
1

Jeff Y.Yuan
May 1998

Introduction to SAS

Table of Contents

1. Using SAS on a UNIX System
 1.1 The UNIX Operation System
 1.2 SAS Windows

2. SAS Language
 2.1 Options
 2.2 Data Input
 2.3 Data Transfer from PC and SAS SQL with Database
 2.4 Data Transformations
 2.5 Data Manipulations
 2.6 Random Numbers
 2.7 Experimental Design Using SAS

3. Introduction to Procedures
 3.1 Procedures
 3.2 Sorting and Running a proc by Subgroups
 3.3 Numerical Summaries

4. Graphical Reports
 4.1 proc plot
 4.2 A sample of proc gplot

2

1. Using SAS on a UNIX System

1.1 The UNIX Operation System

Our SAS runs under the UNIX OS operation system. So - even if you intend to use
SAS only for data analysis - you need to know some fundamental UNIX commands.
You will always be faced with such standard housekeeping duties as the printing,
renaming, or deletion of files, either ones you've created directly or ones that SAS
has produced for you.

An SAS program is a file that store all your commends. Therefore, you must be
familiar with the use of files on your computer system. Basically, a file is like a
piece of paper in your notebook or a chapter in a book; a directory is like the
notebook or book itself. Here are a few examples of program calls on UNIX (the
prompt % is typed by the computer):

% cp file1 file2 make a copy of file "file1" named "file2"
% mv file1 file2 Rename "file1 to "file2"
% more file look at "file" a page at a time
 (use long space bar to page forward)
% ls list names of your files in your directory
% ls -l long version of "ls" (has dates of last change)
% textedit file edit "file" using text editor "textedit"

(you might set DISPLAY by setenv first)
% vi file edit "file" using full screen editor "vi"
% rm file remove "file" from your directory
% enscript file print a text "file" to a postscript printer

(you may check what is your printer by % echo $PRINTER)

There are on-line manual pages for UNIX commands. For example, type man rm to
find out more about the rm command.

1.2 SAS Windows

When you run an X application/client, including the SAS systems, the client
attempts to connect to the display specified by the environment variable. You might
first create an environment variable called DISPLAY by entering this commend in
the C Shell if your computer has IP address 123.4.567.89:

3

% setenv DISPLAY 123.4.567.89:0.0

Then you can enter the SAS command at the UNIX prompt to begin your
"interactive mode" SAS session:

% sas &

You will get three windows. PROGRAM EDITOR window is where you enter your
SAS statements. The LOG window contains initialization information about SAS.
When you submit the SAS statements, the statements and related messages appear
in the LOG window. The OUTPUT window contains the results from submitting
SAS statements.

The following program is used to illustrate the use of SAS windows:

 options;
 data process;
 input wafer $ yield date $;
 cards;
 1 0.9 12/4/97
 2 0.95 12/4/97
 3 0.82 12/4/97
 ;
 proc print data = process;
 run;

After typing above SAS codes into the PROGRAM EDITOR window, you can
submit (execute) this program by clicking on the Locals menu and then on the
submit. You will get messages in both OUTPUT window and LOG window.

You can save your SAS codes into a file by clicking on File and then choosing Save
or Save as option. It is a good idea to get in the habit of using the .sas suffix to
identify a file of SAS commands. Other standard suffix conventions include:

myfile.sas SAS command file (may have data also)
myfile.dat data file (if separate from "myfile.sas")
myfile.log log of what SAS did with your commands
myfile.lst output listing of your successful commands

4

The myfile name is up to you; use 8 or more characters in the name, starting with a
letter (a-z). Numbers (0-9) or underscore (_) can be used, but avoid other
symbols. This naming convention applies to SAS variables and datasets, except that
only 8 or fewer characters are allowed.

You can invoke the SAS system in noninteractive mode. All you have to do is to
type the following in UNIX command line:

% sas myfile.sas

where myfile.sas is the file containing the SAS statements. (You can edit it by vi or
textedit.) The SAS program automatically produces the myfile.log and myfile.lst for
you and saves them in your home directory. Usually it takes a little while to run.

It’s good to always check the log file before looking at the output listing. It is
usually short. Lines with NOTE: are fine and can be helpful in tracing
transformations and creation of new variables. Lines with ERROR or WARNING
should be heeded: look for the problem somewhere ABOVE the identified line.

2. SAS Language

2.1 Options

An SAS program usually contains three kinds of SAS "paragraphs" or "steps",
namely:

 options printer options
 data data input, transformation and manipulation
 proc procedures for plotting, regression, etc.

The options, data steps and some procs (numerical and graphical summaries, plots)
are described in the SAS/BASICS book. The other procs (regression, analysis of
variance and other fancy stuff) are found in SAS/STAT. SAS reads your file in
"free" format -- use as many spaces or tabs as you like -- but requires a semicolon
(;) at the end of each "phrase" or "sentence". It is good practice to indent phrases in
data or proc "paragraphs" for ease of reading.

5

Comments can appear anywhere in your program EXCEPT in the middle of data.
Comment lines can begin with an "asterisk (*). Alternatively, a comment
paragraph can be surrounded by "slash asterisk" (/*) and "asterisk slash" (*/).

 * this is a comment line
 /* this is also a comment line */

OPTIONS can only appear as the first line of myfile.sas. Here is a setup for
looking on the screen:

 options nocenter linesize=80 pagesize=24;

Nice size printer plots do better with the option pagesize=50. Common options
include:

 nocenter do not center output (flush right instead)
 linesize=80 set width of page to 80
 ls=80 same as linesize
 pagesize=50 set length of page to 50
 ps=50 same as pagesize

2.2 Data Input

Input may be done directly in your myfile.sas or may come from another file. For
direct input, here is an example:

data firstset;
 input x y;
 cards;
1 17.5
3 20.5
;

Here is an example of data input from external file:

data second;
 infile '~/datadir/mapping.dat' missover;
 input x y;

6

The names of directory datadir and data file mapping.dat are arbitrary, but can be
used later in your SAS program to identify this particular data set. Details of input
phrases (use either infile or cards, but not both):

data a; create new data set named "a".
 input x y z; input 3 numbers at a time as variables x,y,z.
 input trt $ x y; input treatment "trt" as a character string and
 x,y as numerical variables. Note the dollar sign ($).
 infile 'trend.dat' missover; use file "trend.dat" for the input data,
 "missover" skips over missing data
 rather than going to a new line.
 (must appear BEFORE the input phrase)
 infile 'trend.dat' firstobs=2; skip first observation (first line),
 handy way to document column names.
 infile 'trend.dat' lrecl=2000; allow for really wide data table or long records.
 cards; read data from following lines
 (must appear AFTER the input phrase).
 ; end of data entry for "cards" phrase.

Data values must have spaces between them (tabs can cause problems on some
systems). All values must be on the same line if using the missover option. Missing
data is represented by a period (.) as place holder. This can also be useful for
estimation and prediction at new values using proc reg.

If you have a SAS dataset called stg12345.ssd001 in your home directory on SUN,
then you can use following SAS codes to read the data:

Libname mylib ‘~/’; /* point to the right location */
Proc print data = mylib.stg12345;
Run;

2.3 Data Transfer from PC and SAS SQL with Database

If your data set is stored in some software on PC, You need to use FTP to transfer
the data from your PC to the UNIX system on which SAS is running. The steps for
the transfer will be (assume your data file is in Lotus 1-2-3):

7

a. In Lotus 1-2-3, click on File -> Save as -> file type: Text -> ok. You will get a
new text format file.
b. In the Window bar, click on Start -> Programs -> Reflection -> FTP Client. Then
the FTP window will pull up. You should use ASCII mode to transfer the data file.

All data from processing, parametric test and probe test are in IDEA databases. You
can use SAS to access these databases automatically and use SAS/SQL to get the
right data. To do this, you need some knowledge about the structure of our
databases. The database schema and design of database tables published in our Web
page will help you in writing SAS/SQL codes.

2.4 Data Transformations

There is no need to transform your raw data outside of SAS. In fact, it is good
practice to leave your data file alone once it is debugged. Transforms are usually
done in a separate data paragraph after data input. For example,

data newset;
 set firstset;
 logy = log(y);

This creates a new data set newset from the set firstset from data input above. The
variable logy is created as the natural log of the variable y. Here are details of
the first line and some transformations:

data a; set b; create data set "a" using existing set "b"
 z = log(y); create variable z as natural log of variable y
 z = log10(y); log base 10
 z = sqrt(y); square root
 z = x*y; multiplication

(+ addition) (- subtraction) (/ division)
 z = y**2; exponent: "y squared" or "y to the 2nd power"
 z = y**0.5; "y to the 1/2 power" (same as sqrt(y))
 z = x**-2; negative exponent: "1 over (x squared)"
 z = sin(x); trigonometric sine function of x

(also cos(x), tan(x), ...)

2.5 Data Manipulations

8

You can add or drop variables/columns and observations/rows from a dataset. For
instance, if you only wanted to consider the data with x greater than 10, you could
have:

data other; set big; /* create other from big */
 if x > 10; /* only use these cases */

Suppose you had data set field with 3 wafers called 3, 4, 5 and you wanted to delete
all data for wafer 3 for some procedures, the following will do it:

data subwafer; set wafer; /* create subwafer from wafer */
 if wafer = 3 then delete; /* delete data for wafer 3 */

Here is some more detail on the if phrase:

 g = 0; /* g=0 for large x */
 if x < 10 then g = 1; /* g=1 for small x */

 if y = 99 then y = .; /* recode 99 as missing data */
 if y = . then y = 0; /* recode missing data as 0 */

 if z < 10 or y > 10 then x = 5; /* examples of union (or) */
 if z < 10 and y > 10 then x = 6; /* and intersection (and) */

 if x <= 10; /* keep only x at most 10 */
 if x >= 10; /* keep only x at least 10 */
 if not (x = 10); /* keep only if x is not 10 */

You already saw how to add variables in transformations above. You can drop
variables:

data a; set b;
 z = log(y); /* create new variable z */
 drop y; /* drop old variable y */

Usually dropping is not necessary because the cost of carrying the unused variables
is very small (unless you have a lot of data!). However, this is sometimes useful if
the data need to be presented in a different way. For instance,

9

data abc;
 input p0 p1 p2 p3 p4 p5;
 cards;
1.4 1.5 1.2 2.1 2.1 2.8
1.7 1.4 1.0 1.4 1.7 2.1
1.1 1.9 2.5 2.6 2.1 2.2
1.7 1.3 1.1 1.0 2.0 1.8
1.0 1.8 1.5 1.4 2.2 2.3
;
data respons; set abc;
 resp = p0; site = 1; output;
 resp = p1; site = 2; output;
 resp = p2; site = 3; output;
 resp = p3; site = 4; output;
 resp = p4; site = 5; output;
 resp = p5; site = 6; output;
 drop p0 - p5;
proc print data=resps; run;

Basically, the output phrase produces a new observation after we create the
variables resp and site.

After you submit the above SAS codes, you will get a new data set called respons.
Part of it will be:

 obs resp site
 1 1.4 1
 2 1.5 2
 3 1.2 3
 4 2.1 4
 5 2.1 5
 6 2.8 6
 7 1.7 1
 8 1.4 2
 9 1.0 3
 10 1.4 4
 . . .
 . . .
 . . .

10

2.6 Random Numbers

Random numbers are available for a wide variety of distributions. These can also be
used to generate experimental designs. It is best to use the functions with names
beginning with ran - the uniform function ranuni appears to be better behaved than
the function uniform using standard tests. But remember, computer generated
random numbers are never truly random - caution and some checking on your own
are always a good idea. Random numbers can be generated in a data paragraph:

data rn;
 do i=1 to 10;
 uni=ranuni(0); /* an argument of 0 uses the clock as a seed */

/* otherwise, use a 5 to 7 digit odd number */
 output;
 end;

Note the use of a do loop, which is ended by an end; phrase. The output forces
creation of a new case for each uniform number. Each case in set rn will have the
variables uni and i. Here are the random number generators:

 x = ranuni(seed) /* uniform between 0 & 1 */
 x = a+(b-a)*ranuni(seed); /* uniform between a & b */
 x = ranbin(seed,n,p); /* binomial size n prob p */
 x = ranexp(seed); /* exponential with scale 1 */
 x = ranexp(seed) / a; /* exponential with scale a */
 x = a-b*log(ranexp(seed)); /* extreme value loc a & scale b */
 x = rangam(seed,a); /* gamma with shape a */
 x = b*rangam(seed,a); /* gamma with shape a & scale b */
 x = 2*rangam(seed,a); /* chi-square with d.f. = 2*a */
 x = rannor(seed); /* normal with mean 0 & SD 1 */
 x = a+b*rannor(seed); /* normal with mean a & SD b */

The seed above is either 0 (use clock to randomly start sequence); positive (used as
initial seed - it should be odd and less than 2**31-1); or negative (use the clock to
restart the sequence every time). The seed is only examined on the first encounter
with a random number generator in your program, so you cannot change the process
once you begin.

11

2.7 Experimental Design Using SAS

Experimental designs can be laid out using SAS. Here is an example of a design
with 4 treatments/levels and 5 replicates per treatment. The following SAS program
assigns trt the values 1,2,3,4, each with 5 replicates.

data uniform;
 do run = 1 to 20;
 x = ranui(0);
 output;
 end;
proc print data = uniform;

proc sort data = uniform; by x;
data c;
 set uniform; /* _N_ is the observation number */
 trt = ceil (_N_ / 5); /* ceil returns the next highest integer */
proc print data = c; var run trt;
run;

The SAS output looks like, but change by time from the below:

run trt
1 1
17 1
13 1
4 1
16 1
2 2
7 2
15 2
6 2
14 2
12 3
18 3
11 3
8 3
10 3

12

20 4
5 4
3 4
9 4
19 4

Here is a randomized complete design, with 3 blocks (3 lots, for example) and 4
treatments per block. We assign the treatments 1,2,3,4 at random to the 4 sites
within a block.

data aa;
 do block = 1 to 3;
 do site = 1 to 4;
 x = ranuni(0);
 output;
 end;
 end;
proc sort; by block x;
data cc; set aa;
 trt = 1 + mod(_N_ - 1, 4); /* mod = remainder of _N_ /4 */
proc sort; by block site;
proc print data=cc;
 var block site trt;
run;

The output will be:

block site trt
1 1 4
1 2 1
1 3 2
1 4 3
2 1 2
2 2 4
2 3 1
2 4 3
3 1 3
3 2 1

13

3 3 4
3 4 2

which can be used as the plan for your experiment.

SAS has modules for DOE analysis. The details are included in SAS/QC and
SAS/STAT manuals.

3. Introduction to Procedures

3.1 Procedures

Procedures come in many forms. They consist of the proc phrase followed by a set
of sub-phrases particular to the procedure invoked. The proc phrase in its
simplest form is simply

proc print;

This automatically uses the data set from the previous proc or data step. The form

proc print data=abc;

explicitly uses the data set abc rather than the previously or created one. Procedures
usually do not create a new or add to existing data sets unless this is made explicit
with an output phrase. For instance,

proc means;
 . . .
 output out = newname . . . ;

This explicitly creates the data set newname. Each proc has its own sub-phrases (the
first ". . ." above) and their own set of variables that can be added to the new
data set. The general form of the output phrase is:

 output out=d1 a=a1 b=b1 c=c1;

with out= being the keyword for the data set name d1 and a=, b=, and c= being any
number of optional keywords for new variables. The names after the equals -

14

a1, b1 and c1, respectively - are up to you. They are the names of these variables
that you can later use. The details can be found in the SAS/STAT book.

3.2. Sorting and Running a proc by Subgroups

Sometimes it is very helpful to run each of several subgroups through some
summary or analysis procedure. This can be done with the sort procedure and use of
the by phrase:

proc sort; by trt;
proc means; by trt;

will first sort the data by variable trt and then run the means procedure separately
for each group. This is much cleaner than running SAS several times, each time
retaining only a group under study. However, it does produce a lot more output! The
by phrase is on all procedures. BUT you MUST sort before you use it. You can sort
by several things at once:

proc sort; by site trt;
proc means; by site trt;

It is a good idea to always run proc sort before using by with other procedures, even
if you think you did it earlier in your program.

3.3 Numerical Summaries

Below are samples that generate summary reports for your data sets:

proc means; /* means, SDs, min, max for x and y*/
 var x y; /* for variables x and y */
 output out=b mean=mx my std=sx sy; /* output means and SD for x and y */

proc means noprint; /* Without printout */
 var x y;
 output out=b mean=mx my std=sx sy; /* output means and SD for x,y */

proc univariate; /* detailed univariate summaries */

15

 var x y; /* for variables x and y */
 output out=b mean=mx std=sx; /* create set b with mean and SD for x only */

4. Graphical Reports

4.1 proc plot

The main character-based graphic routines are proc plot and proc univariate plot.
There is a system of fancy graphics routines (beginning with letter g) in
SAS/GRAPH. In addition, SAS has a module called INSIGHT which is very nice
for graphics and general user interface.

Proc plot is very popular in SAS data analysis. It allows you to visualize the data in
a quick and convenient way.

proc plot; /* scatter plot */
 plot y*x; /* plot y vertical and x horizontal */
 plot y*x='*'; /* use "*" as plotting symbol */
 plot y*z=trt; /* use value of trt as plotting symbol */
 plot y*x='*' y*z / overlay; /* overlay two plots on same page */

Here is a way to construct Interaction Plots. It gives you a plot of the average values
of y for each site and trt.

proc sort; by site trt;
proc means noprint; by site trt;
 var y;
 output out=means mean=my;
proc plot;
 plot my*site=trt;

The noprint option used in proc means is available for many procedures. Sometimes
it can be very handy in shortening output. You can do plots by another
variable.

Here is a fancier way to construct Interaction Plots and some Diagnostic Plots,
which allows you to use the information from statistical modeling.

16

proc glm;
 class a b;
 model y = a | b;
 lsmeans a*b / out=lsm;
 output out=diag p=py r=ry;
proc plot data=lsm; /* Interaction Plot */
 plot lsmean*a=b; /* cell mean vs. a by b */
 plot lsmean*b=a; /* cell mean vs. b by a */
proc plot data=diag; /* Diagnostic Plots */
 plot y*py py*py='*' / overlay; /* observed vs. predicted */
 plot ry*py; /* residual vs. predicted */

You can set several plot features:

 plot y*x / vaxis=10 to 100 by 5; /* vertical axis ticks */
 plot y*x / haxis=10 to 20 by 2; /* horizontal axis ticks */
 plot y*x / vzero hzero; /* include origin on plot */
 plot y*x / href=0; /* horizontal reference line */
 plot y*x y1*x='*' / overlay; /* overlay two plots */

4.2 A Sample of proc gplot

SAS/GRAPH is a very powerful tool for data presentation. If you copy the below
SAS codes into your SAS editor window and submit it, you will get a very nice
output.

/***/
/* PART 1: GOPTIONS always in the beginning of SAS codes */
/***/
goptions reset=all gunit=pct colors=(white) cback=blue
 ftext=swiss htext=2.5;
/***/
/* PRAT 2: Data steps to define the input for the graph */
/***/
DATA MAP;
length function color $8;
retain xsys ysys zsys '2' when 'b';
DO ANGLE=0 TO 2*3.1416 BY .05;

17

 if angle=0 then function = 'poly';
 else function='polycont';
 style='solid';
 color='yellow';
 RADIUS=20;
 X=RADIUS*COS(ANGLE);
 Y=RADIUS*SIN(ANGLE);
 ID='CIRCLE';
 z=0;
 OUTPUT;
END;
DO ANGLE=0 TO 2*3.1416 BY .05;
 if angle=0 then function = 'poly';
 else function='polycont';
 style='solid';
 color='green';
 RADIUS=20;
 X=RADIUS*COS(ANGLE);
 Y=RADIUS*SIN(ANGLE);
 ID='CIRCLE';
 z=50;
 OUTPUT;
END;
/**/
/* PART 3: SAS/GRAPH procedures for generating the graph */
/**/
PROC G3d data=map anno=map;
scatter y*x=z/shape='point' noneedle zmin=0 zmax=50;
run;
quit;

