Database Design Techniques by Microsoft and others

A properly designed database provides you with access to up-to-date, accurate information. Because a correct design is essential to achieving your goals in working with a database, investing the time required to learn the principles of good design makes sense. In the end, you are much more likely to end up with a database that meets your needs and can easily accommodate change.

This article provides guidelines for planning a database. You will learn how to decide what information you need, how to divide that information into the appropriate tables and columns, and how those tables relate to each other. You should read this article before you create your first database.

In this article

· Some database terms to know

· What is good database design?

· The design process

· Determining the purpose of your database

· Finding and organizing the required information

· Dividing the information into tables

· Turning information items into columns

· Specifying primary keys

· Creating the table relationships

· Refining the design

· Applying the normalization rules

Some database terms to know
Microsoft Office Access 2007 organizes your information into tables: lists of rows and columns reminiscent of an accountant's pad or a Microsoft Office Excel 2007 worksheet. In a simple database, you might have only one table. For most databases you will need more than one. For example, if you were given these fields “CustomerID,Name, Address, Phone, ProductID,ProductName,ProductDescription, ProductPrice ,OrderID, ProductID1,Quantity1, ProductID2, Quantity2, ProductID3, Quantity3, and OrderDate”

 you might have a table that stores information about customers, another table that stores information about products, and another table with information about orders like the following:

[image: image1]
There are problems with normalization with the above tables however which I will explain later. The CustomerID, OrderDate and MailDate fields would be repeated for each product the customer bought. The OrderID would stay the same.

An example of the Products table would be:

	Record Number
	ProductID
	ProductName
	ProductDescription
	ProductPrice

	1
	6
	Mint
	Chocolate mint
	1.25

	2
	7
	Oatmeal
	Crunchy oatmeal
	.85

	3
	8
	Sugar
	Plain sugar
	.75

	4
	9
	Caramel square
	Caramel toffee
	1.15

	5
	10
	Granola bar
	Crunchy granola
	1.35

	6
	11
	Chocolate chip
	Creamy milk chocolate
	1.00

	7
	12
	Solid chocolate
	Just chocolate
	.95

	8
	13
	Lemon
	Lemon mints
	.65

Each row in a table is also called a record, and each column, is also called a field. A record is a meaningful and consistent way to combine information about something. A field is a single item of information — an item type that appears in every record. In the Products table, for instance, each row or record would hold information about one product. Each column or field holds some type of information about that product, such as its name or price. If you deleted a record, the record numbers of each product would change but the ProductID would remain the same. This would be true even if the ProductID field is an AutoNumber field that increments by 1 each time you add a new record. Once it is inputted, the AutoNumher field would stay the same.

What is good database design?
Certain principles guide the database design process. The first principle is that duplicate information (also called redundant data) is bad, because it wastes space and increases the likelihood of errors and inconsistencies. The second principle is that the correctness and completeness of information is important. If your database contains incorrect information, any reports that pull information from the database will also contain incorrect information. As a result, any decisions you make that are based on those reports will then be misinformed.

A good database design is, therefore, one that:

· Divides your information into subject-based tables to reduce redundant data.

· Provides Access with the information it requires to join the information in the tables together as needed.

· Helps support and ensure the accuracy and integrity of your information.

· Accommodates your data processing and reporting needs.

The design process
The design process consists of the following steps:

· Determine the purpose of your database

This helps prepare you for the remaining steps.

· Find and organize the information required

Gather all of the types of information you might want to record in the database, such as product name and order number.

· Divide the information into tables

Divide your information items into major entities or subjects, such as Products or Orders. Each subject then becomes a table.

· Turn information items into columns

Decide what information you want to store in each table. Each item becomes a field, and is displayed as a column in the table. For example, an Customer table might include fields such as Name, but this should always be broken up into at least Last_Name and First_Name. Salutation (Mr., Mrs., Miss) is also a good field to have in the Customer table.

· Specify primary keys

Choose each table's primary key. The primary key is a column that is used to uniquely identify each row. An example might be Customer ID or Product ID.

· Set up the table relationships

Look at each table and decide how the data in one table is related to the data in other tables. Add fields to tables or create new tables to clarify the relationships, as necessary.

· Refine your design

Analyze your design for errors. Create the tables and add a few records of sample data. See if you can get the results you want from your tables. Make adjustments to the design, as needed.

· Apply the normalization rules

Apply the data normalization rules to see if your tables are structured correctly. Make adjustments to the tables, as needed.

Determining the purpose of your database

It is a good idea to write down the purpose of the database on paper — its purpose, how you expect to use it, and who will use it. For a small database for a home based business, for example, you might write something simple like "The customer database keeps a list of customer information for the purpose of producing mailings and reports." If the database is more complex or is used by many people, as often occurs in a corporate setting, the purpose could easily be a paragraph or more and should include when and how each person will use the database. The idea is to have a well developed mission statement that can be referred to throughout the design process. Having such a statement helps you focus on your goals when you make decisions.

Finding and organizing the required information
To find and organize the information required, start with your existing information. For example, you might record computer orders on individual printed invoices (with same information as the order) or keep customer information on paper forms in a file cabinet. Gather those documents and list each type of information shown (for example, each box that you fill in on a form). If you don't have any existing forms, imagine instead that you have to design a form to record the customer information. What information would you put on the form? Customer Name, Street Address, City, State, Zip , Phone, and Email? Identify and list each of these items. For example, suppose you currently keep the customer list on index cards. Examining these cards might show that each card holds a customers name, address, city, state, zip code and telephone number. Each of these items represents a potential column in a table (i.e. a field in the table).

As you prepare this list, don't worry about getting it perfect at first. Instead, list each item that comes to mind. If someone else will be using the database, ask for their ideas, too. You can fine-tune the list later. (Example: if you put Name, you know you need First_Name and Last_Name as fields in the table. If you put Address, you know you need Street_Address, City, State, Zip, Phone and Email).

Next, consider the types of reports or mailings you might want to produce from the database. If you want to make a Product Brochure, you may need a field called ProductPicture, in addition to ProductName and ProductDescription. You might also want to generate form letters to send to customers that announces a sale event. Design the report in your mind, and imagine what it would look like. What information would you place on the report? List each item. Do the same for the form letter and for any other report you anticipate creating.

There are problems with the above design because the Orders Table violates First Normal Form

Giving thought to the reports and mailings you might want to create helps you identify items you will need in your database. For example, suppose you give customers the opportunity to receive periodic email updates, and you want to print a listing of those who have email addresses and want email or brochures from the company. To record that information, you add a “Send_email” column to the Customer table. For each customer, you can set that field to Yes or No.

It makes good sense to construct a prototype of each report or output listing and consider what items you will need to produce the report. For instance, when you examine a form letter, a few things might come to mind. If you want to include a proper salutation — for example, the "Mr.", "Mrs." or "Ms." string that starts a greeting, you will have to create a salutation field in the Customer table. Also, you might typically start a letter with “Dear Mr. Smith”, rather than “Dear. Mr. Sylvester Smith”. This means you have a separate Last_Name field and First_Name field in the Customer table.

A key point to remember is that you should break each piece of information into its smallest useful parts. In the case of a name, to make the last name readily available, you will break the name into two parts — First_Name and Last_Name. To sort a report by last name, for example, you need to have the customer's last name stored separately. In general, if you want to sort, search, calculate, or report based on an item of information, you should put that item in its own field. (However, you don't need to put the results of a calculation in a field in the table.

Think about the questions you might want the database to answer. For instance, how many sales of your featured product did you do last month? What city do your highest sales customers live? Who is your best-selling product? Anticipating these questions helps you zero in on additional items to record. (Remember that sorting tables is a calculation and that tables do not need to be stored in sorted form. Reports can sort. Also, Maximum of (Subtotal of an individual product) is a calculation that can be performed in a report).

After gathering this information, you are ready for the next step.

Dividing the information into tables
To divide the information into tables, choose the major entities, or subjects. For example, after finding and organizing information for a product sales database, the preliminary list might look like this:

There are problems with the above design because the Orders Table violates First Normal Form

The major entities shown here are the customers, the products, and the orders. Therefore, it makes sense to start out with these three tables: one for facts about customer, one for facts about products (or services), and one for facts about orders. Although this doesn't complete the list, it is a good starting point. You can continue to refine this list until you have a design that works well.

When you first review the preliminary list of items, you might be tempted to place them all in a single table, instead of the three shown in the preceding illustration. You will learn here why that is a bad idea. Consider for a moment, Orders the table shown above.

In this case, each row contains information about both the products and orders. Because you can have many products on the same order, the maximum number of products has to be guessed. This is hard to be accurate about. (How many products is the customer going to buy and how many fields would you need?) Recording the product information only once in a separate line of the Orders table, linked to the OrderID , is a much better solution.

A second problem with this design comes about when you need to modify information about the customer. For example, suppose you need to change a customer's address. Because it appears in many places on every ProductID and OrderID line, you might accidentally change the address in one place but forget to change it in the others. Recording the customersID in a fourth database along with the other information that appears once per order (including OrderDate and Required/MailDate) solves the problem.

For information for the Sugarbaker’s database, the better list might look like this:

When you design your database, always try to record each fact just once. If you find yourself repeating the same information in more than one place, such as the address for a particular customer, place only the customerID in the table as a foreign key.

Once you have chosen the subject that is represented by a table, columns or fields in that table should store facts only about the subject. For instance, the product table should store facts only about products. A Customers table should only store facts about customers.

If an Orders table has repeating product fields in each record, it should be split into 2 tables with the OrderID, ProductID and Quantity in one table and the OrderID, Customer ID, OrderDate and any other information that only occurs once (like RequiredDate) in another table.

 Turning information items into columns

To determine the columns (fields) in a table, decide what information you need to track about the subject recorded in the table. For example, for the Customers table, Name, Address, City-State-Zip, Send_email, Salutation and Email address comprise a good starting list of columns. Each record in the table contains the same set of columns, so you can store Name, Address, City-State-Zip, Send email, Salutation and Email address information for each record. For example, the address column contains customers' addresses. Each record contains data about one customer, and the address field contains the address for that customer.

Once you have determined the initial set of columns for each table, you can further refine the columns. For example, it makes sense to store the customer name as two separate columns: first_name and last_name, so that you can sort, search, and index on just those columns. Similarly, the address actually consists of 5 separate components, address, city, state, zip, phone and email and it also makes sense to store them in separate columns.

The following list shows a few tips for determining your columns.

· Don't include calculated data

In most cases, you should not store the result of calculations in tables. Instead, you can have Access perform the calculations when you want to see the result. For example, suppose there is a Order report that displays the subtotal of prices the customer ordered for each product in his order. .. The subtotal itself should not be stored in a table and neither should the total. Both can be calculated along with an unchanging sales tax in an order report on screen or on an order's single invoice printout.

· Store information in its smallest logical parts

You may be tempted to have a single field for full names, or for product names along with product descriptions. If you combine more than one kind of information in a field, it is difficult to retrieve individual facts later. Try to break down information into logical parts; for example, create separate fields for first and last name, or for product name, price, and description.

Once you have refined the data columns in each table, you are ready to choose each table's primary key.

Specifying primary keys

Each table should include a column or set of columns that uniquely identifies each row stored in the table. This is often a unique identification number, such as an employee ID number or a serial number. In database terminology, this information is called the primary key of the table. An easy way to make a primary key is to use Access's AutoNumber field type. Upon making a new record in a table the number will increment automatically from the last one stored and can't be changed. (Never use a field that changes such as cell phone number as the primary key. Social Security number is okay).

If you already have a unique identifier for a table, such as a product number that uniquely identifies each product in your catalog, you can use that identifier as the table's primary key — but only if the values in this column will always be different for each record. You cannot have duplicate values in a primary key. For example, don't use people's names as a primary key, because names are not unique. You could easily have two people with the same name in the same table.

A primary key must always have a value. If a column's value can become unassigned or unknown (a missing value) at some point, it can't be used as a component in a primary key.

You should always choose a primary key whose value will not change. In a database that uses more than one table, a table's primary key can be used as a reference in other tables. If the primary key changes, the change must also be applied everywhere the key is referenced. Using a primary key that will not change reduces the chance that the primary key might become out of sync with other tables that reference it. Every table must have a primary key.

In some cases like in the Orders table above, you may want to use two or more fields that, together, provide the primary key of a table. For example, an Orders table that stores line items for orders would use two columns in its primary key: Order ID and Product ID. When a primary key employs more than one column, it is also called a composite key. (Remember that the Orders table here has OrderID, ProductID and Quantity has the main fields).

For the Sugarbaker database, you can create an AutoNumber column for each of 3 tables to serve as primary key: ProductID for the Products table, CustomerID for the Customers table and OrderID for the Transactions table. Order ID concatenated with ProductID will serve as primary key for the Orders table.

Creating the table relationships

Now that you have divided your information into tables, you need a way to bring the information together again in meaningful ways. For example, the following form includes information from several tables.

Sugarbaker Company John Smith

612 Thornfield Avenue 524 Frederick Road

Baltimore, MD 21229 Baltimore, MD 21229

CustomerID: 265447

OrderID: 1 Order Date: 3/25/09 Required Date: 4/2/09

	Products
	Unit Price
	Quantity
	Subtotal

	Sugarcookie
	1.15
	3
	4.45

	Mint
	1.25
	2
	2.50

	Oatmeal
	.75
	1
	.75

	Total
	7.70

	Tax
	.46

	GrandTotal
	8.16

 Information in this form comes from the Customers table...

 ...the Products table...

 ...the Orders table...

 ...the Transactions table...

.

Access is a relational database management system. In a relational database,

you divide your information into separate, subject-based tables.

You then use table relationships to bring the information together as needed.

Creating a one-to-many relationship (A Review of the above)

Consider this example: the Orders and Transactions tables in the Sugarbaker database. A customer can buy any number of products in one order. It follows that for any customer represented in the Transactions table, there can be many products with the same order number represented in the Orders table. The relationship between the Transactions table and the Orders table is, therefore, a one-to-many relationship.

To represent a one-to-many relationship in your database design, take the primary key on the "one" side of the relationship and add it as an additional column or columns to the table on the "many" side of the relationship. In this case, for example, you add the OrderID column from the Transactions table to the Orders table. Access can then use the CustomerID number in the Transactions table to locate the correct customer for each product.

The OrderID column in the Orders table is called a foreign key. A foreign key is another table's primary key. (The Transactions table has Order ID as the primary key). The ProductID column in the Orders table is a foreign key because it is also the primary key in the Products table.

You provide the basis for joining related tables by establishing pairings of primary keys and foreign keys. If you are not sure which tables should share a common column, identifying a one-to-many relationship ensures that the two tables involved will, indeed, require a shared column.

If the Sugarbaker database had only 3 tables, Customers, Products and Orders, there would be a problem. The Orders table would have OrderID, CustomerID, OrderDate, RequiredDate that would be an one time occurence on an individual order, but would also have ProductID1, Quantity1, PRoductID2, Quantity2, ProductID3, Quantity3, etc.

This would require guessing as to what the maximum amount of products the customer would buy for a single record in a table. How could you do this? You couldn't.

The answer is to create a fourth table that records each occurrence or instance of the relationship (in this case an order)

Each record in the Orders table represents one line item on an order. The Orders table's primary key consists of two fields — the foreign keys from the Orders and the Products tables. Using the Order ID field alone doesn't work as the primary key for this table, because one order can have many line items. The Order ID is repeated for each line item on an order, so the field doesn't contain unique values. Using the Product ID field alone doesn't work either, because one product can appear on many different orders. But together, the two fields always produce a unique value for each record so the two fields concatenated together produce the easiest primary key.

In the Sugarbaker's database, the Transactions table and the Products table are not related to each other directly. Instead, they are related indirectly through the Orders table. The many-to-many relationship between transactions and products is represented in the database by using two one-to-many relationships:

· The Transactions table and Orders table have a one-to-many relationship. Each order in the Transactions table can have more than one line item in the Orders table, but each line item in the Orders table is connected to only one order in the

Transactions table.

· The Orders table and Products table have a one-to-many relationship. Each product can have many line items in the Orders table associated with it, but each line item in the Orders table refers to only one product.

From the Orders table, you can determine all of the products on a particular order. You can also determine all of the orders for a particular product.

After incorporating the Transactions table, the list of tables and fields might look something like this:

Refining the design

Once you have the tables, fields, and relationships you need, you should create and populate your tables with sample data and try working with the information: creating queries, adding new records, and so on. Doing this helps highlight potential problems — for example, you might need to add a column that you forgot to insert during your design phase, or you may have a table that you should split into two tables to remove duplication.

See if you can use the database to get the answers you want. Create rough drafts of your forms and reports and see if they show the data you expect. Look for unnecessary duplication of data and, when you find any, alter your design to eliminate it.

As you try out your initial database, you will probably discover room for improvement. Here are a few things to check for:

· Did you forget any columns (fields)? If so, does the information belong in the existing tables? If it is information about something else, you may need to create another table. Create a column for every information item you need to track. If the information can't be calculated from other columns, it is likely that you will need a new column for it.

· Are any columns unnecessary because they can be calculated from existing fields? If an information item can be calculated from other existing columns — a discounted price calculated from the retail price, for example — it is usually better to do just that, and avoid creating new column.

· Are you repeatedly entering duplicate information in one of your tables? If so, you probably need to divide the table into two tables that have a one-to-many relationship.

· Do you have tables with many fields, a limited number of records, and many empty fields in individual records? If so, think about redesigning the table so it has fewer fields and more records.

· Has each information item been broken into its smallest useful parts? If you need to report, sort, search, or calculate on an item of information, put that item in its own column. (For example, Address becomes Street Address, City, State etc.)

· Does each column contain a fact about the table's subject? If a column does not contain information about the table's subject, it belongs in a different table.

· Are all relationships between tables represented, either by common fields or by a third table? One-to-one and one-to- many relationships require common columns. Many-to-many relationships require a third table.

Customers

CustomerID

Name

Address

Phone

Products

ProductID

ProductName

ProductDescription

ProductPrice

Orders

OrderID

CustomerID

ProductID

Quantity

OrderDate

MailDate

Orders

OrderID

CustomerID

ProductID1

Quantity1

ProductID2

Quantity2

ProductID3

Quantity3

OrderDate

Products

ProductID

ProductName

ProductDescription

ProductPicture

ProductPrice

Customers

CustomerID

Salutation

Last_Name

First_Name

Street_Address

City

State

Zipcode

Phone

Email

Customers

CustomerID

Salutation

Last_Name

First_Name

Street_Address

City

State

Zip

Phone

Email

Send_Email

Products

ProductID

ProductName

ProductDescription

ProductPicture

ProductPrice

Orders

OrderID

CustomerID

ProductID1

Quantity1

ProductID2

Quantity2

ProductID3

Quantity3

OrderDate

Customers

CustomerID

Salutation

Last_Name

First_Name

Street_Address

City

State

Zip

Phone

Email

Send_Email

Products

ProductID

ProductName

ProductDescription

ProductPicture

ProductPrice

Orders

OrderID

ProductID

Quantity

Transactions

OrderID

CustomerID

OrderDate

MailDate

Print Invoice

Customers

CustomerID

Salutation

Last_Name

First_Name

Street_Address

City

State

Zip

Phone

Email

Send_Email

Transactions

OrderID

CustomerID

OrderDate

MailDate

Products

ProductID

ProductName

ProductDescription

ProductPicture

ProductPrice

Orders

OrderID+ProductID

OrderID

ProductID

Quantity

Products

ProductID

ProductName

ProductDescription

ProductPicture

ProductPrice

Transactions

OrderID

CustomerID

OrderDate

MailDate

Customers

CustomerID

Salutation

Last_Name

First_Name

Street_Address

City

State

Zip

Phone

Email

SendEmail

Orders

OrderID+ProductID

OrderID

ProductID

Quantity

