa
 µk � 1 � and σ3 �ñ� µk � , where σ2 corresponds to the postorder traversal of the right

subtree of p (i.e., the parse tree of e2), σ1 corresponds to the left subtree of p (i.e., the parse tree

of e1) and σ3 corresponds to the root. Also, from realizability of p it follows that µk is of the form

r , e1 � op � e2. The algorithm identifies this as µ0. The parse trees of e1 and e2 are of depths) i.

So, from induction hypothesis, the algorithm realizes the in order traversal of e1 followed by the in

order traversal of e2 obtaining the sequence ν1 as the reverse of σ1 followed by ν2 � reverse
�
σ2 � ,

that is, the sequence � µk � 1
 aAa�a
 µi F 1
 µi
 µi � 1
 a�aAa
 µ1
 µ0 � . So the algorithm returns the sequence

� µk
 µk � 1
 a�aAa
 µi F 1
 µi
 µi � 1
 a�aAa
 µ1
 µ0 � which corresponds to the in order traversal of the parse tree

of p and is the reverse of σ.

5.4. VERIFICATION DURING CONSTRUCTION OF FSMD M3 89

Complexity of the Rewriting Method

Let the number of FUs, registers and the interconnect components (like, mux, demux, switch etc.,)

altogether be c. Let the number wires and the registers in the data-path be w and r, respectively. The

number of micro-operations possible in the data-path is O
�
wc � . So, the number of micro-operations

in � A is O
�
wc � . Let us consider the function f indRewriteSeq. In each invocation of the function,

one term (wire) is rewritten and no term is rewritten more than once. Hence, number of invocations

of the function is O
�
w � . The complexity to the function termToRewrite is O

�
w � . The complexity to

determine whether s � replaced is O
�
w � . The complexity of the function findMicroOpn is O

�
wc � .

So, the complexity of the function f indRewriteSeq is O
�
w
�
w � w � wc �A� � O

�
w2c � . The number

of micro-operations in � �A is O
�
r � . Hence, the complexity of the rewriting method is O

�
w2cr � .

5.4 Verification During Construction of FSMD M3

Several inconsistencies in the data-path interconnections and in the control signal assertion patterns

can be detected during construction of the FSMD M3. They are discussed as follows.

� Inadequate set of micro-operations performed by a control assertion pattern: It occurs when

no micro-operation is selected by the rewriting rule in a certain step of the rewriting process

before the terminating condition (that is, all the terms in the rhs expression are registers)

is reached. This situation arises due to either of following two reasons: (i) interconnection

between two data-path components is not actually set by the control pattern but is required to

complete an RT-operation and (ii) the control signals are asserted in a wrong manner which

leads to a situation where the required data transfer is not possible in the data-path.

� Data conflict: It occurs when more than one replacement are found for a non-register term

in any step of the rewriting process. It means more than one data from different data-path

components try to pass through a single data-path component which obviously causes a data

conflict. It arises due to wrong control assertion pattern.

� One non-register data-path component can be assigned by only one value in a particular

control step. If a non-register term is rewritten twice during the rewriting process, then it

implies an improper control assertion pattern or a loop in the data-path structure without

having any register.

90 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

The correctness of the functional unit (FU) allocation and binding tasks are already defined by in

section 4.3 by the following two properties.

1. Enough FUs are allocated.

2. The operations in each control step are properly mapped to the FUs

The verification of these two properties is also performed during the rewriting process. If one or

both of these two properties do not hold, then the rewriting method will report some erroneous

situations. Let the 1st property does not hold. As a result of this, the following two situations

might occur

1. Some operations are not bounded to any FU,

2. Two or more operations are mapped to the same FU.

The rewriting method will fail to find any replacement for some non-register term in course of

rewriting process and reports “Inadequate set of micro-operations” in the situation 1. It will find

more than replacements for some non-register term in the situation 2; hence reports “data conflict”.

If the 2nd property does not hold, then two or more operations scheduled in the same time step are

mapped to the same FU. As a result of it, the situation 2 will occurs. In this case also, the rewriting

process reports “data conflict”.

5.4.1 Redundancy Optimization in the Data-path and in the Controller

It might happen that some micro-operations in the set � A are never selected by the rewriting rule

for a control assertion pattern A. It means that these micro-operations are not required for the RT-

operations performed by the assertion pattern A and one may find more proper assertion pattern

A � so that � A « does not contain these extra micro-operations. One may note that some micro-

operations happen always in the data-path because they are not controlled by any control signals.

For example, the micro-operations r1 out , r1
 r2 out , r2
 r3 out , r3 in figure 5.3 are not

controlled by any control signal and they happen in every control step of controller FSM. This type

of micro-operations are ignored during redundancy optimization.

If some micro-operations of the set � are not present in any � A for all assertion patterns A

that occur in the different states of the controller FSM, then it means that these micro-operations are

not at all required to execute the specified input behaviour in the data-path. So, one may optimize

5.5. VERIFICATION BY EQUIVALENCE CHECKING 91

the DP further to restrict these micro-operations from occurring in the DP without affecting other

micro-operations. Again, the micro-operations which do not involve any control signal are ignored

during redundancy optimization.

5.5 Verification by Equivalence Checking

In the data-path and controller generation phase, the behaviour represented by the FSMD M2 is

mapped to hardware. The number of states and the control structure of the behaviour are not

modified in this phase. Hence, there is a one-to-one correspondence between the states of FSMDs

M2 and M3. Let the mapping between the states of M2 and those of M3 be represented by a function

f23 : Q2 Õ Q3. The state q3i (� Q3) of the FSMD M3 is said to be the corresponding state of q2i

(� Q2) if f23
�
q2i � � q3i.

A set of RT-operations are formed for each state transition of the FSMD M3 from the corre-

sponding control assertion pattern. Now, the question is whether all the RT-operations correspond-

ing to each state transition of the FSMD M2 is captured by the controller or not. In other words, it is

required to verify that all the RT-operations in each state transition in FSMD M2 are also present in

the corresponding state transition in FSMD M3 and no extra RT-operation occurs in the transition

of the FSMD M3. A transition q3k /� c q3l of the FSMD M3 is said to be the corresponding transi-

tion of a transition q2k /� c « q2l of the FSMD M2 if f23
�
q2k � � q3k, f23

�
q2l � � q3l and the condition

c is equivalent to the condition c � . In the following, a state based equivalence checking algorithm

is given.

The successful completion of the algorithm ensures that any RT-operation occurs in any state

transition of M3 iff it also occurs in the corresponding transition in M2. It assures that the control

signal generation in each state is correct. The number of iterations of the algorithm mainly depends

on the number of transitions in the FSMD M2. If the number of transitions in M2 is e and the

maximum possible RT-operations in any transition is k, then the complexity of the algorithm is

O
�
ek � .

5.6 Conclusions

The verification of data-path interconnection and the controller behaviour is discussed in this chap-

ter. The verification task is performed in two steps. In the first step, an FSMD M3 is constructed

92 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

Algorithm 4 State based equivalence checking algorithm
Input: FSMD M2, M3 and the function f23.
Output: ’yes/no’ answer for “M2 is equivalent to M3”.
for each state q2i of M2

Let q3i be f23
�
q2i � ; // q3i is the corresponding state of q2i

for each state transition t from q2i

find a transition t � from q3i which has an equivalent condition to that of t;
for each RT-operation opn in t

if opn does not occur in t �

report “opn is not present in transition t � ; hence not equivalent”;
exit;��

if there is some RT-operation which occurs in t � but not in t

report “extra RT-operation occurs in t � ; hence not equivalent”
exit;���

5.6. CONCLUSIONS 93

from the data-path information and the controller FSM. In the second step, a state based equiv-

alence checking methodology is used to verify the correctness of the controller behaviour. A

rewriting method is proposed which is used during the construction of the FSMD M3; the method

finds the RT-operations performed by a given control assertion pattern in each state of the con-

troller FSM. The correctness of this method has been proved and the complexity of the method is

analyzed. The construction process is described with an example. Several inconsistencies and re-

dundancies, both in the data-path and the controller, are revealed during construction of the FSMD

M3. The state based equivalence checking method ensures that any RT-operation occurs in an state

transition of M3 iff it also occurs in the corresponding transition in the FSMD M2.

94 CHAPTER 5. DATA-PATH AND CONTROLLER VERIFICATION

Chapter 6

Development of a High-level Synthesis Tool

(SAST)

6.1 Introduction

A high-level synthesis tool, called structured architecture synthesis tool (SAST), has been devel-

oped in this work to support hand in hand synthesis and verification. SAST takes the behavioural

description and produces a synthesizable register transfer level (RTL) code in Verilog. It is an

interconnection aware HLS tool as it produces a structured data-path by avoiding random inter-

connections among the data-path elements. This tool automatically generates the FSMDs from its

input, intermediary results and the output so that a phase-wise verification of HLS can be carried

out as proposed in this work. This chapter covers the following aspects:

� Target architecture

� Synthesis flow of SAST

� Generation of FSMDs from the intermediate synthesis results of SAST

6.2 Target Architecture

A structure architecture (SA) has been considered for the data-path in the SAST tool. The gener-

ated data path is organized as architectural blocks (A-blocks). Each A-block has a local functional

95

96 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

signals
status

F.U.

F.U.

memory
Local

memory
Local

A−Block

A−Block

C
ontroller

buses
Global

Ports

Global
memory

access w
idth

status
signals

Figure 6.1: Schematic of structured architecture.

unit (FU), local storage and local buses. All the A-blocks in a design are interconnected by a num-

ber of global buses. In addition to the local memories in all the A-blocks, SAST also permits the

use of global memories as architectural components. These memories are similar to an A-block,

except that they do not have any functional unit associated with itself. These memories can be

accessed globally by all the A-blocks using global buses. The schematic diagram of the Structured

Architecture (SA) is shown in Figure 6.1. All the data path components such as, the local buses,

storage units, functional units in the A-blocks and the global buses, are of the same width.

The SA is characterized by a set of architectural constraints such as the number of A-blocks,

the number of global memories, the number of global buses interconnecting the A-blocks, the num-

ber of access links or access width connecting an A-block to the global buses and the maximum

number of concurrent writes per time step to the storage locations in an A-block. The architectural

parameters which are internal to an A-block (e.g. the number of access links and the number of

write ports to the internal memory, etc.) are the same for each A-block. This structured data paths

6.2. TARGET ARCHITECTURE 97

avoid random interconnects between data path elements. Each A-block has a regular implementa-

tion. As a result the reusability of data-paths are expected to have simple physical design. Figure

6.2 illustrates an A-block.

FU

Local Memory

BUS

Access Links

Hard Connection

Switch

Status signal

Figure 6.2: An Architecture Block

Input/Output ports of the system are connected to the global buses so that all the A-blocks can

access any of the ports. Each A-block has local memory as register bank, which are connected

to the global buses through internal buses (access links). Each A-block has one functional unit

(FU), which takes input from either the local memory or the internal buses. The output from the

functional unit connects back to either the register bank or the internal buses. There are switches

to enable/disable the connection between any two components in the A-block. Switches, which

connect the internal buses and the output of FU to the input ports of the registers, are called in-

switches. Switches, which connect the output of registers (to the inputs of the FUs) and output of

the FU to internal buses, are called out-switches. Global buses are connected to input ports of FU

98 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

through internal buses and out-switches. The output port of the FU is also connected to the global

buses through internal buses and out-switches.

6.3 SAST Synthesis Steps

The synthesis tool SAST takes a behavioural description and the architectural parameters of the

structured data-path as input and produces a synthesizable RTL code in Verilog. SAST consists of

the following sequence of phases:

1. Control and data flow graph (CDFG) generation: The input behaviour is translated into a

CDFG in this phase.

2. Preprocessing: This step converts the CDFG into an intermediate representation which is

required for the scheduling process. The main task of the preprocessor module is to find the

dependency information within each basic block and the incoming and outgoing variables of

each basic block.

3. Scheduling: The scheduler schedules the operations in minimum number of time steps. The

scheduler of SAST also schedules all the transfers over the global buses. It also gives the

composition of the functional units within each A-block and binds the operators of the input

behaviour to the functional units.

4. Register allocation and binding: The minimum number of registers required to store the

variables is found and their binding is done in this phase.

5. Data-path and control-path generation: The interconnection of the data-path is found out

based on the scheduling, allocation and binding informations and the controller is con-

structed in this phase.

6. Verilog code generation: Finally, the data-path and control-path informations are encoded in

Verilog in this phase.

The synthesis steps of SAST’s are shown in figure 6.3 and they are discussed in detail in the

subsequent subsections.

6.3. SAST SYNTHESIS STEPS 99

Synthesis part
Verification part

Architectural
parameters

RTL in Verilog

Verification
Scheduling

CDFG
generation

Preprocessing

Scheduling

Verilog code
generation

Data-path &
Controller
generation

Data-path &
Controller

Verification

Verification

Allocation &
Binding

& Binding
Reg. Allocation

Input behaviour

Reg alloc & bind information

Data-path & control path

Scheduled behaviour

information

FU alloc &
bind information

Behavioural description

transfers
Bus

Figure 6.3: SAST synthesis steps

6.3.1 CDFG Generation

Most of the HLS systems require the input in the form of a CDFG to be used for all the phases.

Instead, the behavioral design specification at a high level of abstraction is coded in languages

like C or some hardware design language such as VHDL, Verilog, etc and provided as input to an

HLS system. The methodologies to translate this high-level specification into CDFG are similar

to the ones used in the front-end of a typical compiler flow. The CDFG representation used,

behavioural input used for SAST and the methodology for the translation scheme are discussed in

100 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

this subsection.

6
B0 2
read(P0, y1)
read(P1, y2)

C1 1
y1 == y2

C0 1

B2 1
y1 = y1 - y2

B1 1
y2 = y2 - y1

B3 2

write(P0, z)

C1 2 0 C0 1 B3
C0 2 0 B1 1 B2
B1 1 C1
B2 1 C1
B3 0

B0 1 C1

z=y1

y1 ò y2
block information

control information

Figure 6.4: CDFG representation of GCD behaviour

CDFG Representation

The CDFG representation used by SAST is block based. The CDFG is a directed graph that can

be represented as B � � V
 E � . A node v � V represents either a basic block or a conditional block.

An edge e � E maintains the control flow among these blocks. Each basic block consists of a set

of there-address operations, maintaining the data dependency among the operations.The control

blocks consist of conditional statements representing constructs like IF, CASE or LOOP. There is

a directed edge from the block bi to the block b j if

� there is a conditional jump from the last statement of bi to the first statement of b j, or

� b j immediately follows bi in the order of the program.

6.3. SAST SYNTHESIS STEPS 101

The block bi is said to be the predecessor of b j, and b j is said to the successor of bi.

An example of CDFG representation of the GCD behaviour is shown in figure 6.4. The value 6,

written at the start of the CDFG, denotes the number of blocks in the CDFG. It is followed by the

expression B0 2, where B0 indicates a basic block and 2 denotes the number of operations in B0.

The operations in the basic block B0 is given next. We introduce the notions for reading and writing

data from ports namely as read and write operations, respectively, in the CDFG representation. The

statement read
�
P0
 y1 � in the figure means the input value read from port P0 are assigned to the

variable y1. The order of operations within a basic block maintains the data dependency among

the operations. There are six blocks in this CDFG, where B0
 B1
 B2
 B3 are the basic blocks and

C0
 C1 are the conditional blocks in figure 6.4. The control structure of the CDFG follows next.

There is only one successor for every basic block. For example, B0 1 C1 in figure 6.4 indicates

that B0 has only one successor block namely C1. A conditional block has two successor blocks.

For example, the conditional block C1 has two successors as given by C1 2 0 C0 1 B3 in figure

6.4. It means that the control goes to the block C0 if the conditional statement y1 ��� y2 of C1

becomes false; else control goes to B3. The successor field need not be explicit - for a basic block,

it is always 1, for a conditional block, it is always 2.

Behavioural input for SAST

For SAST, a language, similar to C but with facilities to specify interfaces that will finally appear

in the synthesized circuit, is used for behavioral specification. Common programming constructs

like assignment, conditional, loops, case statements, are available.

Translation Methodology

The formation of CDFG requires parsing of the input behavioural code. The various steps involved

for this task are shown in figure 6.5. These phases resemble the front-end of any compiler. First

two phases were generated by standard compiler construction tools, Lex and YACC.

The output of the syntactic analysis phase is a tree structure commonly known as parse tree

or Abstract Syntax Tree . This tree represents the syntactic structure of the program according to

formal grammar associated with the parser. Explicit rules are required to extract such a parse tree

from the YACC code. These redefine rules were written corresponding to the grammar productions

to extract the CDFG representation. This methodology of translating behavioural description to its

equivalent CDFG is also known as Syntax-directed translation.

102 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

Lexical Analysis

Redife rules/
transformation

CDFG

parse tree

tokens

Behavioural Description

Syntax Analysis

Figure 6.5: Steps involved in CDFG generation.

6.3.2 Preprocessing

The preprocessor converts the CDFG into an intermediate representation (IR) which consists of

the precedence constraints or partial order between the operations in each basic block, along with

the incoming and outgoing variable sets for each basic block. The preprocessing task is explained

in figure 6.6. The main sub-tasks are as follows:

� Sanitization: constructs the symbol table of variables in the CDFG, the operation list for

each basic block and the successor blocks for each block of the CDFG.

� construct live sets: computes input and output variable list for each basic block, from the list

of operations in the basic block and the flow of control information,

� construct dependency: computes the precedence constraints between the operations in the

basic block, from the live sets and operations of the basic block, and

� generate intermediate form: puts the basic block information in a manner which is suitable

for scheduling basic blocks with the existing scheduling algorithm of SAST, from the live

sets and partial order of the basic blocks.

6.3. SAST SYNTHESIS STEPS 103

live setssuccessor database dependency graphsymbol table

information
basic blocks
detailed

information
control

CDFG

sanitization

construct
live sets

generate
intermediate

form

construct

dependency

operation list

Figure 6.6: Data flow diagram for preprocessor before scheduling

Live variable analysis

It computes two set, one of the incoming variables and the other of the outgoing variables for each

basic block in the CDFG, using the control flow among the basic blocks and the list of operations

in each basic block, built from the sanitization. Data flow analysis is performed over the CDFG to

find out the incoming and the outgoing variables of each basic block.

Four different sets need to be maintained for each basic block i,

usei : set of variables whose values may be used in i prior to any definition of the variable in i,

defi : set of variables being defined in the i prior to any use of that variable in i,

ini : set of variables live at the entry point of i,

outi : set of variables live at the exit point of i.

These sets are used in computing the incoming and the outgoing variable sets for i, from the flow

of control information and operation list in i.

Computation of use, def sets: For each basic block (bb) i, usei is the set of variables used before

defining in the bb i and de fi is the set of all left hand side (lhs) variables of the operations in the

bb i. The following data flow equations compute the sets usei and de fi from the set of operations

104 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

in the basic block i:

usei : � ó
operations ô i

source operands o f operation (6.1)

de fi : � ó
operations ô i

destination operand o f operation (6.2)

Computation of the sets in and out: The following data flow equations compute the sets ini and

outi from the sets usei, and de fi and the flow of control information:

outi : � ó
j ô succ I i L in j (6.3)

ini : � usei � � outi / de fi � (6.4)

From equation 6.3, we say that a variable v is live at the exit point of a basic block iff it is live

coming into one of its successors. Similarly, using equation 6.4, a variable v is live coming into

a basic block i if either it is used before redefinition in i or it is live coming out of i and is not

redefined in i.

Dependency graph extraction

After construction of the live sets for each basic block i, the partial order or the dependency graph

between the operations in each basic block i is to be constructed. A dependency graph of a basic

block consists of nodes representing functional operators and read/write operators corresponding

to the I/O interface (port). Nodes are connected by arcs that represent either the communication

of values or the ordering of I/O operations by dependencies. If a node N1 computes a value that

is used by node N2, then there is an edge from N1 to N2. The communication between nodes

along the path represents whether the value computed in N1 is actually used in N2. However, in

addition to the read-before-write and write-before-read dependencies that exist between normal

operations, there exist read-before-read dependencies between operations to an I/O port, since the

values present at a port is changed by the execution sequence of port operations. Let us consider

the behavioural description given in figure 6.7 [6]. The partial order constructed for the set of

three address statements of this behavioural description is shown in figure 6.8, with the incoming

6.3. SAST SYNTHESIS STEPS 105

variables in=
 3, dx, u, x, y � .
v0 = dx * u (0) v3 = 3 * y (4) u = v4 - v5 (8)
v1 = 3 * x (1) v4 = u - v2 (5) y = y + v6 (9)
x = x + dx (2) v5 = dx * v3 (6)

v2 = v0 * v1 (3) v6 = u * dx (7)

Figure 6.7: A sample behavioural description

y

3u
dx

2+ x

x

v0
v1

v2 v3

 v5v4 v6

u y

0* 1*

3*

5− 6* 7*

8− 9+

4*

Figure 6.8: Partial order for the behavioural description given in figure 6.7.

Intermediate representation

The live variable in and out sets for each basic block and the partial order among the operations in

each basic block is represented as an intermediate representation which is used for scheduling by

SAST.

106 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

6.3.3 Scheduling

Scheduler takes the live variable sets, the dependency graph of each basic block and the archi-

tectural parameters as inputs and schedules the list of operations satisfying the architectural con-

straints. The scheduler of SAST is genetic algorithm (GA) based. The GA is designed to support

synthesis of structured data paths. The scheduling is guided by user specified architectural pa-

rameters such as, the numbers of A-blocks, global buses, access links and concurrent writes in an

A-block. The last parameter determines the number of write ports for the local memory in each

A-block. There is no restriction on the number of read ports for the local memory.

Scheduling algorithm of SAST delivers the following:

� a schedule of operations over time and over the A-blocks,

� the schedule of all transfers over the global buses satisfying the architectural constraints, and

� the composition of the FU in each A-block,

The last item suggests that the SAST scheduler also takes care of the functional unit (FU) allocation

and binding task. It is because of the structured nature of the architecture. Whenever an operation

is scheduled in any A-block, the FU of that A-block is allocated to that operation. The composition

of the FU of an A-block is the set of all the operations which gets scheduled to the A-block.

Time Bus transfer program variable definition Schedule of operations
in ablk A0 in ablk A1

1. dx
�
1 � 0 � 4. v3 � 3 - y 0. v0 � dx - u

2. x
�
1 � 0 � 6. v5 � dx - v3 1. v1 � 3 - x

3. 2
�
0 � � x

�
1 � 2. x � x � dx 3. v2 � v0 - v1

4. u
�
1 � 0 � 7. v6 � u - dx 5. v4 � u / v2

5. v5
�
0 � 1 � 9

�
0 � � y

�
0 �
 8

�
1 � � u

�
1 � 9. y � y � v6 8. u � v4 / v5

Table 6.1: Schedule of operations of the code for DIFFEQ given in figure 6.7.

Let us consider the schedule in table 6.1 for the operations given in figure 6.7. This schedule

has been constructed for a structured architecture with two A-blocks, one global bus and one access

link per A-block. The operations are scheduled in 5 time steps as shown in table 6.1. It is assumed

that the value generated by an operation in an A-block gets stored in that A-block after completion

of the operation. If an operand of an operation is not available in the A-block where the operation

is scheduled, then it needs to be brought from the A-block where it is available using global bus. In

6.3. SAST SYNTHESIS STEPS 107

the schedule of table 6.1, the transfers of relevant data among the A-blocks is shown; the numbers

in round brackets identify the source and destination A-blocks. For example, v5 (0 � 1) indicates

that the variable v5 is transfered from the A-block 0 to the A-block 1. The necessity of transferring

the variable v5 from the A-block 0 to 1 is as follows. The operation v5 , dx - v3 is scheduled in

the second time step in A-block 0. As, it is assumed that the value generated by an operation in an

A-block gets stored in that A-block after the completion of the operation, the value of v5 is stored

in A-block 0. Similarly, the value of v4 is stored in A-block 1. Now, the operation u , v4 / v5 is

scheduled in the A-block 1 in the time step 5. So, the variable v5 needs to be transfered from the

A-block 0 to the A-block 1. The scheduler schedules this bus transfer in the time step 5 as the bus

is available in that time step. If no bus were available in that time step, then the scheduler would

schedule this bus transfer in time step 4 or 3 (searching in descending order) as the value of the

variable v5 is available from the time step 3.

Sometimes there are variables defined in a basic block and required after all the operations

in that basic block are performed. This is common in loop based computation where a variable

is updated in the body of the loop and used in the next iteration. We refer to such variables as

program variables. It is required to know the A-block in which a program variable is available

initially. This is taken as input in the current implementation of SAST. In this example, 3
 dx
 x
 y

and u are initially located in the A-blocks 0, 1, 1, 0 and 1, respectively. Variable definition column

represents the definition of the program variables, that is, a variable whose values have been used

in the successor blocks. For example, 2 (0) � x (1) indicates that the result of the second operation

scheduled in A0 defines the outgoing variable x. Updated value of x will be stored in A-block 1.

GA Based Scheduling

A brief overview of the GA is as follows. The detailed description follows in the succeeding

paragraphs. In view of the complex nature of the problem a structured solution representation

has been used, as against a conventional simple bit string. An initial population of solutions is

generated at random. New solutions are obtained by inheriting values of the decision variables

from parent solutions, picked up from the population. It was noted in the earlier section that

for many problems the attributes are not independent and so the resulting solution representation

could correspond to an infeasible solution. This is true in the case of scheduling problem and so

a completion algorithm has to be used to obtain a feasible solution from the available solution

representation, obtained through crossover or by setting the attributes at random while generating

108 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

the initial population of solutions. A scheduling heuristic has also been used with the completion

algorithm and this has been found to improve the performance of the GA. A population control

mechanism had to be employed to sustain diversity in the population, while at the same time

retaining solutions with good overall and also partial fitness. The GA is run up to a fixed number

of iterations and this serves as the stopping criterion. The last improvement in solution cost (i.e.

when the best solution is obtained) usually occurs well before all the iterations are completed.

In the rest of this section we explain the solution representation, the cost function, the parent

selection scheme, the crossover scheme, the completion algorithm, the replacement scheme and

the heuristic to enhance the performance of the GA.

Solution representation: Each solution contains several decisions which are required for the

proper implementation of the design. For each operation, the time when it is scheduled and the

A-block where it is to be scheduled are stored. For each input operand of an operation, the A-

block from where this value is to be obtained and the transfer time are given. If the operand is

present in the same A-block, then the time of transfer is redundant. For each program variable,

the time of assignment and the A-block from where the value of it is available are indicated. In

order to represent the composition of an FU, it is necessary to indicate which operations an FU can

implement.

Thus, there are three types of information to be represented, namely i) Information directly

related to the scheduling of operations, ii) information indicating the scheduling of variable trans-

fers and iii) information regarding the composition of FUs. A structured representation is used for

storing the above information. This is unlike the simple binary bit based coding commonly used

with GAs. Usual crossover techniques with a bit based representation for such a problem would

often produce meaningless or infeasible solution representations. As a result, computing time and

resources would be wasted in producing such infeasible offsprings. The structured representation

used here is suitable for performing an algorithmic crossover (described shortly in the paragraph

on solution completion), which leads to a feasible solution representation.

Cost function: The scheduling algorithm tries to find a schedule of operations and transfers

within a specified number of time steps. The solution cost is formulated to indicate the cost of the

6.3. SAST SYNTHESIS STEPS 109

hardware and the extra time steps used in the schedule. It is of the form

C � � penalty � � extra time steps ��� � cost o f FUs � �
The penalty is chosen to accord priority to finding a solution within the specified number of time

steps. It is set to be a constant which is an order of magnitude higher than the maximum possible

cost of the FUs. In addition, the cost of the FUs is also separately accessible for performing

population control, explained later.

Parent selection: The parents are selected on the basis of their costs using the roulette wheel

technique [76]. This being a minimization problem, the selection probability of a parent is com-

puted taking into account the maximum cost of solutions in the population as follows: psi �
Cmax � δ / Ci

Nsols
�
Cmax � δ � / ∑iCi

 where psi is selection probability for solution i, δ ' 0, Ci is the cost of

the solution, Cmax is the maximum solution cost in the current population and Nsols is the number

of solutions in the population. Solutions with higher cost are selected with lower probability. If

δ � 0 then the solutions with cost Cmax will never be selected. Selection is done with replacement

so that a solution may participate more than once in crossovers.

procedure crossover()
1. chose two parents from the population of solutions.
2. mutate each parent according to the mutation probability.
3. for each operation to schedule do
4. inherit the various scheduling information of the operation

(such as, the A-block where it is to be scheduled,
the time when the operation is to be initiated,
for each input operand, the source A-block and the
transfer time) from the two parents.

5. for each of the program variables do
6. inherit the time of assignment and the source A-block from

the two parents.
7. for each of the A-blocks
8. inherit a library module to implement operations to be realized

in the FU of this A-block from the two parents.

Figure 6.9: Generating initial attributes of offspring by crossover.

110 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

Crossover: New solutions are generated through crossover (refer to figure 6.9). The example

10 treats the formation of the operation scheduling attributes through crossover. First two parent

solutions are selected. These go through a mutation and then the actual crossover takes place to

generate a raw offspring. The crossover proceeds with inheritance of attributes of the solution

from both the parents. These attributes include schedule times and A-block bindings of operations,

transfer times for operation inputs and the defined program variables. The FU configuration of the

solution is also formed by inheritance from the parents. Inheritance of the attributes from either of

the two parents proceeds in the (inverse) ratio of their solution costs. The solution at this stage is,

in general, not feasible. The completion algorithm, explained next, is applied to this raw solution

to generate a feasible solution.

Example 10 We consider the formation of scheduling attributes of operations. Consider operation

‘3 : v2 � v0 - v1’ in figure 6.7 which is a multiplication. Operation ‘3’ has the variables v0 and v1

as the left and the right operands, respectively.

Table 6.2 shows some hypothetical scheduling attributes of the two operations in the parent

solutions. It also shows the attributes resulting in the offspring solution as a result of the crossover.

Several interesting aspects are to be noted. The offspring inherits the A-block of the first parent.

The source A-block for the left and the right operands are inherited from the second and the first

parent, respectively. This has resulted in a possible inconsistency because now, both the operands

are preferably obtained from A-block ‘0’, which may not be possible. Another inconsistency is

evident in the transfer time step of the left operand, which has taken the value 4, while the operation

is scheduled in time step 3. These inconsistencies come about because the scheduling attributes

are not independent. They are resolved during solution completion.

0

Solution completion: It was indicated in example 10 that crossover produces a solution repre-

sentation that may not correspond to a feasible solution. A procedure for ‘solution completion’ is

applied to the raw solution resulting from attribute inheritance during crossover. Solution comple-

tion is also applied while generating new solutions because the randomly generated attributes used

to construct the initial solutions may not correspond to feasible solutions either. The procedure is

essentially a list scheduling algorithm with some programming intricacies to support the various

features. A simplified version is shown in figure 6.10. A simple example of application of solution

completion, while scheduling the operation whose scheduling attribute formation is illustrated in

6.3. SAST SYNTHESIS STEPS 111

Attribute
Value in
parent 1

Value in
parent 2

Value
in off-
spring

Sourcing
parent

Scheduled in time step 3 4 3 1
A-blk. where scheduled 1 0 1 1
Source A-blk. of left operand 1 0 0 2
Time step of transfer of left operand 3 4 4 2
Source A-blk. of right operand 0 1 0 1
Time step of transfer of right operand 3 3 3 1 or 2

Table 6.2: Crossover of scheduling attributes of operation ‘3’ of figure 6.7

example 10, is given in example 11. The main data structures is a pair of lists, the ready list and

the active list. A pair of these lists is used for scheduling operations and another pair for schedul-

ing assignments. Operations or assignments in both types of lists are ready for scheduling in the

current time step. However, it is only attempted to schedule operations or assignments from the

corresponding active list. In each iteration the ready lists are processed to transfer some operations

or transfers to the corresponding active lists. It is first attempted to schedule operations in the active

list on the unit indicated in the solution representation for that operation. If this attempt to schedule

the operation fails, then it is attempted to schedule these operations on other available FUs. This is

done to utilize the FUs which may otherwise go utilized in the current time step and is done only

after it has been attempted to schedule all the operations on the active list on the designated FU.

If any operation gets scheduled, then the process of transferring operations to the active list from

the ready list and then scheduling them is repeated. The intention of maintaining an active list of

operations is to give priority to the operations in this list over the operations in the ready list for

scheduling in the current time step. Assignments are normally handled after all the operations in

the current time step have been scheduled. To avoid any excessive adverse effect of such a bias,

assignments are sometimes attempted before trying the second round of scheduling operations, as

indicated above, on other available FUs. When no more scheduling is possible, the data structures

are updated to close the current time step and scheduling proceeds from the next time step.

Example 11 Consider the application of solution completion to the offspring considered in exam-

ple 10. Assume that operation ‘3’ occurs in the active list while scheduling for time step ‘3’. Let

us assume that A-block ‘1’ is available and the operation can be placed there as indicated by the

corresponding attribute in the offspring. The algorithm would find that it is not feasible to transfer

112 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

the left operand into the A-block in time step 4. The algorithm would consider all feasible time

steps for transferring the operand. It would consider them so as to monotonically recede from the

time step indicated in the offspring. Thus, if the feasible transfer times for the left attribute were

time steps 2 and 3, then the algorithm would first consider time step 3 and then time step 2. Let us

assume that it is feasible to transfer the operand in time step 3 from A-block ‘1’. Now while con-

sidering the second operand, suppose it is not feasible to transfer it from A-block ‘0’, as indicated

in the offspring attribute. The algorithm would then try to source the operand from other A-blocks.

Let us assume that it succeeds in sourcing the operand from A-block ‘1’. This operation is now

scheduled in time step 3.

0

A scheduling heuristic is also used intermittently with the intention of improving the quality of

the solutions in the population. The heuristic may be used while transferring operations from the

ready list to the active list (line 4, in figure 6.10). Normally operations are selected from the active

list for scheduling at random (line 5, in figure 6.10). However, if the heuristic is being used, then

the operations are chosen from the list on the basis of the scheduling heuristic. The application of

the heuristic is explained in the paragraph below.

While trying to schedule an operation in an A-block at a specific time, it is first checked whether

the FU can be used without input-conflict, output-conflict or execution-conflict. The availability of

operands is checked next. If an operand is not present in the current A-block, then it needs to be

transferred from another A-block, in the current time step or a preceding one. For an operand or

variable to be transferred at a particular time, a free transfer path from the source to the destination

needs to be identified. Thus, a free bus and a free access link at the source and destination A-blocks

have to be found. An operation can be scheduled in an A-block only if the FU can be used without

conflict and the operands are available or can be made available.

The in ward transfer of a variable currently unavailable is made as follows. The variable can be

transferred any time between the first time step and the current time step. It can be transferred from

any A-block where the variable is available at the time the transfer is being attempted. The transfer

is first attempted at the time and from the A-block indicated for that value in the solution. If the

transfer cannot be satisfied this way then other time and A-blocks are considered in the following

order: ts / 1
 ts / 2
����A��
 td and
�
bs � 1 � mod totb
 � bs � 2 � mod totb
q����� , respectively (i.e. as late as

possible), where ts is the desired time of transfer, td is the time from where the variable is defined,

bs is the desired source A-block and totb is the total number of A-blocks. The order of scanning is

block major (i.e. the block index changes slower).

6.3. SAST SYNTHESIS STEPS 113

procedure complete_solution()
1. prepare initial ready lists of operations and variable assignments.
2. while (operations and assignments remain to be scheduled)
3. { decide whether heuristic scheduling is to be used

or priority will be given to transfers.
4. transfer some operations to active list from ready list.
5. try to schedule active operations on units indicated in the chromosome.
6. if (priority_trn_flag) try to schedule active assignments.
7. try to schedule remaining operations on other units.
8. if (an operation has been scheduled) then redo iteration.
9. if (not priority_trn_flag) try to schedule active assignments.
10. update ready list of operations.
11. update status of FUs.
12. bring in ready transfer candidates to active transfer list.
13. move some transfers from ready list to active list.
14. update data structures and flags.
15. increment the time step.
16. }

Figure 6.10: Completion algorithm.

Application of Heuristic: It has been noticed while designing the system that optimization ob-

tained only by applying the genetic operators of mutation and crossover, with small enough pop-

ulation sizes, do not perform very well in practice. It was therefore decided to use a heuristic,

to be applied stochastically, in the completion algorithm to schedule operations. The heuristic is

based on a weight computed for each operation, which is defined as wi � ∑o j õ oi
�
d j � W �
 where

oi and o j are operations, o j is a successor of oi and W is a fixed positive value. While selecting

an operation to schedule using the heuristic, it is chosen at random in proportion to its computed

weight. A stochastic choice is made to avoid excessive bias to a particular decision.

The heuristic is applied at two places, while selecting operations from the active list and while

transferring operations from the ready list to the active list. While completing a solution it is

applied with a certain probability that is taken as a parameter. Even when it is being applied it is

turned on and off at random as scheduling progresses through the time steps to avoid excessive

bias from the heuristic which might undo the evolutionary process.

Replacement: The replacement policy is designed to ensure that all solutions generated stay in

the population for at least one iteration. This is done by introducing all the new solutions generated

114 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

through crossover during one generation of the GA into the population and replacing an equal

number of existing solutions. The offsprings are stored in an adjoint pool, to be introduced into the

main population once all the offsprings from the current generation are produced. The solutions to

be replaced are mostly chosen at random. This could lead to removal of apparently good solutions,

with low cost, from the population. To counter this, a scheme has been used to retain the solutions

with better costs and at the same time maintain a diversity of FU configurations in the population.

6.3.4 Register Allocation and Binding

The task accomplished in this phase can be stated as follows. Given a set V of variables and an

A-block A, identify the subset of variables such that each one can be bound to the same register in

A. For this, a compatible relation R over V is defined as follows. v1 R v2 iff their lifetimes in A do

not overlap.

The subtasks involved in register allocation and binding are:

� Lifetime analysis of variables in an A-block from the schedule of operations and the bus

transfers of variables over the global buses,

� Determination of the compatibility relation and constructing the compatibility graph from

the lifetimes of variables in an A-block, and

� Register optimization by computing the minimum number of registers required in the data

path of an A-block from the lifetimes of variables and the compatibility graph in an A-block.

Lifetime analysis

Since a variable may reside in more than one A-block at the same time, it is required to speak of its

lifetime corresponding to an A-block. Let the lifetime of the variable v with respect to an A-block

Ai be denoted as � v, Ai � . Also, the lifetime of a variable may span across the basic blocks. Let the

of lifetime of � v, Ai � in a basic block b be represented by a 3-tuple � b, s, e � , where

� b denotes a basic block in the scheduled CDFG,

� s denotes the control step of the basic block b, where the current lifetime has started conse-

quent to a new definition of the variable v, and

� e denotes the last use of the variable v in the basic block b.

6.3. SAST SYNTHESIS STEPS 115

Variables are of two types, program variables that span across basic blocks and temporaries whose

lifetimes remain confined within a basic block. So, the lifetimes of a program variable vi with

respect to an A-block A j, i.e. � vi, A j � , can be represented as an ordered list of lifetimes. Let

� vi
 A j � : �N��� b1
 s1
 e1 �m
¶� b1
 s2
 e2 �m
ö
�������
¶� bk
 sk
 ek ��� , where, for any basic block bl, if � bl, s1, e1 � ,� bl, s2, e2 � � (vi, A j), and � bl, s1, e1 � precedes � b1, s2, e2 � , then e1 (s2. The list � vi, A j � contains at

most one “open” lifetime which is the last one in the list and all the preceding ones are closed. On

the other hand, the lifetime of a temporary variable vi with respect to an A-block A j, i.e., � vi
 A j � ,
is of the form � bk
 s1
 e1 � , which is either open or closed. Closed lifetimes are those whose last use

of value defined at control step s of basic block b has been found. Open lifetime is such a value

defined at control step s of the basic block b, its last use to be found. Open lifetime switches to

closed in 2 cases,

1. new definition of the � vi
 A j � in basic block b in A-block A j,

2. execution reaches end of the basic block b.

While Computing lifetimes for the variables the following two pieces of information need to be

considered.

� bus transfers of a variable over the global buses between A-blocks and the I/O ports, and

� Schedule of the operations.

Bus transfers: Bus transfer of a variable v from A-block Ai to A-block A j over the global buses

at control step k defines an open lifetime of v in A j. Also, the last use of v in Ai is changed to k.

Let us consider a bus transfer v
�
Ai
� A j � at control step k of basic block b. If � v
 A j � is added to

list of program variable lifetimes, then close the currently open program variable lifetime of � v
 A j �
if any exists and open a lifetime for � v
 A j � with � b
 k
�/g� ; last use of � v
 A j � is to be found out.

Upgrade last use of � v
 Ai � till k, i.e., � b
 s
 k � .
If it is found that the last use of variable v in A j is also k, i.e., lifetime is � b
 k
 k � , then this lifetime

can be removed from � v
 A j � because the variable v is not required to be stored in any register in

A j and can be directly fed into the input of the FU of A j in time step k.

116 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

Schedule of the operations: Let an operation vd , vs1 (op $ vs2 of basic block b be sched-

uled in the ith time step in the A-block Ak. The schedule of this operation effects the lifetimes of

the variables involved as follows. If vd is a program variable and it has an open lifetime, then that

lifetime needs to be closed. Also, a lifetime for � vd
 Ak � with � b
 i � 1
�/g� is opened. The last use

of � vs1
 Ak � and � vs2
 Ak � are upgraded till i, i.e., � b
 s
 i � .
Algorithm 5 constructs the lifetimes of both program and temporary variables in all the A-

blocks. The top level module computing the lifetimes of variables in the A-blocks is find Lifetimes,

which takes as input parameters the scheduled CDFG and the bus transfers, the set of live variables

along with the location availability in the A-blocks for each basic block and returns the lifetimes

of the program and the temporary variables.

Determination of the compatibility relation

Computation of minimal number of registers in an A-block Ai from the list of program and tem-

porary variable lifetimes in Ai requires the construction of compatibility graph in which nodes

represent the variables appearing in Ai and edges between two variables exists if they have non-

overlapping lifetimes. Compatibility relation exists between lifetimes of variables in Ai. It is not

necessary to examine the lifetimes in � v1
 Ai �n
s� v2
 A j � where Ai !� A j.

Three different cases arise while constructing the compatibility graph between the variables. They

are as follows.

1. Two temporary variables � v1
 Ai � , � v2
 Ai � with lifetimes � b1
 s1
 e1 � , � b2
 s2
 e2 � can be mapped

to the same register, iff

b1 !� b2 · � R s1
 e1 S � R s2
 e2 S<� φ � (6.5)

2. A program variable � v1
 Ai � : ����� b1
 s1
 e1 �n
¶� b1
 s2
 e2 �n
 a�a�a
¶� bk
 sk
 ek ��� and another temporary

variable � v2
 Ai � with the lifetime � bl
 sl
 el � can be mapped to the same register, iff

b j !� bl · � R s j
 e j S � R sl
 el S]� φ �
 1) j) k (6.6)

3. Two program variables � v1
 Ai �n
s� v2
 Ai � with respective ordered lifetimes,

� v1
 Ai � : �	��� b1
 s1
 e1 �m
¶� b1
 s2
 e2 �m
 a�a�a
¶� bk
 sk
 ek ��� , and

� v2
 Ai � : �	��� b1
 s1
 e1 �m
¶� b1
 s2
 e2 �m
 a�a�a
¶� bl
 sl
 el ���

6.3. SAST SYNTHESIS STEPS 117

Algorithm 5 Computation of lifetimes of variables from the scheduled CDFG.
procedure find Lifetimes

� �
Input: scheduled CDFG and the bus transfers, live variables set along with location availability

in A-block for each basic block,
Output: list of lifetimes for both program and temporary variables in the A-blocks
for each basic block b in the scheduled CDFG do,

for each variable i, � vi
 Ak � � inb do,

create open lifetime of � vi
 Ak � : �k� b
 0
�/g� ;
append new open lifetime of � vi
 Ak � to program variable list in Ak;�

for each control step i of b do,

if any bus transfers in i with v

�
A j
� Ak �

update the lifetime of � v
 A j � ;
close currently open lifetime of � v
 Ak � if exists;
create a new open lifetime of � v
 Ak � : �	� b
 i
�/g� ;�

for each operation j of b, Ob j : vd , vs1 (op $ vs2 scheduled at i do,

Ak := A-block on which Ob j scheduled;
put i as the last use of vs1 and vs2 in their respective life time

�
vs1
 Ak � and

�
vs1
 Ak � ;

close currently open lifetime of � vd
 Ak � if exists;
create a new life time of � vd
 Ak � : �	� b
 i � 1
�/g� ;��

steps := number of control steps of the basic block;
for each variable i, � vi
 Ak � � outb do,

update lifetimes of the output program variables � vi
 Ak � to steps � 1;
close the currently open lifetimes of variables;
for each program variable vi in each A-block A j

if any lifetime in � vi
 A j � is created through bus transfer and has same s and e, then
remove that lifetime from � vi
 A j � ;

for each temporary variable vi of A-block A j
if � vi
 A j � is created through bus transfer and has same s and e, then remove � vi
 A j � ;�

118 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

can be mapped to the same register, iff

bm !� bn · � R sm
 em S � R sn
 en S�� φ �
 1) m) k
 1) n) l (6.7)

Register Optimization by Clique partitioning

From the compatibility graph in each A-block Ai, the minimal subset of maximum complete sub-

graphs is computed. The variables or nodes in these complete subgraphs have been mapped to a

single register in the data path, due to their non-overlapping lifetimes in Ai. Maximum complete

subgraphs are computed using the clique partitioning algorithm which finds the minimal number

of cliques (complete subgraphs), given a graph. Due to the exponential complexity of the clique

partitioning algorithm, the heuristic given in [77] has been employed to find the minimal number of

cliques from the compatibility graph. So, the total number of registers needed in Ai is the number

of cliques found from the clique partitioning method.

6.3.5 Data-path and Controller Generation

Data-path Generation

The interconnection topology that supports data transfers between the storage and the functional

units is one of the factors that has a significant influence on the data path performance. The com-

plexity of the interconnection topology is defined by the number of interconnection units between

any two ports of functional and storage units. Each interconnection unit can be implemented with

a multiplexer or a bus, the latter has been used in our data path.

Data path in each A-block is a collection of a functional unit, a register file and interconnection

wires and switches, which connect/disconnect two wires depending on the control signal. A switch

is a hardware (implemented using FETs) placed between two wires; depending on the control

signal that it receives, it connects/disconnects the two wires. There are two types of switches used

in our design, unidirectional switch and bidirectional switch, A unidirectional switch, when closed,

can transmit data in one direction; a bidirectional switch, when closed, transmit in both directions.

Registers in an A-block are organized as a register file (register bank). The number of writes to

a register file during a control step is limited by the number of write ports (given as an architectural

constraint). All register transfers, except the local assignments, go through functional units in

an A-block; direct interconnection of two functional units are not allowed. We, therefore, need

6.3. SAST SYNTHESIS STEPS 119

interconnection units to connect the output ports of storage units to the input ports of functional

units (i.e the input interconnection network) and the output ports of functional units to the input

ports of storage units (i.e, the output interconnection network).

Registers are connected to both left port and right port of the functional unit through unidirec-

tional switches. Only those registers that hold the first operand in any of the operation connect to

the left port of FU and those registers that hold the second operand in any of the operation connect

to the right port of FU. Output port of the FU is connected to those registers, which hold the result

variable of any operation. If both the operands of an operation are available in the same A-block,

then the registers holding the operands are connected to the FU. If any of the operand is not avail-

able in the same A-block, it needs to be transfered from another A-block where it resides. If the

transferred variable is not used further in the destination A-block, then it is not needed to be stored

in this A-block. In this case, it is better to provide the operand to the FU directly from the global

buses. In some cases, it is needed to transfer the result of any operation to another A-block; so the

output port of the FU is also connected to global buses.

Controller Generation

The basic functionalities of the controller unit is shown in figure 6.11. It consists of mainly two

functional blocks namely next state generator and control signals generator. The control signal

generator block has two parts. The part 1 of it involves the generation of control signals to the

out-switches, bidirectional switches and the FUs and the part 2 involves generation of the control

signals for the in-switches and the write enable signals to the registers. In the following, this two

functional blocks of the consists are discussed.

Next-state Generation

Finding the next state in the finite sate machine (FSM) generated from the data-path is done by

the sequence generator which is implemented as a counter. The inputs to the sequence generator

are the status signals generated from the functional units and the present state of execution and the

outputs of the sequence generator is the next state of execution.

120 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

state signals

control signal
generator

control signals to

and FUs

control signals to
inswitches and write enable
to the registers

Part 1

Part 2
generator
state
next

Present
state

status

signal

outswitches, bidirectional switches

Figure 6.11: The block-diagram of the controller

Control Signal Generation

The controller generates control signals for the functional units in all the A-blocks, for the switches

inside each A-block, and for those outside the A-blocks and the write enable signals for the reg-

isters. Depending on the state of the FSM, the controller assigns ‘1’ 0r ‘0’ to each of its control

signal. Except the write enable signals for the registers, all the remaining control signals are gen-

erated at the start of the control step. The write enable signals for the registers are generated at the

end of the control step, that is, at the start of the next control step. The generation of write enable

signals to all registers in the data-path are explained in figure 6.12.

The timing diagram of control, data and register write enable signals are shown in figure 6.13.

As shown in figure 6.13, the state signals are generated by the counter at the raising edge of the

clock. State signals are decoded by an X-decoder to produce control signals for the functional

units and the switches in the data-path. The control signals for the in-switches are phase shifted by

180 degree’s using D-latches. Therefore, the phase shifted control signals are started at the falling

edge of the clock. Performing an and operation of the write select signals with clock produces the

write enable signals. Thus, a write enable signal is a pulse produced at the start of the next control

step. The bus lines contain the data to be written into registers or to be sent to the input ports of the

functional units. The output of the functional unit and the internal buses are connected to the input

ports of the registers. Data from the functional unit is delayed by the time it takes to execute an

operation. Therefore, the data present at the input ports of a register needs some time to stabilize.

As the data present at the inputs of the registers are stable at the end of the control step, all writes

6.3. SAST SYNTHESIS STEPS 121

CLK

CLK

D

D

state
signal

Q

Q

write enable signal

in−switches

shifted signal

control signals to
in−switches

Figure 6.12: Generating Write Enable signals.

into registers are done at the raising edge of the write enable signal, which is at the starting of the

next control step.

6.3.6 Verilog Code Generation

The final step in the high level synthesis process is to generate the HDL code for the resultant RTL

description. There are many hardware description languages like Verilog, VHDL, SystemC, etc.,

to describe the hardware. Verilog has been used to describe the RTL generated from the synthesis

process. There are two main functional modules in the process of generating the Verilog HDL,

the data path generator and the controller generator. The RTL Verilog code generated by SAST

122 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

CONTROL TO

−SHIFTED

IN SWITCHES

PART 1 CONTROL

Figure 6.13: Timing diagram for control and write enable signals.

can directly be used as input for any commercial logic synthesis tool such as Synopsys Design

Compiler for further synthesis.

6.4 Generation of the FSMDs for Verification

Our proposed verification methodologies are incorporated with SAST. Therefore, SAST produces

the FSMDs from the input behaviour and the output of each synthesis phase. Accordingly, four

FSMDs are constructed in SAST. They are M0 from the input behaviour, M1 from the scheduled

behaviour, M2 from the allocation and binding result and finally M3 from the output RTL behaviour

produced by SAST. In the following, the FSMD construction mechanisms are discussed.

6.4. GENERATION OF THE FSMDS FOR VERIFICATION 123

6.4.1 Construction of FSMD from the CDFG

The algorithm 6 constructs the FSMD M0. The top level module of the algorithm is ConstructM0.

The input to this procedure is a CDFG with list of operations in each block and output is an FSMD

M0. The procedure starts with the start node of the CDFG as cdfgNode and the reset state of

FSMD M0 as the f smdState. In each of its invocation, the function considers a block of the CDFG

and produces the corresponding portion in M0 starting from the state f smdState. If the current

processing block is a basic block, it constructs the DFG of the operations in that basic block first.

Then all the operations in one level of DFG are mapped to one transition of the FSMD. There

would be one state in M0 for each level of the DFG. The control flow is also properly maintained.

If the current processing block is a conditional block, then a divergence in flow is created in the

FSMD M0 with the proper transition condition.

Example 12 The CDFG of the differential equation solver (DIFFEQ) is given in figure 6.14(a)

and the control flow of the CDFG is explicitly shown in figure 6.14(b). The FSMD M0 of the

DIFFEQ behaviour constructed by the algorithm 6 is shown in figure 6.14(d). Let us consider

the invocation of the function for the basic block B1. So, the function invokes with constructM0

(B1, q02). The DFG of the operations in B1 is formed first and it is shown in figure 6.14(c). Now,

the function considers the operations in the level 1 of the DFG. A new state q03 and a transition

q02
� q03 are added in M0 and shown in figure 6.14(d). All other levels of the DFG are treated in

a similar way. The successor node C1 of B1 is not visited. So, the function is called as constructM0

(C1, q06). Here, successorT node is B1 which is already visited. So, the function adds a transition

q06
� q02 in M0 with condition x (a, where q02 is the start state in M0 for the basic block B1.

The successorF node of C1 is B2 which is not visited. So, the function adds a new state q07 and a

transition q06
� q07 with transition condition !x (a in M0. 0

6.4.2 Construction of FSMD from the Scheduled Behaviour

The scheduled behaviour is also represented as a CDFG in SAST. In the scheduled CDFG, each ba-

sic block consists of a set of operations with time step assigned to each operation. The construction

procedure of the FSMD M1 from the scheduled behaviour is almost the same as the construction

procedure of the FSMD M0 from the CDFG. The only difference is that instead of considering

124 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

Algorithm 6 Construction of the FSMD M0 from CDFG
procedure: ConstructM0 (cdfgNode, fsmdState)
begin

if (cdfgNode is a basic block)
 Mark cdfgNode as visited;
Construct the DFG of the operations in cdfgNode; /* Let there be l levels in DFG */
Let the successor node of cdfgNode be succNode;
for level i = 1 to l of DFG
 if (level is l)
 if (succNode is not NULL and visited)
 Let representation of the succNode start with the state succState in M0;

nextState = succState;� else /* succNode is not NULL and not visited */
Add a new state newState in M0;� else /* level is not l */

Add a new state newState in M0;
Add a transition f smdState � newState in M0 with T RUE as condition and

the operations in level i as transformation;� /* end for */
if (succNode is not NULL and not visited)

constructM0 (succNode, nextState);� /* end -if (cdfgNode is a basic block) */
else /* cdfgNode is a control block */
 Let the cdfgNode contains the relational expression exp;

Let succNodeT be the successor node of cdfgNode when the condition becomes true and
succNodeF be the same when the condition becomes f alse;

if (succNodeT is not visited)
 Add a new state newState in M0; Add a transition f smdState � newState with
condition exp and no transformation;

constructM0 (succNodeT, newState);� else /* succNodeT is already visited */
Add a transition in M0 of the form f smdState � succState with condition exp and no tran-
sformation; /* Let representation of the succNodeT start with the state succState in M0 */

if (succNodeF is not visited)
 Add a new state newState in M0; Add a transition f smdState � newState with
condition !exp and no transformation;

constructM0 (succNodeF, newState);� else /* succNodeF is already visited */
Add a transition in M0 of the form f smdState � succState with condition exp and no tran-
sformation; /* Let representation of the succNodeF start with the state succState in M0 */�

if (all the nodes of CDFG are visited) Draw a transition with no condition and transformation
from each state of with no outward transition to the reset state of M1;

end

6.4. GENERATION OF THE FSMDS FOR VERIFICATION 125

read(P1, dx)

read(P1, y)
read(P2, u)
read(P3, a)

4
I 5

B1 10

C1 1

B2 3
write(P4, x)
write(P4, u)
write(P5, y)

I 1 B1

C1 2 0 B2 1 B1
B2 1 0

B1 1 C1

read(P2, x)

1. v0 = u * dx
2. v1 = 3*x
3. x = x+dx
4. v3 = 3 * y
5. v6 = u*dx

7. v5 = dx * v3
8. y = y+v6
9. v4 = u -v2
10. u = v4 -v5

x ÷ a

(a) CDFG

(b) Control flow in CDFG

(c) DFG of the basic block B1

(d) FSMD M0

y ~ y+v6

-/v4 ~ u-v2

- / v0 ~ u*dx, v1 ~ 3*x,

x ~ x+dx
v3 ~ 3*y, v6 ~ u*dx,

q00

q01

q02

q03

q05

q07

q08

q09

-/u ~ v4-v5

-/ OUT I P4 � x L�� OUT I P5 � y L ,
!x ÷ a ª��

- / -

- /dx ~ P11, x ~ P21,

- /y ~ P12, u ~ P22,

a ~ P31

x ÷ a ª��

-/ OUT I P4 � u L

q06

q043 y

1 2 3 4 5

6 7 8

9

10

u x y

v0
v1

v3

v4

v5

u dx x

level 1

level 2

level 3

level 4

I

B1

C1

B2

FT

6. v2 = v0*v1
- / v2 ~ v0*v1, v5 ~ dx*v3

Figure 6.14: DIFFEQ example to show how the FSMD M0 is constructed from CDFG

each level of the DFG of a basic block, all the operations scheduled in one time step are mapped

to the same transition. The conditional blocks are treated in a similar manner. The scheduled be-

haviour of the DIFFEQ example is given in figure 6.15 (a). The value within the brace for each

operation represents the time step in which an operation is scheduled. For example, the operation

v0 � u - dx is scheduled in 4th time step. The FSMD M1, constructed from the scheduled CDFG

for this example, is given in figure 6.15 (b).

6.4.3 Construction of FSMD from the Allocation and Binding Results

The algorithm 7 constructs the FSMD M2. The top level module of this algorithm is constructM2.

The inputs to this module are the FSMD M1, the scheduled operations and bus transfers and the

register mapping information of the variables computed during allocation and binding phase. The

control structure of the FSMD M2 is the same as that of the FSMD M1. The variables in the con-

dition and the operations of each state transition of M1 are replaced by the appropriate registers

126 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

a ~ P31

- / v1 ~ 3*x, v5 ~ dx*v3

- / v0 ~ u*dx, v3 ~ 3*y

- /dx ~ P11, x ~ P21

- /a ~ P31, u ~ P22

- / y ~ y+v6, u ~ v4-v5

- / v6 ~ u*dx, v4 ~ u-v2

- / x ~ x+dx, v2 ~ v0*v1

q10

q11

q12

q13

q17

-/ OUT I P4 � u L�� OUT I P5 � y L
-/ OUT I P4 � x L

!x ÷ a ª��

-/-

x ÷ a ª¡�

q14

q15

q16

q19

q18

q0 � 10

q1 � 11

4
I 5

B1 10

C1 1

B2 3

I 1 B1

C1 2 0 B2 1 B1
B2 1 0

B1 1 C1

x ÷ a

read(P1, dx) [1]
read(P2, x) [1]
read(P1, y) [3]
read(P2, u) [2]
read(P3, a) [2]

(a) CDFG of the scheduled behaviour
(d) FSMD M1

v0 = u * dx [4]
v1 = 3*x [5]
x = x+dx [6]
v3 = 3 * y [4]

v2 = v0*v1 [6]
v5 = dx * v3 [5]
y = y+v6 [8]
v4 = u -v2 [7]
u = v4 -v5 [8]

v6 = u*dx [7]

write(P4, x) [9]
write(P4, u) [10]
write(P5, y) [10]

Figure 6.15: DIFFEQ example: the scheduled behaviour and the FSMD M1

in M2. Also, for each bus transfer scheduled, one register transfer operation is added in the cor-

responding state transition of M2. It is important to note that bus transfers do not have any effect

in the FSMD M1 because a bus transfer v
�
x � y � can be represented as v , v which is true and

no need to add such operation in M1. The variable v, however, needs to be stored in one register,

say Rxm, in A-block x. When this variable is transfered from the A-block x to the A-block y, it is

necessary to store this variable in a different register, Ryn when v is not used in the same time step

in y. In this case, it is essential to add a register transfer operation Ryn , Rxm in the FSMD M2.

6.4.4 Construction of FSMD from RTL Design

The process of generating the FSMD M3 from the CP-DP informations of the generated RTL

circuits is already discussed in section 5.3. This mechanism is implemented in SAST.

6.4. GENERATION OF THE FSMDS FOR VERIFICATION 127

Algorithm 7 Construction of the FSMD M2

procedure: constructM2()
begin

create a state q2i in M2 for each state q1i of M1;
for each transition q1i

� q1 j of M1
create a transition q2i

� q2 j in M2;
replace the variables with appropriate registers (found from life time information of
the variable) in the relational expression representing the condition of the state transition
of q1i

� q1 j and put the relational expression over the registers as the condition of the
state transition q2i

� q2 j;
for each operation vm , vk (op $ vl in q1i

� q1 j

Let this operation is scheduled in A-block Ao;
replace vm with rm, where rm is a register in Ao that stores vm in q1 j;
If any register in Ao stores vk at q1i

replace vk with rk;
else if bus transfer vk

�
p � o � in q1i

� q1 j and register rk of A-block Ap stores vk in q1i
replace vk with rk;

else report(“Lifetime of vk is not defined in q1i”); exit;
do the same for the variable vl;�

for each bus transfer v
�
x � y � in the state q1i

� q1 j, if v has a lifetime in y
put a register transfer operation Rxm , Ryn in q2i

� q2 j, where v is stored in the register
Rxm of the A-block x in the state q1i and in Ryn of the A-block y in the state q1 j;

end

128 CHAPTER 6. DEVELOPMENT OF A HIGH-LEVEL SYNTHESIS TOOL (SAST)

6.5 Conclusions

The synthesis flow of the high-level synthesis tool SAST, developed in this work, is discussed

in this chapter. SAST takes behavioural description in VHDL and produces a synthesizable RTL

design in Verilog. It is an interconnection aware high-level synthesis tool as it produces a structured

data-path. Our proposed target data-path structure is discussed. The synthesis of SAST starts with

producing the CDFG from the input VHDL behaviour. In the preprocessing step, it converts the

CDFG into an intermediate representation required for the subsequent synthesis phases. The next

step is scheduling. The scheduler of SAST is GA-based which supports the structured data-path.

The GA-based scheduler is discussed in detail. The minimum number of registers, required to

store the variables, are found next. In the next step, the data-path and the controller are generated.

Finally, the RTL design is encoded in Verilog. Each of these steps of SAST has been discussed in

this chapter. SAST is a hand-in-hand synthesis and verification platform. It produces the FSMDs

M0, M1. M2 and M3 required for the verification phases. The construction of the FSMDs have also

been discussed.

Chapter 7

Experimental Results

7.1 Introduction

The SAST tool is implemented in ‘C’ language using the methodologies discussed in the previous

chapter. The verification method for each phase of high-level synthesis (HLS) is implemented and

integrated with SAST. The normalizer is also implemented and incorporated with the equivalence

checkers. The tool has been run successfully on several high-level synthesis benchmarks. A case

study depicting the synthesis flow of SAST is given as appendix A. A graphical user interface is

created for this tool as shown in figure 7.1.

7.2 Synthesis and Verification Results

7.2.1 Effects of the Architectural Parameters on Synthesis Results

The tool has been implemented on an Intel Pentium 4, 1.70 GHz, 256MB RAM machine and run

on several HLS benchmarks with different architectural parameters to examine the effects of the

architectural parameters on the synthesis results. The results are tabulated in table 7.1. For each

benchmark, the number of basic blocks in the CDFG (column 2), the number of operations in the

behaviour (column 3), the number of control steps required to schedule the operations (column

8) and the number of registers (column 9) used for different combinations of the architectural

parameters are shown in this table.

The following observations can be made on the results shown in table 7.1.

129

130 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.1: Graphical User Interface for SAST

� Use of more resources naturally reduces the number of time steps required to schedule the

operations.

� A proper balance among the number of A-blocks, the number of buses and the number of

access links needs to be maintained. Increasing the number of A-blocks without increasing

the other two does not produce better scheduling results. For example, SAST takes 38 time

steps to schedule the operations of the DCT example when the architectural parameters are

fed as 2 A-blocks, 1 global bus, 1 access Link, 2 writes per time step (row 3 for DCT).

Increasing only one A-block decreases the number of scheduling steps by two (row 2 for

DCT) whereas, increasing one A-block and one global bus reduces the number of scheduling

steps by 9 (row 1 for DCT).

� There is no well defined relationship between the number of registers required to store the

variables and that of A-blocks.

7.2. SYNTHESIS AND VERIFICATION RESULTS 131

Benchmark Arch. Parameters Synthesis result
Name #basic blk #operation #A-blk #bus #Acc link #Write #time step #Reg

2 1 1 1 17 13
2 2 1 1 13 11

DIFFEQ 4 19 2 2 2 2 14 12
3 2 1 1 12 10
3 2 2 2 12 12
3 2 1 2 29 27

DCT 3 40 3 1 1 2 36 29
2 1 1 2 38 26
3 2 1 2 29 17

EWF 3 53 3 2 2 2 28 19
4 3 3 3 24 19
2 2 1 1 17 20

FIR 3 20 2 2 2 2 16 19
2 1 1 1 19 21
2 2 1 1 14 9

FP ADD 9 16 2 2 2 1 14 11
2 1 1 1 15 9
2 2 1 1 15 12

MODN 10 16 2 1 1 1 15 12
2 2 2 1 13 9

Table 7.1: Synthesis results for some HLS benchmarks for different architectural parameters

7.2.2 Comparison with other Synthesis Tools

The output of SAST is compared with those of several existing HLS tools. In particular, the fifth

order elliptic wave filter (EWF) [78] was worked out here and the results have been given in table

7.2. Synthesis systems SAM [9], STAR [8] and HAL [6] also try to minimize the interconnection

cost. The greater predictability of the layout structure is ensured in CASS and CORBA synthesis

systems. Results have been compared with these systems too and tabulated in table 7.2. It can

be observed that the solution given by SAST is comparable to other tools but it produces a more

regular data-path by avoiding random interconnections among the data-path elements.

Further, the RTL generated by SAST has been logic synthesized using Synopsis Design Ana-

lyzer with 0 � 18 micron CMOS 9 library of National Semiconductor Corporation, USA. Result has

been illustrated for the EWF benchmark in figure 7.2. The ratio of interconnection overhead to that

of the cell area is 1.1 percent (as reported by Synopsis Design Analyzer) for EWF. Similar results

132 CHAPTER 7. EXPERIMENTAL RESULTS

System #Time step #Adder #Multiplier #Bus #A-blk #Acc-link #Reg
SAST 28 3 2 1 3 1 16
COBRA 28 3 2 3 3 - 14
CASS 28 3 2 5 4 - 18
SAM 29 2 1 - - - 14
STAR 29 2 1 - - - 13
HAL 28 3 2 - - - 14
PSGA SYN 28 3 2 - - - 12

Table 7.2: Comparison of results with a few other synthesis tools.

are also obtained for the other HLS benchmarks.

7.2.3 Verification vs. Synthesis

The outputs generated by SAST for several HLS benchmarks as shown in table 7.3. The number

of states in the pre-scheduled FSMD M0 and in the post-scheduled FSMD M1, the CPU time and

the memory usage are tabulated for each HLS benchmark. The number of states in M2 and M3 are

the same as the number of states of M1. It may be noted that the CPU time and the memory usage

for overall verification process are much lower than those of the overall synthesis process because

of hand-in-hand progress of synthesis and verification.

Name #state CPU time in ms memory used in kb
M0 M1 verification synthesis verification synthesis

DIFFEQ 9 12 6.372 54 x103 32.3 4910
EWF 17 35 4.740 127 x103 56.5 4436
GCD 7 4 9.340 21 x103 23.5 6318
DCT 10 29 3.546 163 x103 52.1 4631
TLC 7 8 10.660 101 x103 31.5 7375

MODN 6 7 12.128 90 x103 26.5 9654
PERFECT 9 6 11.128 53 x103 23.5 9987

Table 7.3: Results for different high-level synthesis benchmarks

The number of paths in the initial path covers and in the computed path covers, the observed

number of iterations and the worst case number of iterations of the scheduling verification algo-

rithm for different HLS benchmarks are shown in table 7.4. The number of paths in the computed

path cover P0 differs from that in the initial path cover P �0 when path-based scheduling approach is

7.3. CONCLUSIONS 133

Figure 7.2: Synopsys DA output for EWF.

applied. This situation arises for the GCD, MODN, PERFECT benchmarks as shown in table 7.4.

Our scheduling verification algorithm can successfully verify such situations. It is clear from the

observed number of iterations of the scheduling verification algorithm for different HLS bench-

marks that the worst case situation does not occur in practice. The bars in figure 7.3 represent the

number of variables in the input behaviour (first bar) and the number of registers in the data-path

generated by SAST (second bar) for each HLS benchmark. It is evident from this figure that SAST

optimizes the number of registers and our verification works well in this case.

7.3 Conclusions

This chapter reports some experimental results on SAST over several HLS benchmarks. A compar-

ative study is done on the HLS benchmarks by varying the architectural parameters to examine the

effects of the architectural parameters on the synthesis result. Comparison with other existing HLS

tools is also made. It has been observed that the results produced by SAST are comparable with

the existing synthesis tools but it produces a better interconnection in the data-path. The memory

134 CHAPTER 7. EXPERIMENTAL RESULTS

Name #paths #path extension #iterations
P �0 P0 required actual worst case

DIFFEQ 3 3 0 3 1213

EWF 1 1 0 1 3536

GCD 11 7 3 11 5445

DCT 1 1 0 1 2930

TLC 14 13 2 16 89

MODN 8 12 2 14 2778

PERFECT 7 5 2 7 2667

Table 7.4: Scheduling verification results for different high-level synthesis benchmarks

Figure 7.3: The typical number of variables and the number of registers required for different HLS
benchmarks

usage and the CPU time of the verification process are much lower than those of synthesis pro-

cess of SAST because the verification activity is planned to proceed phase-wise, hand-in-hand with

synthesis. Experimental results on scheduling verification reveal that the worst case bound of com-

plexity usually does not occur in practical situations. The results also show that SAST optimizes

the registers and the control signals significantly and register sharing verification and data-path and

controller verification work successfully in the respective phases for each benchmark.

Chapter 8

Conclusions and Future Scope of Work

8.1 Summary of the Work

In this thesis, a hand-in-hand verification and (high-level) synthesis of digital circuits has been

proposed. We have underlined that a phase-wise verification technique with scope to handle the

specialities of each synthesis sub-task separately is necessary for high-level synthesis (HLS). In this

work, the correctness of HLS process is verified in three phases. Phase-I verifies the scheduling

process. In phase-II, the allocation and binding process is verified against the scheduled behaviour.

Phase-III ensures the correctness of the data-path interconnections and the controller.

A formal method for checking the equivalence between two FSMDs is formulated in chapter 2.

This approach is applied to the first two phases of HLS verification. The equivalence of two FSMDs

is defined. An equivalence checking method has been devised and validated. A normal form is used

to represent the arithmetic expressions over integers in this work. Several simplifications that are

carried out during normalization process are also proposed.

The verification of the scheduling process is discussed in chapter 3. The modifications required

in our basic equivalence checking method are identified. A scheduling verification algorithm is pre-

sented. The correctness of the algorithm is proved and the complexity of the algorithm is analyzed.

It is found that our algorithm works for both the basic block based scheduling algorithm and path

based ones. It is also shown that our algorithm verifies successfully the code motion techniques

like, renaming, common sub-expression elimination, early condition execution, conditional branch

balancing, conditional speculation. The algorithm, however, fails for speculation, reverse specu-

lation and loop shifting. The modifications of the algorithm are also proposed to handle these code

135

136 CHAPTER 8. CONCLUSIONS AND FUTURE SCOPE OF WORK

transformation techniques.

The verification of allocation and binding phase is discussed in chapter 4. The verification task

is achieved in two steps. In the first step, the verification of FU allocation and binding is treated

and in the second step, correctness of register sharing among the behavioural variables is verified.

The verification of register sharing is done using the proposed equivalence checking method. It,

however, needs some additional information like mapping between the states of two FSMDs and

the mapping between the registers and the variables in each state. It is shown that our register

sharing verification method is independent of the nature of the input specification and the register

optimization schemes.

The verification of data-path interconnection and the controller behaviour is discussed in chap-

ter 5. The verification task is performed in two steps. In the first step, an FSMD is constructed

from the data-path information and the controller FSM. In the second step, a state based equiv-

alence checking methodology is used to verify the correctness of the controller behaviour. A

rewriting method is proposed which is used during the construction of the FSMD; the method

finds the set of RT-operations performed by a given control assertion pattern in each state of the

controller FSM. The correctness of this method has been proved and the complexity of the method

is analyzed. Several inconsistencies and redundancies, both in the data-path and the controller, are

revealed during construction of the FSMD. The state based equivalence checking method ensures

the correctness of the controller FSM.

A high-level synthesis tool called structured architecture synthesis tool (SAST) to support hand

in hand synthesis and verification has been developed through this work. SAST takes the be-

havioural description and produces a synthesizable register transfer level (RTL) code in Verilog. It

is an interconnection aware high-level synthesis tool as it produces a structure data-path. The tool

has been run on several HLS benchmarks to examine the effectiveness of the tool.

8.2 Future Scope of Work

� Multi-cycle execution of a slow operation means that the operation is scheduled across two

or more control steps with faster operations scheduled concurrently over the cycles. This

increases the utilization of the faster functional units since two or more operations can be

scheduled on them during a single operation in the multicycle unit [1]. Pipelined execution

8.2. FUTURE SCOPE OF WORK 137

of the operations increases the utilization of the functional units. This method allows con-

current operation on several pairs of operands, each getting partially computed in one stage

of the pipelined unit. The verification methodology proposed in this work can handle only

the single-cycle and non-pipelined operations. Representation of multi-cycle and pipelined

operations in an FSMD, distinguishing them from singe-cycled and non-pipelined ones and

expanding the steps for computaion of the condition of exectution and data transformation of

a path when the path contains such operations will be an interesting extension of this work.

� The proposed equivalence checker cannot process behavioural descriptions which contain

arrays. Many real-life examples such as, lift controllers, digital signal processing circiuits

and image processing circuits, involve arrays. Global memory has been provided for in the

structured architecture used in this work for synthesis which are meant to store the arrays.

Both the synthesis phases and the corresponding verification phases, however, need to be

non-trivially extended to handle such circuits.

� Application of the proposed equivalence checking approach in other areas like embedded

system design process [79, 80], automatic code generation schemes [81, 82, 83, 84, 85], etc.,

may be taken up as future research areas.

138 CHAPTER 8. CONCLUSIONS AND FUTURE SCOPE OF WORK

Appendix A

Synthesis with SAST: A Case Study

The synthesis flow of SAST is explained with the differential equation solver (DIFFEQ) [1] bench-

mark which is used to solves a system of first order differential equations.

The SAST takes four input files as input for each design. They are as follows:

1. (designname $�� beh: The behavioural description of design.

2. (designname $�� arch: Contains the architectural parameters.

3. (designname $�� opr: Contains the operator library.

4. ga param: Contains the genetic algorithm (GA) parameters.

Input behaviour: The behaviour design of DIFFEQ problem, encoded in SAST input format,

is given below. We have taken 2 A-blocks, 2 global buses, 2 write ports and 1 access link as archi-

tectural parameters for this case study.

entity diffeq is
port (dx, u, y, x, a: in integer

x1, u1, y1: out integer;
end diffeq;

architecture behav of diffeq is
begin
process(x, y, u)
variable v0, v1, v2, v3, v4, v5, v6 : int ;
begin

while(x < a) loop
v0 := u*dx ;

v1 := 3*x ;
x := x+dx ;
v2 := v0*v1 ;
v3 := 3*y ;
v4 := u-v2 ;

139

140 APPENDIX A. SYNTHESIS WITH SAST: A CASE STUDY

v5 := dx*v3 ;
v6 := u*dx ;
u := v4-v5 ;
y := y+v6 ;

end loop;

x1 <= x;
u1 <= u;
y1 <= y;

end process;
end behav;

The CDFG generation: The behavioural complier (or the CDFG generator) of SAST produces

the CDFG from the given input behaviour. The CDFG produced by the SAST for the DIFFEQ

benchmark is given below.

4
B0 5
read (p0 , dx)
read (p1 , u)
read (p2 , y)
read (p3 , x)
read (p4 , a)

C0 1
x < a

B1 10
v0 = u * dx
v1 = 3 * x
x = x + dx
v2 = v0 * v1
v3 = 3 * y
v4 = u - v2
v5 = dx * v3
v6 = u * dx
u = v4 - v5
y = y + v6

B2 6
x1 = x
write (p7 , x1)
u1 = u
write (p6 , u1)
y1 = y
write (p5 , y1)

4
B0 1 C0
C0 2 0 B1 1 B2
B1 1 C0
B2 0

Preprocessing: The next step of SAST is preprocessing. In this process, SAST converts the

CDFG into an intermediate representation (IR). This IR actually consists of two files. They are as

given below.

141

1. (designname $�� bb: for storing IR of the basic blocks information.

2. (designname $�� po: for storing IR of the partial order of the operations.

Scheduling: The output of the GA based scheduler of SAST is given below.

Block I
etime: 3;
************* schedule ******** idx=43 ********
1: btrn: ˆ5000(0) ˆ5001(1) xasg: 0(0)-> 0(0) 1(1)-> 1(1) opn: < 0, 0> < 1, 0>
2: btrn: ˆ5002(4) ˆ5001(3) xasg: 3(0)-> 3(0) 4(1)-> 4(1) opn: < 3, 0> < 4, 0>
3: btrn: ˆ5000(2) xasg: 2(1)-> 2(1) opn: < 2, 0>

Block B1
etime: 5;
************* schedule ******** idx=96 ********

1: btrn: 1(1) xasg: opn: < 0, 4> < 1, 4>
2: btrn: 4(1) xasg: opn: < 3, 4> < 4, 4>
3: btrn: ˆ 0(0) xasg: 2(0)-> 1(1) opn: < 6, 4> < 2, 2>
4: btrn: ˆ 3(0) xasg: opn: < 5, 3> < 7, 4>
5: btrn: xasg: 8(0)-> 3(0) 9(0)-> 2(1) opn: < 8, 3> < 9, 2>

Block C1
etime: 1;
************* schedule ******** idx=1 ********

1: btrn: xasg: ˆ 4(0)-> 4(1) ˆ 3(1)-> 3(0) opn: < 0, 1>

Block B2
etime: 2;
************* schedule ******** idx=0 ********

1: btrn: ˆ 0(1) xasg: opn: < 0, 0>
2: btrn: ˆ 1(1) ˆ 2(0) xasg: opn: < 1, 0> < 2, 0>

The above output is explained as follows. Scheduling information of each basic block is printed

one after another. For each basic block, etime says the number of control steps needed to execute

all the operations in that basic block. btrn describes bus transfers present in the scheduled output.

This example is scheduled by using 2 global buses; thus there are two columns to represent the

bus transfers, one for each global bus. Bus transfers are represented in the way ˆa(b) or a(b),

where a is the index of the variable to be transferred and b is some operation number or the index

of the A-block from which the transfer is taking place. If the value of a is greater than or equal to

5000, the transfer is from input ports to A-blocks and the port number is calculated as a - 5000.

and the value of b represents the operation number, which requires the transfer. If a is preceded by

the symbol ˆ, then it means the variable in transfer is a result of an operation. xasg describes the

definition of the program variable whose value has been used in the successor blocks. For example,

2 (0) � x (1) indicates that the result of the 2nd operation scheduled in the A-block 0 defines the

142 APPENDIX A. SYNTHESIS WITH SAST: A CASE STUDY

outgoing variable x. The updated value of x will be stored in A-block 1. The opn represents the

scheduling of the operation. There are two columns following opn corresponding to the 2 A-blocks

(provided as an architectural parameter) in which operations are scheduled. The column following

opn represents the operations scheduled in the A-block 0 and the next row represents the same for

A-block 1. For example, (7
 4 $ in the 4th row of basic block B1 represents the operation number

7 of operation type 4 (which is multiplication) is scheduled in A-block 1.

Lifetimes of the Variable: From the scheduler output, the lifetimes for the program variables

and the temporary variables in each A-block are computed. A program variable’s life spans across

more than one basic block and a temporary variable’s life spans only for one basic block. Each life

span of a variable is described as (s
 e
 b $, where s is the control step in which the variable got

assigned a new value in the basic block b, e is the control step in which the variable is last used

in the basic block b. Output produced by SAST for DIFFEQ problem after the lifespans of each

variable is calculated is shown below.

Program Variables in A Block 0
dx 0 2 4 I 0 6 B1 0 2 C1
u 1 3 4 I 0 4 B1 6 6 B1 0 2 C1 0 2 B2
3 1 0 0 B1

Temporary Variables in A Block 0
v1 2 1 2 B1
v0 3 2 2 B1
v3 4 2 3 B1
v2 5 3 4 B1
v5 6 4 5 B1
v4 7 5 5 B1

Program Variables in A Block 1
x 0 2 4 I 0 3 B1 4 6 B1 0 2 C1 0 1 B2
a 1 3 4 I 0 6 B1 0 2 C1
y 2 4 4 I 0 5 B1 6 6 B1 0 2 C1 0 2 B2
3 3 0 2 B1

Temporary Variables in A Block 1
dx 4 3 4 B1
v6 5 5 5 B1

Register Allocation and Binding: By constructing the compatibility graph from the lifetimes

of all the variables in each A-block and by applying the clique partitioning algorithm, SAST finds

the minimum number of registers required to store the variables in an A-block. The output pro-

duced by SAST after the register binding phase is shown below.

A-block 0

143

Register 0 has 1 elements : dx
Register 1 has 1 elements : u
Register 2 has 3 elements : v1 v2 v4
Register 3 has 2 elements : v0 v5
Register 4 has 1 elements : v3

A-block 1
Register 0 has 1 elements : x
Register 1 has 1 elements : a
Register 2 has 1 elements : y
Register 3 has 1 elements : 3
Register 4 has 2 elements : dx v6

The data-path and the controller Generation: Interconnections between the functional unit

and registers in each A-block is done by internal buses and switches. SAST also minimizes the

number of switches in the data-path. The final output produced by the SAST is the synthesizable

Verilog RTL of both the data path and the controller. Verilog RTL produced by the SAST is given

below.

/* --- Definition of Control Steps --- */

‘define CS0 4’b0000
‘define CS1 4’b0001
‘define CS2 4’b0010
‘define CS3 4’b0011
‘define CS4 4’b0100
‘define CS5 4’b0101
‘define CS6 4’b0110
‘define CS7 4’b0111
‘define CS8 4’b1000
‘define CS9 4’b1001
‘define CS10 4’b1010
‘define RESET 4’b1111

/* Defining Symbolicconstants to all operations in the design*/
‘define A0_ALUMUL 1’d0
‘define A0_ALUSUB 1’d1
‘define A1_ALUMUL 2’d0
‘define A1_ALUADD 2’d1
‘define A1_ALULT 2’d2

/* Defining Symboilc constants for each bit in all control signals */
‘define a0_accl0_r_dx_0 1’b0
‘define a0_accl0_r_dx_1 1’b1
‘define a0_accl0_r_u_0 1’b0
‘define a0_accl0_r_u_1 1’b1
‘define a0_alu_r_v0_v5_0 1’b0
‘define a0_alu_r_v0_v5_1 1’b1
‘define a0_r_u_alult_0 1’b0
‘define a0_r_u_alult_1 1’b1
‘define a0_r_dx_alurt_0 1’b0
‘define a0_r_dx_alurt_1 1’b1
‘define a0_accl0_r_v1_v2_v4_0 1’b0
‘define a0_accl0_r_v1_v2_v4_1 1’b1
‘define a0_alu_r_v1_v2_v4_0 1’b0
‘define a0_alu_r_v1_v2_v4_1 1’b1
‘define a0_r_v0_v5_alult_0 1’b0
‘define a0_r_v0_v5_alult_1 1’b1
‘define a0_r_v1_v2_v4_alurt_0 1’b0
‘define a0_r_v1_v2_v4_alurt_1 1’b1
‘define a0_accl0_r_v3_0 1’b0
‘define a0_accl0_r_v3_1 1’b1

144 APPENDIX A. SYNTHESIS WITH SAST: A CASE STUDY

‘define a0_r_dx_alult_0 1’b0
‘define a0_r_dx_alult_1 1’b1
‘define a0_r_v3_alurt_0 1’b0
‘define a0_r_v3_alurt_1 1’b1
‘define a0_r_dx_accl0_0 1’b0
‘define a0_r_dx_accl0_1 1’b1
‘define a0_r_u_accl0_0 1’b0
‘define a0_r_u_accl0_1 1’b1
‘define a0_alu_r_u_0 1’b0
‘define a0_alu_r_u_1 1’b1
‘define a0_r_v1_v2_v4_alult_0 1’b0
‘define a0_r_v1_v2_v4_alult_1 1’b1
‘define a0_r_v0_v5_alurt_0 1’b0
‘define a0_r_v0_v5_alurt_1 1’b1
‘define r_dx_0 1’b0
‘define r_dx_1 1’b1
‘define r_u_0 1’b0
‘define r_u_1 1’b1
‘define r_v1_v2_v4_0 1’b0
‘define r_v1_v2_v4_1 1’b1
‘define r_v0_v5_0 1’b0
‘define r_v0_v5_1 1’b1
‘define r_v3_0 1’b0
‘define r_v3_1 1’b1
‘define a1_accl0_r_x_0 1’b0
‘define a1_accl0_r_x_1 1’b1
‘define a1_accl0_r_a_0 1’b0
‘define a1_accl0_r_a_1 1’b1
‘define a1_accl0_r_y_0 1’b0
‘define a1_accl0_r_y_1 1’b1
‘define a1_alu_accl0_0 1’b0
‘define a1_alu_accl0_1 1’b1
‘define a1_r_3_alult_0 1’b0
‘define a1_r_3_alult_1 1’b1
‘define a1_r_x_alurt_0 1’b0
‘define a1_r_x_alurt_1 1’b1
‘define a1_r_y_alurt_0 1’b0
‘define a1_r_y_alurt_1 1’b1
‘define a1_alu_r_x_0 1’b0
‘define a1_alu_r_x_1 1’b1
‘define a1_r_x_alult_0 1’b0
‘define a1_r_x_alult_1 1’b1
‘define a1_accl0_alurt_0 1’b0
‘define a1_accl0_alurt_1 1’b1
‘define a1_accl0_r_dx_v6_0 1’b0
‘define a1_accl0_r_dx_v6_1 1’b1
‘define a1_alu_r_dx_v6_0 1’b0
‘define a1_alu_r_dx_v6_1 1’b1
‘define a1_accl0_alult_0 1’b0
‘define a1_accl0_alult_1 1’b1
‘define a1_r_dx_v6_alurt_0 1’b0
‘define a1_r_dx_v6_alurt_1 1’b1
‘define a1_alu_r_y_0 1’b0
‘define a1_alu_r_y_1 1’b1
‘define a1_r_y_alult_0 1’b0
‘define a1_r_y_alult_1 1’b1
‘define a1_r_a_alurt_0 1’b0
‘define a1_r_a_alurt_1 1’b1
‘define a1_r_x_accl0_0 1’b0
‘define a1_r_x_accl0_1 1’b1
‘define a1_r_y_accl0_0 1’b0
‘define a1_r_y_accl0_1 1’b1
‘define r_x_0 1’b0
‘define r_x_1 1’b1
‘define r_a_0 1’b0
‘define r_a_1 1’b1
‘define r_y_0 1’b0
‘define r_y_1 1’b1

145

‘define r_dx_v6_0 1’b0
‘define r_dx_v6_1 1’b1

‘define a0_accl0_bus0_0 1’b0
‘define a0_accl0_bus0_1 1’b1
‘define a0_accl0_bus1_0 1’b0
‘define a0_accl0_bus1_1 1’b1
‘define a1_accl0_bus0_0 1’b0
‘define a1_accl0_bus0_1 1’b1
‘define a1_bus1_accl0_0 1’b0
‘define a1_bus1_accl0_1 1’b1
‘define port0_bus0_0 1’b0
‘define port0_bus0_1 1’b1
‘define port2_bus0_0 1’b0
‘define port2_bus0_1 1’b1
‘define port3_bus0_0 1’b0
‘define port3_bus0_1 1’b1
‘define bus0_port3_0 1’b0
‘define bus0_port3_1 1’b1
‘define port4_bus0_0 1’b0
‘define port4_bus0_1 1’b1
‘define bus0_port4_0 1’b0
‘define bus0_port4_1 1’b1
‘define port1_bus1_0 1’b0
‘define port1_bus1_1 1’b1
‘define port3_bus1_0 1’b0
‘define port3_bus1_1 1’b1
‘define bus1_port3_0 1’b0
‘define bus1_port3_1 1’b1

/* Defining Symbolic constants to the constants that are used in the code */
‘define CONST0 0

/* ---- A-Block 0 ------ */

module ablock0 (r_dx_datain_accl0_r_v3_datain, switch_ctrl, write_en, alu_ctrl, clk);
inout [7:0] r_dx_datain_accl0_r_v3_datain;
input [13:0] switch_ctrl; // set of control signals to all switches in the A-Block
input [4:0] write_en; // enables a register to write into
input [0:0] alu_ctrl; // controls the operation in the ALU
input clk;

/* Registers in the A-Block */
reg [7:0] r_dx;
reg [7:0] r_u;
reg [7:0] r_v1_v2_v4;
reg [7:0] r_v0_v5;
reg [7:0] r_v3;

wire [7:0] alu_left_in;
wire [7:0] alu_right_in;

/* In and Out wires connected to each Register */
wire [7:0] r_dx_datain_accl0_r_v3_datain;
wire [7:0] r_dx_dataout;
wire [7:0] r_u_datain;
wire [7:0] r_u_dataout;
wire [7:0] r_v1_v2_v4_datain;
wire [7:0] r_v1_v2_v4_dataout;
wire [7:0] r_v0_v5_datain_alu_out;
wire [7:0] r_v0_v5_dataout;
wire [7:0] r_v3_dataout;

/* ALU */
alu0 opr_mul_sub(r_v0_v5_datain_alu_out, alu_left_in, alu_right_in, alu_ctrl);

/* Switches for bus interconnections */
switch r_dx_alult (alu_left_in, r_dx_dataout, switch_ctrl[0]);

146 APPENDIX A. SYNTHESIS WITH SAST: A CASE STUDY

switch r_u_alult (alu_left_in, r_u_dataout, switch_ctrl[1]);
switch r_v1_v2_v4_alult (alu_left_in, r_v1_v2_v4_dataout, switch_ctrl[2]);
switch r_v0_v5_alult (alu_left_in, r_v0_v5_dataout, switch_ctrl[3]);
switch r_dx_alurt (alu_right_in, r_dx_dataout, switch_ctrl[4]);
switch r_v1_v2_v4_alurt (alu_right_in, r_v1_v2_v4_dataout, switch_ctrl[5]);
switch r_v0_v5_alurt (alu_right_in, r_v0_v5_dataout, switch_ctrl[6]);
switch r_v3_alurt (alu_right_in, r_v3_dataout, switch_ctrl[7]);
switch r_dx_accl0 (r_dx_datain_accl0_r_v3_datain, r_dx_dataout, switch_ctrl[8]);
switch r_u_accl0 (r_dx_datain_accl0_r_v3_datain, r_u_dataout, switch_ctrl[9]);
switch alu_r_u (r_u_datain, r_v0_v5_datain_alu_out, switch_ctrl[10]);
switch accl0_r_u (r_u_datain, r_dx_datain_accl0_r_v3_datain, switch_ctrl[11]);
switch alu_r_v1_v2_v4 (r_v1_v2_v4_datain, r_v0_v5_datain_alu_out, switch_ctrl[12]);
switch accl0_r_v1_v2_v4 (r_v1_v2_v4_datain, r_dx_datain_accl0_r_v3_datain, switch_ctrl[13]);

assign r_dx_dataout = r_dx;
assign r_u_dataout = r_u;
assign r_v1_v2_v4_dataout = r_v1_v2_v4;
assign r_v0_v5_dataout = r_v0_v5;
assign r_v3_dataout = r_v3;

/* Depending on the ’write_en’ signal data will be written into the register */
always @(posedge write_en[0])
r_dx = r_dx_datain_accl0_r_v3_datain;

always @(posedge write_en[1])
r_u = r_u_datain;

always @(posedge write_en[2])
r_v1_v2_v4 = r_v1_v2_v4_datain;

always @(posedge write_en[3])
r_v0_v5 = r_v0_v5_datain_alu_out;

always @(posedge write_en[4])
r_v3 = r_dx_datain_accl0_r_v3_datain;

endmodule

/* ---- A-Block 1 ------ */

module ablock1 (alu_status, r_a_datain_accl0, switch_ctrl, write_en, alu_ctrl, clk);
output alu_status;
inout [7:0] r_a_datain_accl0;
input [17:0] switch_ctrl; // set of control signals to all switches in the A-Block
input [3:0] write_en; // enables a register to write into
input [1:0] alu_ctrl; // controls the operation in the ALU
input clk;

/* Registers in the A-Block */
reg [7:0] r_x;
reg [7:0] r_a;
reg [7:0] r_y;
reg [7:0] r_3;
reg [7:0] r_dx_v6;

wire [7:0] alu_left_in;
wire [7:0] alu_right_in;
wire [7:0] alu_out;

/* In and Out wires connected to each Register */
wire [7:0] r_x_datain;
wire [7:0] r_x_dataout;
wire [7:0] r_a_datain_accl0;
wire [7:0] r_a_dataout;
wire [7:0] r_y_datain;
wire [7:0] r_y_dataout;
wire [7:0] r_3_dataout;
wire [7:0] r_dx_v6_datain;

147

wire [7:0] r_dx_v6_dataout;

/* ALU */
alu1 opr_mul_add_lt(alu_out, alu_status, alu_left_in, alu_right_in, alu_ctrl);

/* Switches for bus interconnections */
switch r_x_alult (alu_left_in, r_x_dataout, switch_ctrl[0]);
switch r_y_alult (alu_left_in, r_y_dataout, switch_ctrl[1]);
switch r_3_alult (alu_left_in, r_3_dataout, switch_ctrl[2]);
switch accl0_alult (alu_left_in, r_a_datain_accl0, switch_ctrl[3]);
switch r_x_alurt (alu_right_in, r_x_dataout, switch_ctrl[4]);
switch r_a_alurt (alu_right_in, r_a_dataout, switch_ctrl[5]);
switch r_y_alurt (alu_right_in, r_y_dataout, switch_ctrl[6]);
switch r_dx_v6_alurt (alu_right_in, r_dx_v6_dataout, switch_ctrl[7]);
switch accl0_alurt (alu_right_in, r_a_datain_accl0, switch_ctrl[8]);
switch r_x_accl0 (r_a_datain_accl0, r_x_dataout, switch_ctrl[9]);
switch r_y_accl0 (r_a_datain_accl0, r_y_dataout, switch_ctrl[10]);
switch alu_r_x (r_x_datain, alu_out, switch_ctrl[11]);
switch accl0_r_x (r_x_datain, r_a_datain_accl0, switch_ctrl[12]);
switch alu_r_y (r_y_datain, alu_out, switch_ctrl[13]);
switch accl0_r_y (r_y_datain, r_a_datain_accl0, switch_ctrl[14]);
switch alu_r_dx_v6 (r_dx_v6_datain, alu_out, switch_ctrl[15]);
switch accl0_r_dx_v6 (r_dx_v6_datain, r_a_datain_accl0, switch_ctrl[16]);
switch alu_accl0 (r_a_datain_accl0, alu_out, switch_ctrl[17]);

assign r_x_dataout = r_x;
assign r_a_dataout = r_a;
assign r_y_dataout = r_y;
assign r_3_dataout = r_3;
assign r_dx_v6_dataout = r_dx_v6;

/* Depending on the ’write_en’ signal data will be written into the register */
always @(posedge write_en[0])
r_x = r_x_datain;

always @(posedge write_en[1])
r_a = r_a_datain_accl0;

always @(posedge write_en[2])
r_y = r_y_datain;

always @(posedge write_en[3])
r_dx_v6 = r_dx_v6_datain;

endmodule

/* ALU for A-Block 0 */
module alu0 (alu_out, left_in, right_in, ctrl);
output [7:0] alu_out;
input [7:0] left_in;
input [7:0] right_in;
input [0:0] ctrl;

wire [7:0] mul_alu_out;
wire [7:0] sub_alu_out;

alu_mul_1_1 mul (mul_alu_out, left_in, right_in);
alu_sub_1_1 sub (sub_alu_out, left_in, right_in);

/* alu output or alu status is controlled by ’ctrl’ signal */
assign alu_out = ((ctrl == ‘A0_ALUMUL) ? mul_alu_out : ((ctrl == ‘A0_ALUSUB) ? sub_alu_out : alu_out));

endmodule

/* ALU for A-Block 1 */
module alu1 (alu_out, alu_status, left_in, right_in, ctrl);
output [7:0] alu_out;
output alu_status;

148 APPENDIX A. SYNTHESIS WITH SAST: A CASE STUDY

input [7:0] left_in;
input [7:0] right_in;
input [1:0] ctrl;

wire [7:0] mul_alu_out;
wire [7:0] add_alu_out;
wire lt_alu_status;

alu_mul_1_1 mul (mul_alu_out, left_in, right_in);
alu_add_1_1 add (add_alu_out, left_in, right_in);
alu_lt_1_1 lt (lt_alu_status, left_in, right_in);

/* alu output or alu status is controlled by ’ctrl’ signal */
assign alu_out = ((ctrl == ‘A1_ALUMUL) ? mul_alu_out : ((ctrl == ‘A1_ALUADD) ? add_alu_out : alu_out));
assign alu_status = ((ctrl == ‘A1_ALULT) ? lt_alu_status : alu_status);

endmodule

/* ---- Controller ---- */

module controller (bus_port_ctrl, bus_accl_ctrl, a0_switch_ctrl, a0_write_en, a0_alu_ctrl, a1_switch_ctrl,
a1_write_en, a1_alu_ctrl, a1_alu_status, clk);

output [5:0] bus_port_ctrl;
output [6:0] bus_accl_ctrl;
output [13:0] a0_switch_ctrl;
output [4:0] a0_write_en;
output [0:0] a0_alu_ctrl;
output [17:0] a1_switch_ctrl;
output [3:0] a1_write_en;
output [1:0] a1_alu_ctrl;
input a1_alu_status;
input clk;

wire [3:0] state;
wire [3:0] statePi;

generateControlsignals genctrls (bus_port_ctrl, bus_accl_ctrl, a0_switch_ctrl, a0_alu_ctrl, a1_switch_ctrl,
a1_alu_ctrl, state);

generateWriteEnable genwten (a0_write_en, a1_write_en, statePi, clk);
sequenceGenerator seq (state, a1_alu_status, clk);

/* phase shifting state by 180 degrees
statePi contains the phase shifted state
statePi is used to generate ’write_en’ signal to each A-Block */

d_ff df0 (statePi[0], state[0], ˜clk);
d_ff df1 (statePi[1], state[1], ˜clk);
d_ff df2 (statePi[2], state[2], ˜clk);
d_ff df3 (statePi[3], state[3], ˜clk);

endmodule

/* Generates the next control step */
module sequenceGenerator (state, a1_alu_status, clk);
output [3:0] state;
input a1_alu_status;
input clk;
reg [3:0] state;

always @(posedge clk)
begin
case (state)
‘CS0 : state = ‘CS1;
‘CS1 : state = ‘CS2;
‘CS2 : state = ‘CS3;
‘CS3 : state = ‘CS4;
‘CS4 : state = ‘CS5;
‘CS5 : state = ‘CS6;
‘CS6 : state = ‘CS7;

149

‘CS7 : state = ‘CS8;
‘CS8 : state = ((a1_alu_status == 0) ? ‘CS9 : ‘CS3);
‘CS9 : state = ‘CS10;
‘CS10 : state = ‘CS0;
‘RESET : state = ‘CS0;
endcase
end
endmodule

/* Generates the control signals for all A-Blocks */
module generateControlsignals (bus_port_ctrl, bus_accl_ctrl, a0_switch_ctrl, a0_alu_ctrl, a1_switch_ctrl,

a1_alu_ctrl, state);
output [5:0] bus_port_ctrl;
output [6:0] bus_accl_ctrl;
output [13:0] a0_switch_ctrl;
output [0:0] a0_alu_ctrl;
output [17:0] a1_switch_ctrl;
output [1:0] a1_alu_ctrl;
input [3:0] state;

reg [5:0] bus_port_ctrl;
reg [6:0] bus_accl_ctrl;
reg [13:0] a0_switch_ctrl;
reg [0:0] a0_alu_ctrl;
reg [17:0] a1_switch_ctrl;
reg [1:0] a1_alu_ctrl;

always @(state)
begin
case (state)
‘CS0 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_1, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_1};
bus_accl_ctrl = {‘a1_bus1_accl0_1, ‘a1_accl0_bus0_0, ‘a1_accl0_bus0_0, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_1, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0,
‘a0_r_v1_v2_v4_alult_0, ‘a0_r_u_alult_0, ‘a0_r_dx_alult_0};

a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0,
‘a1_alu_r_y_0, ‘a1_accl0_r_x_1, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0,
‘a1_accl0_alurt_0, ‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0,
‘a1_r_x_alurt_0, ‘a1_accl0_alult_0, ‘a1_r_3_alult_0, ‘a1_r_y_alult_0, ‘a1_r_x_alult_0};

end

‘CS1 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_1, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_1, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_1, ‘a1_accl0_bus0_0, ‘a0_accl0_bus1_1, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_0, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_1, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0, ‘a0_r_v1_v2_v4_alult_0,
‘a0_r_u_alult_0, ‘a0_r_dx_alult_0};

a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_0,
‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_0,
‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_0, ‘a1_r_3_alult_0, ‘a1_r_y_alult_0, ‘a1_r_x_alult_0};

end

‘CS2 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_0, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_1};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_1, ‘a1_accl0_bus0_0, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_0, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0,
‘a0_r_v1_v2_v4_alult_0, ‘a0_r_u_alult_0, ‘a0_r_dx_alult_0};

a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_1, ‘a1_alu_r_y_0,
‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_0,

150 APPENDIX A. SYNTHESIS WITH SAST: A CASE STUDY

‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_0, ‘a1_r_3_alult_0, ‘a1_r_y_alult_0, ‘a1_r_x_alult_0};

end

‘CS3 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_0, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_1, ‘a1_accl0_bus0_1, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_1, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_1, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_1, ‘a0_r_v0_v5_alult_0,
‘a0_r_v1_v2_v4_alult_0, ‘a0_r_u_alult_1, ‘a0_r_dx_alult_0};

a0_alu_ctrl = ‘A0_ALUMUL;
a1_switch_ctrl = {‘a1_alu_accl0_1, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_0,

‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_0,
‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_1,
‘a1_accl0_alult_0, ‘a1_r_3_alult_1, ‘a1_r_y_alult_0, ‘a1_r_x_alult_0};

a1_alu_ctrl = ‘A1_ALUMUL;
end

‘CS4 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_0, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_1, ‘a1_accl0_bus0_1, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_1, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_1, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_1, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_1,

‘a0_r_v1_v2_v4_alult_0, ‘a0_r_u_alult_0, ‘a0_r_dx_alult_0};
a0_alu_ctrl = ‘A0_ALUMUL;
a1_switch_ctrl = {‘a1_alu_accl0_1, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_0,

‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_0,
‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_1, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_0, ‘a1_r_3_alult_1, ‘a1_r_y_alult_0, ‘a1_r_x_alult_0};

a1_alu_ctrl = ‘A1_ALUMUL;
end

‘CS5 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_0, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_1, ‘a1_accl0_bus0_0, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_1, ‘a0_accl0_bus0_1};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_1, ‘a0_r_v3_alurt_1, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0, ‘a0_r_v1_v2_v4_alult_0,
‘a0_r_u_alult_0, ‘a0_r_dx_alult_1};

a0_alu_ctrl = ‘A0_ALUMUL;
a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_1, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_0,

‘a1_accl0_r_x_0, ‘a1_alu_r_x_1, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_1,
‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_0, ‘a1_r_3_alult_0, ‘a1_r_y_alult_0, ‘a1_r_x_alult_1};

a1_alu_ctrl = ‘A1_ALUADD;
end

‘CS6 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_0, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_1, ‘a1_accl0_bus0_0, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_1, ‘a0_accl0_bus0_1};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_1, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_1, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_1, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0,
‘a0_r_v1_v2_v4_alult_0, ‘a0_r_u_alult_1, ‘a0_r_dx_alult_0};

a0_alu_ctrl = ‘A0_ALUSUB;
a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_1, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_0,

‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_0,
‘a1_r_dx_v6_alurt_1, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_1, ‘a1_r_3_alult_0, ‘a1_r_y_alult_0, ‘a1_r_x_alult_0};

a1_alu_ctrl = ‘A1_ALUMUL;
end

151

‘CS7 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_0, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_0, ‘a1_accl0_bus0_0, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_0, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_1,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_1,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0,
‘a0_r_v1_v2_v4_alult_1, ‘a0_r_u_alult_0, ‘a0_r_dx_alult_0};

a0_alu_ctrl = ‘A0_ALUSUB;
a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_1,

‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_0,
‘a1_r_dx_v6_alurt_1, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_0, ‘a1_r_3_alult_0, ‘a1_r_y_alult_1, ‘a1_r_x_alult_0};

a1_alu_ctrl = ‘A1_ALUADD;
end

‘CS8 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_0, ‘bus0_port4_0, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_0, ‘a1_accl0_bus0_0, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_0, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0,
‘a0_r_v1_v2_v4_alult_0, ‘a0_r_u_alult_0, ‘a0_r_dx_alult_0};

a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_0,
‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_0,
‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_1, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_0, ‘a1_r_3_alult_0, ‘a1_r_y_alult_0, ‘a1_r_x_alult_1};

a1_alu_ctrl = ‘A1_ALULT;
end

‘CS9 : begin
bus_port_ctrl = {‘bus1_port3_0, ‘port1_bus1_0, ‘bus0_port4_0, ‘bus0_port3_1, ‘port2_bus0_0, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_1, ‘a1_accl0_bus0_1, ‘a0_accl0_bus1_0, ‘a0_accl0_bus1_0,

‘a0_accl0_bus0_0, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_0, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0,
‘a0_r_v1_v2_v4_alult_0, ‘a0_r_u_alult_0, ‘a0_r_dx_alult_0};

a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_0,
‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_0, ‘a1_r_x_accl0_1, ‘a1_accl0_alurt_0,
‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_0, ‘a1_r_3_alult_0, ‘a1_r_y_alult_0, ‘a1_r_x_alult_0};

end

‘CS10 : begin
bus_port_ctrl = {‘bus1_port3_1, ‘port1_bus1_0, ‘bus0_port4_1, ‘bus0_port3_0, ‘port2_bus0_0, ‘port0_bus0_0};
bus_accl_ctrl = {‘a1_bus1_accl0_0, ‘a1_accl0_bus0_1, ‘a1_accl0_bus0_1, ‘a0_accl0_bus1_1, ‘a0_accl0_bus1_1,

‘a0_accl0_bus0_0, ‘a0_accl0_bus0_0};
a0_switch_ctrl = {‘a0_accl0_r_v1_v2_v4_0, ‘a0_alu_r_v1_v2_v4_0, ‘a0_accl0_r_u_0, ‘a0_alu_r_u_0,

‘a0_r_u_accl0_1, ‘a0_r_dx_accl0_0, ‘a0_r_v3_alurt_0, ‘a0_r_v0_v5_alurt_0,
‘a0_r_v1_v2_v4_alurt_0, ‘a0_r_dx_alurt_0, ‘a0_r_v0_v5_alult_0,
‘a0_r_v1_v2_v4_alult_0, ‘a0_r_u_alult_0, ‘a0_r_dx_alult_0};

a1_switch_ctrl = {‘a1_alu_accl0_0, ‘a1_accl0_r_dx_v6_0, ‘a1_alu_r_dx_v6_0, ‘a1_accl0_r_y_0, ‘a1_alu_r_y_0,
‘a1_accl0_r_x_0, ‘a1_alu_r_x_0, ‘a1_r_y_accl0_1, ‘a1_r_x_accl0_0, ‘a1_accl0_alurt_0,
‘a1_r_dx_v6_alurt_0, ‘a1_r_y_alurt_0, ‘a1_r_a_alurt_0, ‘a1_r_x_alurt_0,
‘a1_accl0_alult_0, ‘a1_r_3_alult_0, ‘a1_r_y_alult_0, ‘a1_r_x_alult_0};

end

default : begin
bus_port_ctrl = ‘CONST0;
bus_accl_ctrl = ‘CONST0;
a0_switch_ctrl = ‘CONST0;
a1_switch_ctrl = ‘CONST0;
end
endcase
end
endmodule

152 APPENDIX A. SYNTHESIS WITH SAST: A CASE STUDY

/* Generates the write enable signals to all A-Blocks */
module generateWriteEnable (a0_write_en, a1_write_en, statePi, clk);
output [4:0] a0_write_en;
output [3:0] a1_write_en;
input [3:0] statePi;
input clk;

reg [4:0] a0_write_en;
reg [3:0] a1_write_en;

always @(posedge clk)
begin
case (statePi)
‘CS0 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_0, ‘r_v1_v2_v4_0, ‘r_u_0, ‘r_dx_1};
a1_write_en = {‘r_dx_v6_0, ‘r_y_0, ‘r_a_0, ‘r_x_1};
end

‘CS1 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_0, ‘r_v1_v2_v4_0, ‘r_u_1, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_0, ‘r_y_0, ‘r_a_1, ‘r_x_0};
end

‘CS2 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_0, ‘r_v1_v2_v4_0, ‘r_u_0, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_0, ‘r_y_1, ‘r_a_0, ‘r_x_0};
end

‘CS3 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_1, ‘r_v1_v2_v4_1, ‘r_u_0, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_0, ‘r_y_0, ‘r_a_0, ‘r_x_0};
end

‘CS4 : begin
a0_write_en = {‘r_v3_1, ‘r_v0_v5_0, ‘r_v1_v2_v4_1, ‘r_u_0, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_0, ‘r_y_0, ‘r_a_0, ‘r_x_0};
end

‘CS5 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_1, ‘r_v1_v2_v4_0, ‘r_u_0, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_1, ‘r_y_0, ‘r_a_0, ‘r_x_1};
end

‘CS6 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_0, ‘r_v1_v2_v4_1, ‘r_u_0, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_1, ‘r_y_0, ‘r_a_0, ‘r_x_0};
end

‘CS7 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_0, ‘r_v1_v2_v4_0, ‘r_u_1, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_0, ‘r_y_1, ‘r_a_0, ‘r_x_0};
end

‘CS8 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_0, ‘r_v1_v2_v4_0, ‘r_u_0, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_0, ‘r_y_0, ‘r_a_0, ‘r_x_0};
end

‘CS9 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_0, ‘r_v1_v2_v4_0, ‘r_u_0, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_0, ‘r_y_0, ‘r_a_0, ‘r_x_0};
end

‘CS10 : begin
a0_write_en = {‘r_v3_0, ‘r_v0_v5_0, ‘r_v1_v2_v4_0, ‘r_u_0, ‘r_dx_0};
a1_write_en = {‘r_dx_v6_0, ‘r_y_0, ‘r_a_0, ‘r_x_0};
end

153

default : begin
a0_write_en = ‘CONST0;
a1_write_en = ‘CONST0;
end
endcase
end
always @(negedge clk)
begin
a0_write_en = ‘CONST0;
a1_write_en = ‘CONST0;
end
endmodule

/* stimulas module, which instanciates A-Blocks, Controller, Ports and interconnections among those */
module system (port0, port1, port2, port3, port4, clk);
input [7:0] port0;
input [7:0] port1;
input [7:0] port2;
output [7:0] port3;
output [7:0] port4;
input clk;

wire [7:0] bus0;
wire [7:0] bus1;

wire [7:0] a0_accl0;
wire [7:0] a1_accl0;

wire a1_alu_status;

wire [13:0] a0_switch_ctrl;
wire [17:0] a1_switch_ctrl;

wire [4:0] a0_write_en;
wire [3:0] a1_write_en;

wire [0:0] a0_alu_ctrl;
wire [1:0] a1_alu_ctrl;

wire [5:0] bus_port_ctrl;
wire [6:0] bus_accl_ctrl;

/* ’switch2way’ is the bidirectional switch */
switch port0_bus0 (bus0, port0, bus_port_ctrl[0]);
switch port2_bus0 (bus0, port2, bus_port_ctrl[1]);
switch bus0_port3 (port3, bus0, bus_port_ctrl[2]);
switch bus0_port4 (port4, bus0, bus_port_ctrl[3]);
switch port1_bus1 (bus1, port1, bus_port_ctrl[4]);
switch bus1_port3 (port3, bus1, bus_port_ctrl[5]);

switch2way a0_accl0_bus0 (a0_accl0, bus0, bus_accl_ctrl[1:0]);
switch2way a0_accl0_bus1 (a0_accl0, bus1, bus_accl_ctrl[3:2]);
switch2way a1_accl0_bus0 (a1_accl0, bus0, bus_accl_ctrl[5:4]);
switch a1_bus1_accl0 (a1_accl0, bus1, bus_accl_ctrl[6]);

ablock0 ablk0 (a0_accl0, a0_switch_ctrl, a0_write_en, a0_alu_ctrl, clk);
ablock1 ablk1 (a1_alu_status, a1_accl0, a1_switch_ctrl, a1_write_en, a1_alu_ctrl, clk);
controller cntllr (bus_port_ctrl, bus_accl_ctrl, a0_switch_ctrl, a0_write_en, a0_alu_ctrl,

a1_switch_ctrl, a1_write_en, a1_alu_ctrl, a1_alu_status, clk);

endmodule

154 APPENDIX A. SYNTHESIS WITH SAST: A CASE STUDY

Appendix B

Publications out of this work

1. C. Karfa, J. S. Reddy, S. Biswas, C. R. Mandal, D. Sarkar, SAST: An Interconnection aware

high level synthesis tool, In 9th VLSI Design and Test (VDAT’05), Page 285-293. August

10-13, Bangalore, India.

2. C. Karfa, C. Mandal, D. Sarkar, S R Pentakota, C. Reade. Verification of Scheduling in

High-level Synthesis. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI’06).

Page 141-146, March 2-3, 2006. Karlsruhe, Germany.

3. C. Karfa, C. Mandal, D. Sarkar, S R Pentakota, C. Reade. A Formal Verification Method

of Scheduling in High-level Synthesis. In 7th IEEE International Symposium on Quality

Electronic Design (ISQED’06), page 71-78, San Jose, CA, USA.

4. C. Karfa, D. Sarkar, C Mandal and C. Reade. Register Sharing Verification During Data-

path Synthesis. In IEEE International Conference on Computing: Theory and Applications

(ICCTA’07), pase 135-140, March 5-7, 2007, Kolkata, India.

5. C. Karfa, D. Sarkar, C Mandal and C. Reade. Hand-in-hand verification of high-level syn-

thesis. In 17th ACM Great Lakes Symposium on VLSI 2007 (GLSVLSI’07), page 429-434,

March 11-13, 2007, Stresa - Lago Maggiore, Italy.

6. C. Karfa, D. Sarkar, C Mandal. An Equivalence Checking Method for Scheduling Veri-

fication in High-level Synthesis. In IEEE Transaction on Computer Aided Design on ICs

(Communicated).

155

156 APPENDIX B. PUBLICATIONS OUT OF THIS WORK

Appendix C

Bio-data

Chandan Karfa was born in Shyamsundar, Burdwan, West Bengal on 9th of May, 1982. He received

the B.Tech. degree in Information Technology from University Science Instrumentation Centre of

University of Kalyani, Kalyani, West Bengal in 2004. He is currently pursuing his M.S. degree

in Computer Science and Engineering from Indian Institute of Technology, Kharagpur, India. He

is also working as Junior Project Assistance (JPA) in “High-level Synthesis and verification of

Digital Circuits” project, sponsored by Ministry of Human Resource Development (MHRD) un-

der Sponsored Research and Industrial Consultancy, IIT Kharagpur still July, 2004. His current

research interests include design automation, verification and optimization of digital circuits. He

has published six research papers in different reputed IEEE/ACM international conferences.

157

158 APPENDIX C. BIO-DATA

Bibliography

[1] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, High-Level Synthesis: Introduction to

Chip and System Design. Kluwer Academic Publishers, 1992.

[2] M. Shadad, “An overview of VHDL language and technology,” Procs. of the 23rd Design

Automation Conference, 1986.

[3] D. E. Thomas and P. Moorby, The Verilog Hardware Description Language. Kluwer Aca-

demic Publishers, 1991.

[4] A. C. Parker, J. T. Pizarro, and M. Mlinar, “Maha: A program for data path synthesis,” Procs.

of the 23rd Design Automation Conference, 1986.

[5] G. D. Micheli and D. C. Ku, “Hercules: A system for high level synthesis,” in Procs. of the

25th ACM/IEEE DAC, pp. 483–488, 1988.

[6] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioural synthesis of

asics,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 8, pp. 661–679, June 1989.

[7] F. Brewer and D. D. Gajski, “Chippe: A system for constraint driven behavioural synthesis,”

IEEE Trans. on CAD., pp. 681–695, July 1990.

[8] F.-S. Tsai and Y.-C. Hsu, “STAR - An automatic data path allocator,” IEEE Trans. on CAD.,

vol. 11, pp. 1053–1064, Sep. 1992.

[9] R. J. Cloutier and D. E. Thomas, “The combination of scheduling, allocation and mapping in

a single algorithm,” in Procs. of the 27th ACM/IEEE DAC, pp. 71–76, June 1990.

159

160 BIBLIOGRAPHY

[10] C. Mandal, P. P. Chakrabarti, and S. Ghose, “Gabind: a ga approach to allocation and binding

for the high-level synthesis of data paths,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 8, no. 6, pp. 747–750, 2000.

[11] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: a high-level synthesis framework

for applying parallelizing compiler transformations,” in Proceedings of 16th International

Conference on VLSI Design, pp. 461–466, Jan 2003.

[12] D. Gajski and L. Ramachandran, “Introduction to high-level synthesis,” IEEE transactions

on Design and Test of Computers, pp. 44–54, 1994.

[13] R. Kumar, C. Blumenhr, and D. Schmid, “Formal synthesis in circuit design - a classification

and survey,” in Formal methods in computer-aided design. FMCAD ’96. (LNCS), pp. 1166 –

1182, 1996.

[14] H. Eveking, H. Hinrichsen, and G. Ritter, “Automatic verification of scheduling results in

high-level synthesis.,” in Proc. Conf. Design, Automation and Test in Europe 1999, pp. 59–

64, March 1999.

[15] R. Chapman, G. Brown, and M. Leeser, “Verified high-level synthesis in BEDROC,” in Proc

DAC, 1992., pp. 59–63, 1992.

[16] N. Narashima, E. Teica, S. Radhakrishnan, S. Govindarajan, and R. Vemuri, “Theorem prov-

ing guided development of formal assertions in a resource-constrained scheduler for high-

level synthesis,” Formal Methods in System Design, vol. Vol 19 No 3, pp. 237–273, 2001.

[17] C. Blumenrohr, D. Eisenbiegler, and R. Kumar, “Applicability of formal synthesis illustrated

via scheduling,” in Proceedings of IWLAS, 1996.

[18] J. M. Mendias, R. Hermida, M. C. Molina, and O. Penalba, “Efficient verification of schedul-

ing, allocation and binding in high-level synthesis,” Proc. Digital system Design, pp. 308–

315, 2002.

[19] R. Ernst and J. Bhasker, “Simulation-based verification for high-level synthesis,” IEEE Des.

Test, vol. 8, no. 1, pp. 14–20, 1991.

[20] C.-J. Tseng, R.-S. Wei, S. G. Rothweiler, M. M. Tong, and A. K. Bose, “Bridge: a versatile

behavioral synthesis system,” in DAC ’88: Proceedings of the 25th ACM/IEEE conference on

BIBLIOGRAPHY 161

Design automation, (Los Alamitos, CA, USA), pp. 415–420, IEEE Computer Society Press,

1988.

[21] R. A. Bergamaschi and S. Raje, “Observable time windows: Verifying high-level synthesis

results,” IEEE Des. Test, vol. 14, no. 2, pp. 40–50, 1997.

[22] I. Ghosh, K. Sekar, and V. Boppana, “Design for verification at the register transfer level,”

in ASP-DAC ’02: Proceedings of the 2002 conference on Asia South Pacific design automa-

tion/VLSI Design, (Washington, DC, USA), pp. 420–425, IEEE Computer Society, 2002.

[23] R. A. Bergamaschi, R. A. O’Connor, L. Stok, M. Z. Moricz, S. Prakash, A. Kuehlmann, and

D. S. Rao, “High-level synthesis in an industrial environment,” IBM J. Res. Dev., vol. 39,

no. 1-2, pp. 131–148, 1995.

[24] D. Shepherd and G. Wilson., “Making chips that work,” New Scientist, pp. 61–64, 1989.

[25] R. Radhakrishnan, E. Teica, and R. Vermuri, “An approach to high-level synthesis system val-

idation using formally verified transformations,” in HLDVT ’00: Proceedings of the IEEE In-

ternational High-Level Validation and Test Workshop (HLDVT’00), (Washington, DC, USA),

p. 80, IEEE Computer Society, 2000.

[26] S. P. Rajan, “Correctness of transformations in high level synthesis,” in CHDL ’95: 12th

Conference on Computer Hardware Description Languages and their Applications, (Chiba,

Japan), pp. 597–603, 1995.

[27] T. Krol, J. van Meerbergen, C. Niessen, W. Smits, and J. Huisken, “The sprite input language-

an intermediate format for high levelsynthesis,” in Proceedings. [3rd] European Conference

on Design Automation, pp. 186–192, 1992.

[28] M. Fujita, “Equivalence checking between behavioral and rtl descriptions with virtual con-

trollers and datapaths,” ACM Trans. Des. Autom. Electron. Syst., vol. 10, no. 4, pp. 610–626,

2005.

[29] N. Mansouri and R. Vemuri, “A methodology for automated verification of synthesized rtl de-

signs and its integration with a high-level synthesis tool,” in FMCAD ’98: Proceedings of the

Second International Conference on Formal Methods in Computer-Aided Design, (London,

UK), pp. 204–221, Springer-Verlag, 1998.

162 BIBLIOGRAPHY

[30] J. Roy, N. Kumar, R. Dutta, and R. Vemuri, “Dss: a distributed high-level synthesis system,”

IEEE Design and Test of Computers, vol. 9, no. 2, pp. 18–32, 1992.

[31] D. Anderson and J. Ainscough, “The verification of scheduling algorithms,” in IEE Collo-

quium on Structured Methods for Hardware Systems Design, pp. 7/1–7/5, 1994.

[32] M.J.C. Gordon, “Mechanizing programming logics in higher-order logic,” in Current Trends

in Hardware Verification and Automatic Theorem Proving (Proceedings of the Workshop on

Hardware Verification) (G.M. Birtwistle and P.A. Subrahmanyam, eds.), (Banff, Canada),

pp. 387–439, Springer-Verlag, Berlin, 1988.

[33] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Vemuri, “Theorem

proving guided development of formal assertions in a resource-constrained scheduler for

high-level synthesis,” in Proceedings. of International Conference on Computer Design,

pp. 392–399, 1998.

[34] Y. Kim, S. Kopuri, and N. Mansouri, “Automated formal verification of scheduling process

using finite state machine with datapath (FSMD),” in 5th International Symposium on Quality

Electronic Design (ISQED’04), (Carlifornia), pp. 110–115, March 2004.

[35] J. Lee, Y. Hsu, and Y. Lin, “A new integer linear programming formulation of the scheduling

problem in data path synthesis,” in Procs. of the International Conference on Computer-Aided

Design, pp. 20–23, 1988.

[36] R. Jain, A. Majumdar, A. Sharma, and H. Wang, “Empirical evalution of some high-level

synthesis scheduling heuristics,” in Procs. of 28th DAC, pp. 210–215, 1991.

[37] R. Camposano, “Path-based scheduling for synthesis,” IEEE transactions on computer-Aided

Design of Integrated Circuits and Systems, vol. Vol 10 No 1, pp. 85–93, Jan. 1991.

[38] M. Rahmouni and A. A. Jerraya, “Formulation and evaluation of scheduling techniques

for control flow graphs,” in Proceedings of EuroDAC’95, (Brighton), pp. 386–391, 18-22

September 1995.

[39] G. Lakshminarayana, A. Raghunathan, and N. Jha, “Incorporating speculative execution into

scheduling of control-flow-intensive design,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 19, pp. 308–324, March 2000.

BIBLIOGRAPHY 163

[40] M. Rim, Y. Fann, and R. Jain, “Global scheduling with code motions for high-level synthesis

applications,” IEEE Transactions on VLSI Systems, vol. 3, pp. 379–392, Sept. 1995.

[41] L. C. V. d. Santosh and J. Jress, “A reordering technique for efficient code motion,” in Procs.

of the 36th ACM/IEEE Design Automation Conference, pp. 296–299, 1999.

[42] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Dynamically increasing the scope of code

motions during the high-level synthesis of digital circuits,” IEE Proceedings: Computer and

Digital Technique, vol. 150, pp. 330–337, September 2003.

[43] D. Borrione, J. Dushina, and L. Pierre, “A compositional model for the functional verification

of high-level synthesis results,” IEEE Transactions on VLSI Systems, vol. 8, pp. 526–530,

October 2000.

[44] N. Mansouri and R. Vemuri, “Accounting for various register allocation schemes during post-

synthesis verification of rtl designs,” in Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition (DATE’99), pp. 223–230, March 1999.

[45] P. Ashar, S. Bhattacharya, A. Raghunathan, and A. Mukaiyama, “Verification of rtl gener-

ated from scheduled behavior in a high-level synthesis flow,” in Proceedings of the 1998

IEEE/ACM international conference on computer-aided design, (New York, NY, USA),

pp. 517–524, ACM Press, 1998.

[46] J. Dushina, D. Borrione, and A. A. Jerraya, “Formal verification of the allocation step in

high level synthesis,” in Forum on Design Languages (FDL’98), (Lausanne, Switzerland),

pp. 1–10, 1998.

[47] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Using global code motions to improve the

quality of results for high-level synthesis,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 23, pp. 302–312, Feb 2004.

[48] D. Sarkar and S. De Sarkar, “Some inference rules for integer arithmetic for verification of

flowchart programs on integers,” IEEE Trans Software. Engg., vol. 15, no. 1, pp. 1–9, 1989.

[49] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, “Coordinated parallelizing compiler optimiza-

tions and high-level synthesis,” ACM Transactions on Design Automation of Electronic Sys-

tems (TODAES), vol. 9, pp. 1–31, October 2004.

164 BIBLIOGRAPHY

[50] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. MIT Press and

McGraw-Hill, 2001.

[51] D. Gries, The Science of Programming. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,

1987.

[52] Z. Manna, Mathematical Theory of Computation. Tokyo: McGraw-Hill Kogakusha, 1974.

[53] R. W. Floyd, “Assigning meaning to programs,” in Proceedings the 19th Symposium on Ap-

plied Mathematics (J. T. Schwartz, ed.), (Providence, R.I.), pp. 19–32, American Mathemat-

ical Society, 1967. Mathematical Aspects of Computer Science.

[54] C. A. R. Hoare, “An axiomatic basis of computer programming,” Communications of the

ACM, pp. 576–580, 1969.

[55] J. C. King, “Program correctness: On inductive assertion methods,” IEEE Trans. on Software

Engineering, vol. SE-6, no. 5, pp. 465–479, 1980.

[56] W. E. Howden, Functional program testing and analysis. New York: McGraw-Hill, 1987.

[57] D. Sarkar and S. De Sarkar, “A set of inference rules for quantified formula handling and array

handling in verification of programs over integers,” IEEE Trans Software. Engg., vol. 15,

no. 11, pp. 1368–1381, 1989.

[58] R. Jain, A. Majumdar, A. Sharma, and H. Wang, “Empirical evalution of some high-level

synthesis scheduling heuristics,” in Procs. of 28th DAC, pp. 210–215, 1991.

[59] S. Devadas and A. R. Newton, “Algorithms for hardware allocation in data path synthesis,”

IEEE Trans. on CAD., vol. 8, July 1989.

[60] L. J. Hafer and A. C. Parker, “A formal method for the specification, analysis and design of

register-transfer level digital logic,” IEEE Trans. on CAD., vol. vol. CAD-2, pp. 4–18, Jan.

1983.

[61] P. G. Paulin and J. P. Knight, “Force–directed scheduling in automatic data path synthesis,”

Procs. of the 24th Design Automation Conference, 1987.

BIBLIOGRAPHY 165

[62] G. Lakshminarayana, K. Khouri, and N. Jha, “Wavesched: A novel scheduling technique for

control-flow intensive behavioural descriptions,” in Proceedings of International Conference

on Computer-Aided Design, pp. 244–250, Nov 1997.

[63] T.-F. Lee, A.-H. Wu, Y.-L. Lin, and D. Gajski, “A transformation-based method for loop

folding,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 13, pp. 439–450, April 1994.

[64] S. Gupta, N. Savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Conditional speculation and its

effects on performance and area for high-level synthesis,” in International Symposium on

System Synthesis, pp. 171–176, 2001.

[65] S. Gupta, N. Savoiu, S. Kim, N. Dutt, R. Gupta, and A. Nicolau, “Speculation techniques for

high level synthesis of control intensive designs,” in Proceedings of DAC’01, pp. 269–272,

2001.

[66] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Dynamic conditional branch balancing during

the high-level synthesis of control-intensive designs,” in Proceedings of the Design, Automa-

tion and Test in Europe Conference and Exhibition (DATE’03), pp. 270–275, 2003.

[67] S. Gupta, M. Reshadi, N. savoiu, N. Dutt, R. Gupta, and A. Nicolau, “Dynamic common

sub-expression elimination during scheduling in high-level synthesis,” in Proceedings of 15th

International Symposium on System Synthesis (ISS’02), pp. 261–266, Oct 2002.

[68] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop shifting and compaction for the high-level

synthesis of designs with complex control flow,” in Proceedings of the Design, Automation

and Test in Europe Conference and Exhibition (DATE’04), vol. 1, pp. 114–119, Feb 2004.

[69] O. Penalba, J. Mendias, and R. Hermida, “Source code transformation to improve conditional

hardware reuse,” in Procs. of the Euromicro Symposium on Digital System Design, pp. 324–

330, September 2002.

[70] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The MIT Press, 2002.

[71] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A new symbolic model

checker,” International Journal on Software Tools for Technology Transfer, vol. 2, no. 4,

pp. 410–425, 2000.

166 BIBLIOGRAPHY

[72] N.-S. Woo, “A global, dynamic register allocation and binding for data path synthesis sys-

tem,” in Procs. of 27th DAC, pp. 505–510, 1990.

[73] F. Kurdhai and A. Parker, “Real: A program for register alocation,” in Procs. of 24th DAC,

pp. 210–215, 1987.

[74] C. Blank, “Formal verification of register binding,” in Procs. of Workshop on Advances in

Verification (WAVE) 2000, 2000.

[75] Y. Morihiro and T. Toneda, “Formal verification of data-path circuits based on symbolic

simulation,” in Procs. of 9th Asian Test Symposium 2000 (ATS 2000), pp. 329–336, Dec

2000.

[76] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Pub. Co. Inc., 1989.

[77] J. Roy, “Parallel algorithms for high level synthesis,” Ph.D. Thesis, Feb. 1983.

[78] S. Y. Kung and H. John, VLSI and Modern Signal Processing. Prentice Hall, 1984.

[79] A. Kundig, R. E. Suhrer, and J. Dahler, Embedded Systems: New approaches to their formal

description and design. Springer-Verlag, 1986.

[80] O. H. Bailey., Embedded Systems: Desktop Integration. Wordware Publishing, Inc, 2005.

[81] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, “Automatic code generation from

design patterns,” IBM Systems Journal, vol. 35, no. 2, pp. 151–171, 1996.

[82] J. Ali and J. Tanaka, “Automatic code generation from the omt-based dynamic model,” in In

Proceedings of the Second World Conference on Integrated Design and Process Technology,

(Austin, Texas), pp. 407–414, 1996.

[83] B. Vogel-Heuser, D. Witsch, and U. Katzke, “Automatic code generation from a uml model

to iec 61131-3 and system configuration tools,” International Conference on Control and

Automation, 2005. ICCA ’05., vol. 2, pp. 1034–1039, 2005.

[84] C. Xi, L. JianHua, Z. ZuCheng, and S. YaoHui, “Modeling systemc design in uml and auto-

matic code generation,” in ASP-DAC ’05: Proceedings of the 2005 conference on Asia South

Pacific design automation, (New York, NY, USA), pp. 932–935, ACM Press, 2005.

BIBLIOGRAPHY 167

[85] I. A. Niaz, Automatic Code Generation From UML Class and Statechart Diagrams. PhD

thesis, University of Tsukuba, Japan, 2005.

