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ON APPROXIMATIONS BY IRRATIONAL SPLINES

Mikhail P. Levin

Abstract. A problem of approximation by irrational splines is considered. These splines
have a constant curvature between interpolation nodes and need only one additional
boundary condition for derivatives, which should be set only at one of two boundary
nodes, that is impossible for usual polynomial splines required boundary conditions at
both boundary nodal points. Some estimations for numerical differentiation and rounding
error analysis are presented.

1. Introduction

Although in recent years new various approaches in approximation of data by convex
and positivity preserving splines have been proposed (see for instance [1-3]) a problem of
data interpolation by smooth functions with a constant curvature between interpolation
nodes is important to date. This problem is especially topical in Computational Fluid
Dynamics in transonic and supersonic cases and in some other applications. It is well-
known that this interpolation problem can not be solved by usual polynomial splines
because the curvature of cubic and other higher order polynomial splines between the
interpolation is not constant. As to the quadratic polynomial splines it is known that
these splines have a constant second derivative or curvature only between the splines
nodes, but for these splines their nodes do not coincide with the interpolation nodes
and usually are located at the middle of the interpolation nodes. This is necessary to
provide a stability of the algorithm for evaluation of quadratic spline coefficients [4-5].

Another topical problem consists in setting of auxiliary boundary conditions for
spline derivatives only at one of two boundary nodes. For polynomial splines this is
impossible, because the algorithm for evaluation of spline coefficients is also unstable
[4-5] in this case.

In this paper one class of irrational splines is considered. In this class on each
segment, restricted by adjacent interpolation nodes, splines are described by circle
arcs passing through the interpolation nodes. In all internal interpolation nodes the
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condition of smoothing for the first order spline derivatives is provided. It is shown
that for considering splines, it is enough to set the boundary conditions for derivatives
only at one of two boundary points.

2. Definitions

Let us consider any grid function yi, (i = 0, 1, 2, 3, ..., N) defined in nodes x0, x1, x2,
x3, ..., xN . Let y

′
0 be a known derivative of the data grid function yi. Then we will

show that these data is enough to construct an irrational spline function.
Let us consider the i-th segment [xi, xi+1] and define a circle arc passing through

points (xi, yi) and (xi+1, yi+1) with tangent y
′
i at the first point (xi, yi). We present

the equation of the circle arc in usual form

(x− xci)2 + (y − yci)2 = R2
i . (1)

Here (xci, yci) is a center and Ri is a radius of the circle constructed for the i-th
interpolation segment.

Implicit differentiation of equation (1) with respect to x yields

(x− xci) + (y − yci)y
′
= 0 . (2)

Values xci, yci and Ri are unknown and our goal is to evaluate these values by the
known values yi, yi+1 and y

′
i at points xi and yi+1.

Let us take two interpolation conditions satisfying to equation (1) at points xi and
xi+1 and the interpolation condition for expression (2) taken at point xi. Then we
obtain a system of three equations

(xi − xci)2 + (yi − yci)2 = R2
i .

(xi+1 − xci)2 + (yi+1 − yci)2 = R2
i . (3)

(xi − xci) + (yi − yci)y
′
i = 0 .

To construct a solution of (3), let us introduce new searching variables ξi = xci−xi

and ηi = yci− yi and denote hi = xi+1− xi, Hi = yi+1− yi. Then formulas (3) can be
presented as follows

ξ2
i + η2

i −R2
i = 0 ,

(hi − ξi)2 + (Hi − ηi)2 −R2
i = 0 , (4)

ξi + ηiy
′
i = 0 .

Solving this system we obtain

ηi =
h2

i + H2
i

2(Hi − hiy
′
i)

,

ξi = − h2
i + H2

i

2(Hi − hiy
′
i)

y
′
0 , (5)

R2
i =

(h2
i + H2

i )2[1 + (y
′
i)

2]
4(Hi − hiy

′
i)2

,



ON APPROXIMATIONS BY IRRATIONAL SPLINES 49

According to (5) we can find

xci = xi + ξi ,

(6)
yci = yi + ηi .

and can present the equation of the circle arc in one of the following forms

(x− xi)(x− xi − 2ξi) + (y − yi)(y − yi − 2ηi) = 0 (7a)

or

y − yi

x− xi
= −x− xi − 2ξi

y − yi − 2ηi
, (7b)

or

y − yi

x− xi
= − (x− xi)(Hi − hiy

′
i) + (h2

i + H2
i )y

′
i

(y − yi)(Hi − hiy
′
i)− (h2

i + H2
i )

. (7c)

Therefore the solution of interpolation problem on the segment [xi, xi+1] consists in
solution of non-linear equation (7) for any data value x∗ ∈ [xi, xi+1]. For this purpose it
is possible to apply, for instance, well-known Newton method or one of its modifications.

3. Numerical Differentiation

Now we consider a problem of evaluation the first derivative of the data grid function
at the second point xi+1 at the considering segment [xi, xi+1]. For this purpose we use
the following geometry property of the tangential lines passing through the first and
through the end points of the circle arc and the secant line passing also through these
points

ϕsi =
1
2
(ϕi + ϕi+1) ,

where ϕi = arctg(y
′
i), ϕi+1 = arctg(y

′
i+1) are angles between tangential lines to the

considering arc at points xi and xi+1 and x-axes, ϕsi = arctg(Hi

hi
) is an angle between

the secant line passing through the points (xi, yi) and (xi+1, yi+1).
In this case, since

tg(ϕi + ϕi+1) = tg(2ϕsi) ,

tg(2ϕsi) =
2tg(ϕsi)

1− tg2(ϕsi)
=

2Hihi

h2
i −H2

i

,
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tg(ϕi + ϕi+1) =
tgϕi + tgϕi+1

1− tgϕitgϕi+1
=

y
′
i + y

′
i+1

1− y
′
iy
′
i+1

,

we can express the first derivative at the point i + 1 by the following formula

y
′
i+1 =

2Hihi + (H2
i − h2

i )y
′
i

h2
i −H2

i + 2Hihiy
′
i

. (8)

Thus, following to the formula (8) and step by step procedure starting from the
first interpolation segment, we can construct the irrational spline for all considering
interpolation segments [xi, xi+1], i = 0, 1, 2, 3, ..., (N − 1). Since we take y

′
i evaluated

by (8) at the (i − 1)-th step as initial data for calculation y
′
i+1 at the i-th step, we

provide smoothing conditions for the first derivative of the considering spline at all
internal interpolation nodes.

According to above mentioned we can see that considering irrational splines don’t
need solution of linear algebra equations systems for evaluation of their coefficients as
usual polynomial splines need. All coefficients of these splines can be computed by the
recurrent formulas (5,6,8)

Using a Taylor-series expansion we can estimate the accuracy of the formula (8)
intending for the numerical differentiation of the data grid function. As a result this
estimation can be presented as follows

y
′
i − ỹ

′
i = (

ỹ
′
i(ỹ

′′
i )2

2[1 + (ỹ′i)2]
− ỹ

′′′
i

6
)h2 + O(h3) . (9)

Here ỹ
′
i is an exact value of the first derivative, ỹ

′′
i is an exact value of the second

derivative and ỹ
′′′
i is an exact value of the third derivative of the considering function

taken at the nodal point i. Thus the formula (8) has the second order approximation
error.

4. Degeneration Case

Now we consider a degeneration case y
′
i = Hi

hi
. In this case denominators of fractions

in right-hand sides of formulas (5) are equal to zero and hence the appropriate spline
parameters ηi, ξi and Ri are undefined.

However, in this case according to the formula (8) we have

y
′
i+1 = y

′
i =

Hi

hi
. (10)

This means that the considering circle arc element is singular with Ri = ∞ and ηi =
ξi = ∞. Thus in considering case according to the formula (10) the circle arc spline
element degenerates into the straight line element.
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5. Estimation of Rounding Errors Spreading

Now we provide a rounding error analysis of the numerical differentiation formula (8).
Let suppose that at any point i we know a perturbed value of the first derivative
y
′
i = ỹ

′
i + εi. Here ỹ

′
i is the exact value of the first derivative and εi is an rounding

error. Then we consider the grid value of the first derivative taken at the next point
i + 1 and evaluated by the exact data

D̃i+1 =
2Hihi + (H2

i − h2
i )ỹ

′
i

h2
i −H2

i + 2Hihiỹ
′
i

.

For comparison we also consider the appropriate value evaluated by the perturbed data

Di+1 =
2Hihi + (H2

i − h2
i )(ỹ

′
i + εi)

h2
i −H2

i + 2Hihi(ỹ
′
i + εi)

.

Applying the Taylor-series expansion of the last expression with respect to εi, we obtain
the following formula

Di+1 − D̃i+1 = −εi(
h2

i + H2
i

h2
i −H2

i + 2Hihiỹ
′
i

)2 + O(ε2
i ) . (11)

According to the formula (11) perturbations in initial data or rounding errors are
strictly damping, if the following inequality satisfies

| h2
i + H2

i

h2
i −H2

i + 2Hihiỹ
′
i

| < 1 , (12a)

or

−h2
i + H2

i − 2Hihiỹ
′
i < h2

i + H2
i < h2

i −H2
i + 2Hihiỹ

′
i . (12b)

The inequality (12) can be presented as a system of two inequalities

H2
i < Hihiỹ

′
i ,

(13)

−Hihiỹ
′
i < h2

i .

Let us suppose hi > 0 for the considering grid, otherwise we could change enumer-
ation of grid points to provide this condition. Then (13) turns as follows

H2
i

h2
i

<
Hi

hi
ỹ
′
i ,

(14)

− Hi

hi
ỹ
′
i < 1 .
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Let us consider case Hi ≥ 0. Then according to this condition and the first inequality
of (14) we have

0 ≤ Hi

hi
< ỹ

′
i ,

and then the second inequality of (14) is satisfied identically, because −ỹ
′
i < 0 and

hi

Hi
> 0.
In case Hi < 0, we have Hi

hi
< 0, and dividing both inequalities (14) by this negative

term, we obtain instead of the first inequality

0 >
Hi

hi
> ỹ

′
i

and then the second inequality in the form − hi

Hi
> ỹ

′
i is satisfied identically.

In both cases considered above, we have

|Hi

hi
| < |ỹ′i|, (15a)

or

|y′si| < |ỹ′i|. (15b)

Here we denote a tangent of the secant line slope tg(ϕsi) = Hi

hi
as y

′
si.

We could present y
′
si also as follows

y
′
si = tg[

1
2
(arctg y

′
i + arctg y

′
i+1)]

(16)

=

√
[1 + (y′i)2][1 + (y′i+1)2] + y

′
iy
′
i+1 − 1

y
′
i + y

′
i+1

.

Let us write y
′
i+1 = y

′
i + (y

′
i+1 − y

′
i) and take a Taylor series expansion of right-hand

side of the formula (16) with respect to 4y
′
i = y

′
i+1 − y

′
i. In result we obtain

y
′
si = y

′
i +

1
2
4y

′
i + O[(4y

′
i)

2]

or

y
′
si =

1
2
(y
′
i + y

′
i+1) + O[(4y

′
i)

2] .
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Since

|1
2
(y
′
i + y

′
i+1) + O[(4y

′
i)

2]| ≤ 1
2
(|y′i|+ |y′i+1|) + |O[(4y

′
i)

2]| ,

then the condition (12) is automatically satisfied, if the function y satisfies to the
following condition

1
2
|y′i+1|+ O[(4y

′
i)

2] <
1
2
|y′i| .

Then taking a limit of the both sides of last inequality, divided by hi, as hi goes to
zero, we obtain the following condition

d|y′ |
dx

< 0 . (17)

Thus, if any function y(x) has a negative derivative of the absolute value of its first
derivative, then the condition (12) holds and the rounding error arising in evaluation
of the first derivative by formula (8) is strictly damping.
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