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Abstract

Over the past decade, significant progress has been made in speech recognition. Current state-of-
the-art Chinese speech recognition systems are capable of achieving character accuracy of 80% on
continuous speech recognition tasks using 29,000 words (from IBM, 1996). While the size and
performance of modern speech recognition and understanding systems are impressive, current
approaches to continuous word recognition utilize little linguistic knowledge in phonological,
lexical and syntactic level. We believe the use of phonological and lexical knowledge through
lexical access, as well as syntax knowledge through language model would be beneficial to speech

recognition.

This thesis presents an algorithm for the construction of lexical access model that attempts to speed
up a large vocabulary isolated word recognizer. Additionally, we describe different Chinese
language modeling technique of a large vocabulary system at the character level and word level.
These language models provide a powerful constraint to the recognizer. Finally, different kinds of

n-gram smoothing methods are studied, with the aim of solving the problem of uneven distribution.
The results of this thesis support the argument that linguistic knowledge is beneficial to speech

recognition.
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Chapter 1 Introduction
In this thesis, we describe novel techniques to solve the large vocabulary problem of speech
recognition. We investigate the usefulness of lexical access for large speech recognition. Moreover,

we investigate problems of building probabilistic language models for Chinese.

In this chapter, we describe the popularity of Chinese in the world’s languages. First, we discuss
specific problems for Chinese speech recognition. Secondly, we explore different kinds of
knowledge that can be used. Finally, we identify our target research area of Chinese speech

recognition.

Chapter 2 introduces fundamental linguistic knowledge, which would be useful throughout this
thesis. Chapter 3 describes a method of lexical access by broad classes features. Our analysis of
Mandarin broad class is compared with English and Cantonese. In chapter 4, two different kinds of
language modeling approaches are studied. They are character level language model and word level
language model. Smoothing methods for improving the language models are introduced in chapter
5. Four different kinds of smoothing techniques are compared. They are Witten-Bell, Good-Turing,
absolute and linear smoothing. Detailed algorithm and its underlying inspiration are also presented.
An experimental continuous Mandarin speech recognizer is also developed. Chapter 6 presents the

conclusion of thisthesis.



1.1 Languages in the World

Mandarin is the most popular language in the world. There are 864 million people speaking
Mandarin. Cantonese is also a popular Chinese dialect. It is spoken in the southern provinces of
Guangdong and Guangxi, Hong Kong and Macau, as well as throughout Southeast Asia in such

places as Singapore, Malaysia, Thailand and Vietnam. There are 63 million Cantonese speakers.

Table 1 shows the most popular languages in the world.

Family Language | Geographic area Rank | Number of
speaker
Sino-Tibetan Mandarin | North China (1) 864,000,000
Indo-European | English North America, Great Britain, 2) 443,000,000
Australia

Indo-European | Hindi Northern India (3) 352,000,000
Indo-European | Spanish Spain, Latin America (4) 341,000,000
Indo-European | Russian Russia (5) 293,000,000
Afro-Asiatic Arabic North Africa, Middle East (6) 197,000,000
Altaic Japanese Japan 9) 125,000,000
Sino-Tibetan Cantonese | South China (20) 63,000,000

Table 1: The data re-compiled from the 1992 World Almanac and Katzner. [1]

Although there are twice as many Mandarin speakers as English speakers, the development of
Mandarin Chinese speech recognition is still lagging behind than that of English. In addition, the
development of Cantonese speech recognition was not started until recent years. The motivation of

this thesis comes from the huge potential need for Chinese speech recognition technology, and the

relative lately development of the technology [3].




1.2 Problems of Chinese Speech Recognition

There are some technical reasons for the late development for Chinese speech technology. Chinese
has her unique features, which are very different from western languages. The major obstacles for

large-vocabulary Chinese speech recognition are listed below [4].

1.2.1 Unlimited word size:

There are about 10,000 commonly used Chinese characters. One to several numbers of characters
can be combined to form a Chinese word. The combination of such characters gives an almost
unlimited number of words, in which at least some 100,000 are commonly used and can be found in
different version of dictionaries and texts on different subjects. Hence, it is extremely difficult to

include all Chinese Words in a speech recognizer.

1.2.2 Too many Homophones:

Chinese words are formed by a combination of characters. Each character in turn mapsto a syllable.
The total number of phonologically allowed Mandarin tonal syllable is about 1,300. In other words,
alimited number of syllables maps to a much larger number of monosyllabic characters. Hence, the
problem of homonym is very severe. On the average, each Mandarin syllable is shared by about 7.7
(10,000/1,300) Chinese characters. This one-to-many mapping introduces many ambiguities in

Speech recognition.

The Chinese speech recognition algorithms must then be able to distinguish between Chinese
homophones. In English, it is unusual to find three words which are homophones e.g. two, too and
to. Homophones are much more common in Chinese. An analysis of Callhome Lexicon shows that

only 85% of the Chinese words can be uniquely specific with Mandarin tonal syllables.

1.2.3 Difference between spoken and written Chinese:

There are many differences between spoken Chinese and written Chinese. It is rather surprising to

notice that nearly 40% of the words used in a single case of court proceedings are not found in the



overal list of 43000 words used in Hong Kong newspapers for an entire year [6]. It reflects a vast
gap between the language used by the Cantonese speakers in Hong Kong and the language they are
expected to use in the context of written language, as found in newspapers. Mandarin Chinese has
fewer discrepancies between its spoken and written forms. However, the problems still affect the
performance of a speech recognizer, when its language model is trained on written text or when its

acoustic model is trained on read speech.

1.2.4 Word Segmentation Problem:

While words in western languages are separated by white spaces, there are no delimiters between
Chinese words. A language model is typically trained by segmented text. The segmentation
ambiguity of training text in Chinese may hurt the frequency counts of the language model, and

hence adversely affects the recognition results.



1.3 Different types of knowledge

In order to solve the unique problem of Chinese speech recognition, we propose to use additional
linguistics information in the recognition process. Linguistics knowledge can be divided into
phonetics, phonology, prosody, morphology, syntax, semantics and pragmatics. The acoustic
model of a speech recognizer captures some of the phonological effects. Morphology, syntax,
semantics and pragmatics could al be incorporated in the language model. On the other hand,
speech knowledge can be classified into two dimensions [7]: the linguistic level of knowledge and
its validity across different type of situations, such as prior knowledge, conversation-dependent
knowledge and speaker-dependent knowledge. This classification is shown in Table 2. Most of the
knowledge in the two lowest rows (parametric and phonemic) can be captured by the acoustic
model. However, al the other types of knowledge could potentialy be handled by lexical access

and language mode!.

Type of Prior Knowledge Conversation- Speaker-dependent
Knowledge dependent Knowledge | Knowledge
Pragmatic Prior semantic Concept sub-selection Psychological model of
and Semantic | knowledge about the based on conversation the user

task domain

Syntactic Grammar for the Grammar sub-selection | Grammar sub-selection of
language based on topic the speaker
Lexical Size and Confusability | Vocabulary sub- Vocabulary sub-selection
of the vocabulary selection based on topic | and ordering based on
speaker preference
Phonemic Characteristics of Contextual variability in | Dialectal variations of the

and Phonetic

phones and phonemes of
the language

phonemic characteristics

speaker

Parametric
and Acoustic

Prior knowledge about
the transducer
characteristics

Adaptive noise
normalization

Variations resulting from
the size and shape of
vocal tract

Table 2: Different kinds of speech knowledge defined by Reddy D.R. et al. [7]




1.4 Chapter Conclusion

In the previous sections, the popularity of Chinese language is mentioned. In addition, the issuesin
Chinese speech recognition are highlighted. Furthermore, various types of speech knowledge are
introduced, with the aim of solving the problems of Chinese speech recognition. In this thesis, our
main emphasisis on the use of lexical and syntactic knowledge. Lexical access and language model

will be employed to handle the problems.



Chapter 2 Foundations

2.1 Chinese Phonology and Language Properties

2.1.1 Basic Syllable Structure

Chinese is different from many western languages in that it is monosyllabic and tonal. While there
are more than 10,000 monosyllabic Chinese characters, there are typically only about 1,300 tonal
gyllables in each of the Chinese dialects. Thus, many Chinese characters share the same
pronunciation. However, often depending on the context, each Chinese character may have
multiple pronunciations. Consequently, Chinese is a complex language with many-to-one and one-
to-many mappings between the characters and the syllabic pronunciations. The notion of a Chinese
word is also very different from many western languages. While the syllables and characters are
relatively well defined, the Chinese words are composed of a variable number of characters. Since
a Chinese word can be formed, in principle, by any combination of ~10,000 Chinese characters, the

vocabulary of a speech recognition system can be huge.

Each tonal syllable can be considered as two independent parts, tone and base syllable. There are
five lexical tones. 1) high-level tone, 2) mid-rising tone, 3) falling-rising tone, 4) high-falling tone,
5) neutral tone. Moreover each base syllable can be divided into Initial and Final parts. Table 3 and

Table4 list dl Initials and Finalsin Mandarin.

1 2 3 4 5 6 7 8
/y/ /ch/ | /sh/ It/ /tz/ /ts/ /s/ /g/
8 9 10 11 12 13 14 15

/g/ /k/ /h/ i/ /chi/ | /shi/ |/d/ 1t/
16 17 18 19 20 21 22
/n/ 1/ /b/ /p/ /m/ /] null

Table 3: The 22 Mandarin initials including null initial




Category | Member

1 Null

2 /a/, /ai/, /au/, /an/, /an/

3 o/, lou/

4 /el, leh/, lei/, len/, /enl, /er/

5 /u/, lual/, luo/, /uai/, luei/, /luan/, /uen/, /uan/, /uen/

6 /iue/, /ivan/, /iun/, /iun/

7 /i/, v/, /ial, /ie/, /iai/, /iau/, /iou/, /ian/, /in/, /ian/, /in/

Table 4: The 38 Mandarin finals are classified into 7 final groups according to the middle vowel

sound

Each Final can be divided into Medial, Kernel and Coda. There are only 3 Phonetic-like unit (PLU)
can be act as medial. They are /i/ /u/ /u:/. Kernels , however, includes al the vowels. Codas has 2
vowel and 2 constant members. They are /i/ /u/ In/ Ing/. Table 5 shows the structure of the Initials

and the Finals in term of 33 PLUs. Thus, the 33 PLUs can be used to construct Initials and Finals,

and hence base syllable.

Initial = [consonant]

Consonant

/bl lp/ fm/ /7 /d/ W i/ N Tg/ Ik T/
/il 1q/ /x/ /zh/ Ich/ /sh/ It/ /z/ [/ Is/

Final = [medial] kernel [coda]

Medial

/1 1u/ Ja:/

Kernel vowels

/a/ /ol le/ /il lu/ I/ /el lex/

Coda (2 vowel + 2 constant) /i/ n/ n/ Ing/

Table 5: The structure of Initials and Finalsin term of 33 PLUs

Tonal Syllable, Base Syllable, Initial & Final, PLU are the common units of speech recognition.

Table 6 summary the hierarchy of Mandarin words.

Word (100,000+)

Chinese Character (10,000)

Tonal Syllable (1,345)

Base Syllable (408) Tone (5)

Initial (22) Final (38) Tone (5)
Initial (22) Medial (3) | Nucleus (9) | Ending (2) Tone (5)
PLU (33) Tone (5)

Table 6: The hierarchy of Mandarin words, where the number inside every bracket indicates the

total number of that kind of unit in Mandarin Chinese.




2.2 Acoustic Models

2.2.1 Acoustic Unit

The major goal of speech recognition is to transcribe the input speech into word strings. To
accomplish this, one may wish to create word-level acoustic models for speech recognition.
Nevertheless, word models are difficult to be realized directly when the vocabulary size is very
large, as there may not be enough training data to train each of the words. This problem can be
solved by creating sub-word models, which may be at morpheme level, syllable level, initial-final
level or phoneme level. Hence, the training data can be shared across different words. The choice of
units for acoustic modeling is actually one of the vital issue in speech recognition [8][9]. However,
syllable and phoneme models are the most commonly used sub-word models for Chinese speech
recognition. For Mandarin Chinese, there are about 408 base syllable and 34 phonemes. In this
thesis, we have chosen base syllable as acoustic model for our speaker independent large

vocabulary Mandarin continuous speech recognizers.

2.2.2 Hidden Markov Model (HMM)

Once the acoustic units have been chosen, we should look for a method to model it properly. There
are two popular methods to model the acoustic units. They are neural network and hidden Markov
model (HMM) [12][17]. Currently, the most popular method is the HMM. In fact, most exiting

speech recogni zers on the market use HMM to model the acoustic units of speech.

As shown in Figure 3, HMM can be view as a state machine. The states are indexed by numbers.
The machine is then able to follow the arrow to change state or loop back to the current state. The
state transition is actually a random process. A probability is assigned the each arrow such that each
transition is base on the probability. After each transition, one output will be produced at the current
state where the output set isfinite. The output of a state is called an observation. The processis then
referred as observation emission. If the finite states of a Markov model are not known (hidden) and

only the output signal can be observed, the model is called a hidden Markov model (HMM).
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Figure 1: Illustration of state transition and observation emission.

The use of HMM for modeling acoustic units isillustrated in Figure 2. The HMM presents a word
by imitating the speech production process. During the speech production process, a state is moving
from left to right following the arrows. Segments of speech are generated by states in form of
observation feature vector. The feature vector can be MFCC, CMS, LPC parameters
[10][11][15][16], which is able to describe a speech signal. To facilitate good speech stimulation,
accurate HMM parameters must be estimated which is known as training process. After training,
the model is then reliable. The output of HMM will have similar acoustic features as the original
signal. Once the HMM parameters are found, we can make use of the HMM to trace back which is

the most likely acoustic HMM state, given an speech signal as observation. A search algorithm is

then need to perform the task.
Non-emitling State Tl ' f 1_ State Transition
=2 (3 {4 =l 5 = & | — Non-emitting State
- wrnmr i - Ohsarvation
] . 2% Efmigsaan
A N N AR NI AN HARRRRLIAIS
Epeech Signal

Figure 2: Illustration of HMM for modeling acoustic units
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2.3 Search Algorithm

A search algorithm is employed to find the most likely HMM sequence of the acoustic unit, i.e.
syllable in our case. There are two commonly used decoding algorithms. They are Viterbi decoding

algorithm [18][19] and stack decoding, and we choose the Viterbi algorithm for our recognizer.

The Viterbi search is essentially a dynamic programming algorithm, consisting of traversing a
network of HMM states and maintaining the best possible path score at each state in each frame. It
Is a time synchronous search algorithm in that it processes all states at time t before moving on to
time t+1. The operation of Viterbi decoder is illustrated by the trellis diagram, which is shown in
Figure 3. Each dot represents the possible HMM state at time t. Except from the initial state, al the
dots are pointed by a arrow, which is the survive path from the previous state. The survival path is
the path with the highest probability from the previous state to the current state. When the operation
ended at time 6, the system would trace back which is the survival path from time 5 and so on. Such

that the best state sequence isfound, in this case, to be 1-1-2-2-3-4-4.

State

| | | | | | —» Time

Figure 3: Illustration of Viterbi algorithm for finding the best state sequence
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2.4 Statistical Language Models

The most abstract problem involved in large vocabulary speech recognition is to define an
appropriate "language constraints’ for the recognizer. Language constraints are generally concerned
with how words may be concatenated, in what order, in what context, and in what context meaning.
Language model is the most common method to realize the language constraints in a recognizer.
Hence, alarge-vocabulary speech recognition system is consisting of two parts: the acoustic model
and the language model. The acoustic model turns the utterance into a list of candidates that are
exported to the language model as its input. The language model determines the most possible word

sequence.

2.4.1 Context-Independent Language Model

Context-independent language models assign probabilities to words without considering the
context, i.e. history information. The simplest context-independent model of syntactic structure
would simply let any word in alexicon to be equally probable. Given the vocabulary V and for any

word w, the occurring probability is:

P(w) = where V| isthe size of vocabulary

1

This model does not have any probabilities to estimate and therefore does not need any training
data. However, it is of little use to speech recognition because all words receive the same

probability. It will therefore have no influence on the ranking of the words.

Another way to construct a context independent model is to estimate the probability of each word
based on its relative frequency. The use of relative frequency method is aso cal Maximum

Likelihood Estimation method. The equation of the relative frequency method is:

P(w)= S , Where f(w) is the frequency of word w

D f(w)

w

12



Hence, the model has only one static probability for each word. There are only V parameters to be
estimated. Although it is a very simple language model, it is actually being used in commercial
speech recognizer. Because it is a special case (n=1) of n-gram models, it is aways referred as the

unigram model.

The advantage of context-independent language model is that it requires very few training data, and
uses relatively fewer parameters for the speech recognizer, which is very desirable in practical

systems. However it has the inherit difficulty in predicting next word based on history information.

2.4.2 Word-Pair Language Model

The previous context-independent language models have only one distribution for each word,
independent of context, while the smplest form of context dependence is a word-pair language
model. The word-pair language model simply consists of alist of valid word pairs. All valid pairs
are equally probable, and other pairs are impossible. Although the language model is very simple, it
works very well in some tasks, such as the Resource Management task (RM). When the task has

very rigid grammar, word pair models have sufficient coverage with low perplexity.

2.4.3 N-gram Language Model
If we further improve the word pair language model by adding probability to the model, so that

words follow other words with differing probabilities, we get bigram model. If we then condition
the probability of a word not just on the immediately preceding word, but on the preceding n-1
words, we get an n-gram language model. The difference between bigram, trigram and other n-gram

modelsisjust the value of n. The parameters of an n-gram are thus the probabilities:

Pw, |w,..w, ) foralw,w,..w,

Given a word string S = w,,w,...w, , an N-gram model defines the probability of the string P(S) as
a product of conditional probabilities [20]:
P(S)=P(w, |<s>)P(w, |<s>w)..P(w, |<s>w, w )

m

13



where <s> is a special delimiter marking the start of a word string

N-gram model can be view as partitions of data into equivalence classes based on the last n-1 words
in the history. Such that, a bigram induces a partition based on the last word in the history. A
trigram model further refines this partition by considering the next-to-last word. A 4-gram model

further refines the trigram, and so on.

The hierarchy of refinements introduces a tradeoff between detail and reliability. The equivalence
class for bigram is the largest, such that the estimates of bigram are more reliable. While the
equivalence classes of trigram are more detail but numerous, such that many of them contain only a
few examples from training data, and many more are still empty. However, the differentiating
power of the trigram is greater, which means that it should result in lower perplexity for the
language model, given that it is well trained. Since the number of parameters in n-gram models

grows exponentially with n, n-gram with n>3 is not realizable in a practical system.

The advantage of the n-gram model isthat it captures the information provided by the preceding n-1
words. Judging from its success, this is an important source of information, especially for fixed
word order language like English. Its disadvantage is the enormous amount of training data needed

for obtaining al the probabilities.

2.4.4 Backoff n-gram

To model longer term dependencies, we would like n to be as large as possible. However, as n
increases, the number of observation samples for each n-gram becomes less. Backoff n-gram can
help to reliably estimate the probabilities. In the backoff method, the different information sources
are ranked in descending order of detail or specificity. During recognition process, the most detailed
model is consulted first. If it contains information about current context, it is used exclusively to
generate the estimate. Otherwise, the next detailed model in line is consulted. The backoff method

is simple and compact. For example, assume that there are not sufficient statistics for a particular

14



trigram w,_,w__,w, . To help us compute P(w, |w,_,w, ,), we can estimate its probability by using
the bigram probability P(w, | w, ). Similarly, if we till do not have any bigram count to compute

P(w, |w, ), wecanlook to theunigram P(w,).

Let wf. =w,..w, , the backoff n-gram model is then defined recursively asfollows:

(1= d)-c(w) /e(w™) i ) >0

Prtw, [w)= {a(c(w{“ D-Paln W ) =0

where c(w;')isthe frequency of word string w;" occurring in the corpus, d is the discount ratio, and

o’s are backoff weights.

15



2.5 Smoothing for Language Model

The mgjor problem with standard n-gram models is that there are insufficient samplesto train up all

n-gram parameters. Thus, the resulting language model may assign a zero probability to some

perfectly acceptable Chinese n-grams. This is known as zero probability problem. The task of

reevaluating some of the zero-probability and low-probability n-gram, and assigning them non-zero

value, is called smoothing.

Let us consider a small example, which uses a standard bigram. Let our training data S be

composed of the three sentences:

(Roger read Mao Zedong Writings. Desiree read a different book. She read a book by Chris.)
To calculate p(Roger read a book). We have

c(w,,, - Roger) _ 1

C(Who‘\') 3
c(Roger -read) 1

p(Roger | wy, ) =

d| R =
p(read | Roger) “(Roger) "
pla|read) = —c(read a) = 2
c(read) 3

p(book | ) = c(a-book) :l
c(a) 2

c(book -w,,) _ 1

| book) =
PO | bOOK) c(book) 2

Hence,

p(Roger read a bOOk):lxlxlexl ~ 0.06
3 3 2 2

Now, consider the sentence Mao read a book. We have

c(Mao-read) _ 0

read | Mao) =
P | ) c(Mao) 1

16



So we have p(Mao read a book) = 0. Obviously, this is an underestimate for the probability p(Mao

read a book) as there is some probability that the sentence occurs.

Smoothing is used to address the problem. The simplest type of smoothing technique is additive

smoothing [20] which isto pretend each bigram occurs once more than it actually does.

c(wl._l-wl.)+1

cow,_ IV |

pw; [w, )=

where [V| isthe vocabulary size.

p(Roger readabook—i 3 i 2 £~00001
15 13 15 14 14

(Maoreadabook)——xinxixi~000002
15 13 15 14 14

It is noticeable that the probability of "Mao read a book " is no longer zero, which is more sensible

in practice. Actually, amore detailed analysis on smoothing can be found in chapter 5.

17



Chapter 3 Lexical Access

3.1 Introduction

Developing a recognizer with extremely large vocabulary size has been a challenging problem. The
use of linguistic knowledge may improve the performance of the recognizer. This chapter describes
a model of lexical access using partial phonetic information. Over past two decades, a variety of
broad class representations for lexical access has been proposed in the literature. Yet often these

proposals describe the effect of broad classes representation for western languages only.

A number of researchers have evaluated the effect of broad representation. David W. Shipman [22]
investigated the statistical properties and constraints of the phonemic structures of large lexicons.
Their results demonstrated broad phonetic labeling could be very useful in reducing the number of
potential word candidates. For example, categorizing the sound segments in terms of six broad
classes can uniquely specify about one third of the lexical entries for a 20,000-word lexicon. Daniel
P Huttenlocher [23][24] described the theoretical approach to implement a large-vocabulary
isolated word recognizer. The system consists of three stages. First, the classification stage
produces a sequence of broad phonetic classes. Second, the sequence is used to retrieve a set of
word candidates from alarge lexicon. At the last stage, the subset is further extracted to identify the
actual spoken word. Luciano Fissore [25] presented their large-vocabulary isolated-word
recognition system which makes use of broad class pre-selection. By adding the pre-selection
process to the traditional direct approach, the complexity of the new system can be reduced by 73%

compared to the direct approach, while the recognition accuracy remains comparable.

These studies have provided much valuable information on the analysis, implementation and
experiment results of large isolated word recognizer, which takes the advantage of broad class pre-
selection process. However, broad class analysis of Chinese Language has not yet been explored. In

this chapter, we will investigate the phonological and lexical characteristics of the most commonly
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spoken language: Mandarin. We will compare the results with Cantonese and American English. In
addition, the implementation method for a large-vocabulary isolated Chinese word recognizer will
be proposed. We believe that the broad class pre-selection process will enable us to deal with the
large-vocabulary recognition problem in an efficient manner. Section 3.2 presents the motivation of
broad classes representation. Section 3.3 introduces the model of broad classes representation. In
Section 3.4-3.5, a model of broad classes representation is presented. Section 3.6 presents the
analysis of the broad classes representation. Section 3.7 proposes an implementation method that

makes use of broad classes representation. Section 3.8 concludes this chapter.
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3.2 Motivation: Phonological and lexical constraints

Human speech is a highly constrained system. It is known that there are various sources of
constraints. 1) Production constraint: There are less than 50 phoneme in Mandarin Chinese. A
person cannot speak Mandarin using another phoneme. 2) Speech recognition constraints: Different
phonemes in a language tend to be distinct in perception. 3) Natural language constraints: There are
syntactic, semantic and discourse level constraints for alanguage. We believe that constraints at the

phonological and lexical levels are asimportant as the syntactic, semantic and discourse level.

For any language, speech is produced by a limited number of phonemes. In addition, the sequence
of phonemes can only be combined in a certain way to form a meaningful word. Native speakers
possess the knowledge about the word formation rules of their own language. For example, thereis
a set of syllable formation "rules® which governs the formation of base syllable from initials and
finals [30]. Regarding the combination of an initial and a fina in construction of a syllable, some
restrictions are shown in Table 7. Initial /f/ cannot be followed by final starting with /i/. Therefore
syllable /fingl/ is not an allowable sound in Mandarin Chinese. This information would be very
useful in speech recognition. For example, initial of a syllable is either /j/, /g/ or Ix/, then thereis a
79% chance that the final starts with a /i/ medial. Also, there is no chance that the fina starts with
null medial or /u:/ medial. The example is certainly uncovering the power of phonological

knowledge.

On the other hand, /del shil/ is a permissible sequence of syllables in Mandarin, but is not a word
because it is not in the lexicon. Hence /del shil/ should not be an allowable output for a recognizer.
Therefore, if we have sufficient information of what are the potential words in the lexicon, we can

further constraint the sequence of syllables for arecognition task.
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Hence, the phonological and lexica knowledge is presumably important in speech recognition,
particularly when the acoustic cues to a speech sound are missing or distorted. Thus, we are

concerned with how such knowledge can be used to constrain a speech recognition task.

Final
INITIAL No medial /i/ medial /u/ medial | /u:/ medial
(occur frequency) B TR L Hl |
/b/ Ip/ /m/
5.15%,0.98%,3.74% 47.98% 33.33% 18.68% 0.00%
/f/
2.45% 84.62% 0.00% 15.38% 0.00%
/d/ 1t/
12%, 3.53% 59.04% 20.87% 20.09% 0.00%
m/ 1/
2.53%, 5.69% 46.38% 41.58% 10.17% 2.03%
/z/ Ic/ Is/
3.01%,1.15%,1.08% 54.81% 0.00% 45.19% 0.00%
/zh/ /ch/ /sh/ It/
7.18%,2.75%,7.66%,1.94% 75.13% 0.00% 24.87% 0.00%
il 1q/ 1x/
6.98%,3.11%.,4.86% 0.00% 78.73% 0.00% 21.27%
/gl Ik/ /h/
5.50%,1.83%.,4.42% 58.81% 0.00% 41.19% 0.00%
D
12.45% 5.91% 55.18 26.14% 13.59%

Table 7: The occurrence frequency of the initials and the conditional probability of the initials in
combination with the finals of Mandarin. (Base on a corpus with one million syllables)
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3.3 Broad Classes Representation

Many phonological rules are specified in terms of broad phonetic classes rather than specific
phonemes. For example, the nasal-stop cluster rule in English specifies that nasal and stop
consonant must be produced at the same place of articulation. Thus, we have words like "limp" or
"can't", but not "limt" or "canp". Rather than performing detailed phonetic analysis, a word is
characterized in terms of broad phonetic classes. This partial description is then used to retrieve a
small set of words from a large lexicon. Our lexical study is based on Mandarin Call Home and
English COMLEX obtained from the Linguistic Data Consortium. The Chinese lexicon is consisted

of 44,000 words, and the English lexicon is consisted of 52,000 words.

In selecting a representation for lexical access, we try to find a classification, which can be
extracted from the acoustic signal irrespective of local context, speaker characteristics, and other
environmental variability. There are two common methods to classify phonemes into broad
phonetics classes, that are grouping them by manner of articulation and the place of articulation.

Table 8 shows the members of Mandarin consonants in each group.

Place of Articulation Initial Consonant

Labial /b/ Ip/ /m/ /f/
Dental/Alveolar /d/ 1t/ In/ 11/
Guttural /g/ I/ /h/
Palatal il 1q/ Ix/
Dental Sibilant /z/ Ic/ Is/
Retroflex /zh/ /ch/ /sh/ /r/

Manner of Articulation

Initial Consonant

Stops /bl Ip/ /1dl It/ 1g/ /k/
Laterals N/

Nasals /m/ /n/

Affricates /c/ /2] zh/ [ch/ i/ 1q/
Spirants /f]'/s/ /sh/ /x/ /h/
Glides /Iyl il Iwl |/

Table 8: Place and Manner of articulation classification for Mandarin consonants
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In our experiments, the six broad phonetic classes are formed based on the manner of articulation.
They are "vowels, stops, fricatives, affricates, laterals/glide, nasals' in the Chinese dialects and
"vowels, stops, strong fricatives, weak fricatives, lateralg/glide, nasals' in the English. This set of
manner classes is used, since it tends to be relatively invariant across different speakers and
phonetic contexts. Zhang [26] made comparison on intelligibility of a consonant to the effect of

Mandarin syllable perception.

Figure 4 shows that manner of articulation plays a more important role in identifying a syllable

correctly.

120%

100%

80% e

B (o))
L 2L
X =X

—e— Manner of Articulation

-4--Place of Articulation

Syllable Recognition Rate
(Perception)

0 % T T T T

0% 20% 40% 60% 80% 100%
Consonant Intelligibility

Figure 4: Manner/Place Recognition Rate vs Consonant Intelligibility [26]

In the experiment, the researcher prepared some single-syllable sound files. The subjects heard a
consonant segment from the sound file and they were made to identify the consonant. The subjects
then heard the whole sound file and they were made to identify the syllable. The process was

performed for each prepared syllable.
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Since manner of articulation consistently results in a higher syllable recognition rate than the place
of articulation at the same level of intelligibility, it suggests that the manner of articulation would be

more appropriate for speech recognition.

Once we identified the classifying method, we can re-label the transcription in term of the broad
classes, so that it can be used for broad classes analysis and recognizer training. Broad phonetic
classification can be viewed as the partitioning of the lexicon into equivalence classes of words
sharing the same phonetic class pattern. For example, the characteristics of Mandarin, can be
represented in terms of: 1) Tonal syllables, e.g. /nin2 men5/ 2) Base syllables, e.g. /nin men/ and 3)

Manner of broad classes e.g. [Nasal] [Vowel] [Nasal] [Nasal] [Vowel] [Nasal].

For example, there are only 23 words in a 44,000-word lexicon have [Nasal][Vowel][Nasal]
[Nasal][Vowel][Nasal] broad classes representation. It was found that, even at this broad phonetic
level, approximately 1/5 of the words in the 44,000-word lexicon could be uniquely specified.
Tonal syllables and base syllables are usual forms to represent a Chinese word. However, our

experiment showed that broad class representation is also very useful in speech recognition.
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3.4 Broad Classes Statistic Measures

In this section, each of the lexicons for the three different languages is represented in multiple units,
including tonal syllables, base syllables, phonemes, and broad phonetic classes. In order to explore
the characteristics of the languages, multiple measurements are made, such as coverage,
uniqueness, expected and maximum cohort sizes. Since words in alexicon may have very different
frequency of occurrence, some of our measurements are also weighted by the frequency of
occurrence. The frequency of occurrence for English is obtained from the Brown Corpus, whereas
the frequency of occurrence for Mandarin and Cantonese are obtained from the Call Home

database.

Table 9 shows some of the basic measurements used in our study. The maximum cohort size
represents the largest equivalence class size given a particular phonetic / syllabic description,
whereas the expected cohort size represents the cohort size with a frequency distribution. Notations

for different measurements are shown in Table 10.

UNIFORM DISTRIBUTION | FREQUENCY NORMALIZED
Maximum cohort size maﬂc(wl_ )| maﬂc(wl_ )|
Expected cohort size 1 c

‘L“Z:I‘C(WI)‘ WIZEI/pI (wl)

Table 9: The basic measurements used in our study. | C(w;) | is the cohort size for word w;, |L | is
the lexicon size, and p; is the frequency of occurrence of the i'th word, w;, in lexicon L.

NOTATION | STATISTICS

UNIQ % of word which is uniquely specified

ECS Expected cohort size

F-ECS Frequency normalized expected cohort size

MCS Maximum cohort size

RECS Expected cohort size /lexicon size

F-RECS Frequency normalized expected cohort size /lexicon size
RMCS Maximum cohort size /lexicon size

LEX Lexicon size

Table 10: Notations for the measurements used in this study. Results normalized by frequency of
occurrence are shown in italic.
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3.5 Broad Classes Frequency Normalization

In al languages, some words occur much more frequently than others do. The occurring
probabilities of a word in the lexicon are very uneven, words like “the”, “I”, “and” occur more
frequently. It would be interesting to see the frequency distribution of the words in a language.
Figure 5 shows the cumulative distribution of the most frequent words for Mandarin and English.
For example, the set of the most frequent 4,000 words cover over 92% and 77% of all the texts in

Call Home Mandarin and the Brown Corpus, respectively.
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Figure 5: Percentage of text coverage for English and Mandarin most frequent words
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3.6 Broad Classes Analysis

This section describes the properties of broad classes. Table 11 shows our results for Mandarin. It
can be seen that if the lexicon is represented in terms of the tonal syllables, only 85% of the lexicon
can be uniquely specified. The remaining 15% of the lexicon contain words that cannot be uniquely
specified by the tona syllables. This low percentage of 85% reflects the fact that many of the
words in Mandarin are actually homophones. For example, al of the following Chinese words

have the same tonal-syllable representation, /fud shud/":

Lt g [ e s |
When the lexicon is represented in terms of the base syllables, i.e. syllables with no tone

information, only 65% of the lexicon can be uniquely specified. Similarly, only 19% of the lexicon

can be uniquely specified by the broad classes.

Tonal Syllable Base Syllable Manner of

(38 phoneme) Articulation

UNIQ 85.0% 65.0% 19.0%
ECS 1.39 2.54 62.4
F-ECS 3.44 9.24 127.6
MCS 21 54 299
LEX 44K 44K 44K

Table 11 Analysis on Mandarin broad classes

Table 12 further describes the problem of homophone of different word length in Mandarin
Chinese. The analysis was done based on a 70,687 words lexicon. It was found that 50% of total

homophones are single syllable word.

Length of Number of Words | Number of Different Number of Number of
Words Tonal-Syllable String homophones | Different Base-
(# of syllable) Syllable String
1 5384 1405 3979 529

2 45602 41988 3614 31814

3 9554 9406 148 9310

4 9324 9183 141 9314

>5 823 818 5 817

Total 70687 62800 7887 51640

Table 12: Analysis of uniqueness Mandarin words in term of tona syllable and base syllable
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On the other hand, Table 11 also shows the discriminatory power of the broad phonetic classes. By
using only six broad phonetic classes, the expected cohort size (ECS) is found to be 62.4. In other
words, if the lexicon is represented in terms of the broad classes, on average 62.4 words would have

the same broad class representation.

Table 13 shows the characteristics of Cantonese. We can see that 87%, 70%, and 16.7% of the
lexicon can be uniquely specified by the tonal syllables, base syllables, and broad phonetic classes,

respectively. These figures are quite similar to those for Mandarin.

However, the expected cohort size in Cantonese is 107.9, amost twice of the corresponding size in
Mandarin. This shows that the broad phonological structures for the two Chinese dialects are quite
different. It also suggests that the six broad phonetic classes are not as effective in differentiating

the Cantonese words in the lexicon.

Base Syllable
Tonal Syllable (38 phoneme) | Manner of Articulation
UNIQ 87.2% 70.1% 16.7%
ECS 1.32 2.15 107.9
F-ECS 2.69 6.80 165.9
MCS 26 37 471
LEX 44K 44K 44K

Table 13: Analysis on Cantonese broad classes

Table 14 shows our analysis for English. It can be seen that over 93% of the lexicon can be
uniquely specified by a set of 43 phonemes, in contrast to the 85% and 87% for Mandarin and
Cantonese with tona information. Furthermore, the expected cohort size is about 74, which is
comparable to the corresponding figures in Mandarin and Cantonese. These experimental results
for English are very similar to those reported by Carter. We have found that the largest broad class
cohort is[fricative] [Vowel] [fricative] [vowel] [fricative]. This cohort has 648 word members, such

as"thesis’.
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43 Phonemes Manner of Articulation
UNIQ 93.2% 15.7%
ECS 1.07 74.1
F-ECS 1.83 111.5
MCS 5 648
LEX 52K 52K

Table 14: Analysis on English broad classes

In order to compare directly the lexical characteristics of all three languages, Table 15 summarizes
the results when the base syllables (or 38 phonemes) are used for the Chinese dialects, and the set of
43 phonemes is used for English. It can be seen that the characteristics of the three languages are
quite different. First, there is a major difference between the UNIQ's for the three languages,
ranging from 65% for Mandarin to 93% for English. Second, the relative cohort sizes can differ by
as much as a factor of 2.7, since the RECS for Mandarin is 0.0057% and the RECS for English is
0.0021%. Finaly, the RMCS can aso differ by an order of magnitude, since the RMCS for

Mandarin is 0.12% and the RMCS for English is 0.0096%.

Mandarin Cantonese English
UNIQ 65% 70.1% 93.2%
ECS 2.54 2.15 1.07
MCS 54 37 5
RECS 0.0057% 0.0049% 0.0021%
RMCS 0.12% 0.083% 0.0096%
LEX 44K 44K 52K

Table 15: Comparisons of characteristics between Mandarin, Cantonese, and English. Both
Mandarin and Cantonese are based on the base syllables (or 38 phonemes), whereas English is
based on a set of 43 phonemes.

We have also compared the lexical characteristics of the three languages using the 6 broad classes.
Table 16 summarizes the results. We can see that their characteristics are more similar than those
using the entire phoneme set. First, it is observed that almost 20% of the Mandarin lexicon can be
uniquely defined by the broad phonetic classes, compared to 15.7% for English. Second, the

relative expected cohort sizes are quite small for all three languages, with the highest one at 0.24%

for Cantonese and the lowest one at 0.14% for both Mandarin and English. Third, while the
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maximum class sizes for all three languages are till quite low, they differ by only a factor of 2. For

example, the RMCS for Mandarin is 0.67%, whereas that for English is 1.25%.

Mandarin Cantonese English
UNIQ 19.0% 16.7% 15.7%
ECS 62.4 107.9 74.1
MCS 299 471 648
RECS 0.14% 0.24% 0.14%
RMCS 0.67% 1.1% 1.25%
LEX 44K 44K 52K

Table 16: Analyses on Mandarin, Cantonese, and English for six broad classes

The effectiveness of the broad class representation for the three languages are compared, Figure 6

shows the relative expected cohort sizes (RECS) as functions of the lexicon sizes. It can be seen

that the RECS decrease monotonically. With a lexicon size of 4,000, the RECS for all languages

are below 1%.
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1.00%
0.80%
0.60%
0.40%
0.20%
0.00%

RECS

/S

—s=—Mandarin [
--e-- Cantonese | |
— = — English

1K

2K

8K

LEXICON SIZE

Figure 6: Relative expected cohort size analysis of 6 broad classes.

32K

30



Figure 7 to Figure 10 compare the characteristics of Mandarin and English as functions of the

lexicon sizes. We can see that most of the curves are quite linear with the lexicon size and that the

characteristics using broad phonetic classes are quite similar between the languages.

100

COHORT SIZE

10

————ECS (Mandarin) — -¥ — ECS(English)

———@——F-ECS (Mandarin) = =+ — F-ECS (English) ‘/‘_——A
———— MCS (Mandarin) — X — MCS (English—1

2K 4K 8K 16K 32K
LEXICON SIZE

Figure 7: Expected and Maximum Cohort Size for whole phoneme set
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Figure 8: Expected and Maximum Cohort Size for 6 broad classes
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3.7 Isolated Word Speech Recognizer using Broad Classes

Our model of isolated word recognizer involves three distinct stages: The first stage is classification
of the acoustic signal. Second, this sequence is then used to retrieve a set of word candidates form
the 44,000-lexicon. Finaly, a detail feature recognizer determines which of those words was

actually spoken. Figure 11 shows the block bigram of the algorithm.

The recognizer has two major features. First, the classification of the speech signal is in terms of
phonetic-size units as opposed to fixed rate |abeling. Second, there is no attempt to perform detailed

recognition of the acoustic signal until after lexical access.

(Broad Class) A list of

(Callhome) )
Speech :> Classifcation :> Lexical Access :> potential

Words

Detail
> Recognition :> Word

Figure 11: System Flow of the Isolated Word Speech Recognizer

Performance of the system can be measured by: 1. The number of word candidates returned in

lexical access. 2. The probability of the correct word that appears in the candidate set.

By using these two separate criteria, the tradeoffs inherent in the choice of representations are more
explicit. If very broad classes are extracted from the acoustic signal, then the error rate in
recognizing these classes will be very low. However, a large number of words will match each
sequence of the broad classes. If the classes are detailed, the error rate will be higher, but fewer
words will match each sequence. We believe the 6 broad classes would be a good option for the
first stage of the recognizer. Since a large vocabulary isolated word Mandarin corpus is not

available in public, the mentioned system is not actually built for experimental testing.
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3.8 Chapter Conclusion

In this chapter, we demonstrate a method for partitioning a large lexicon into small equivalence
classes, bases on phonetic constraints. In our two-stage recognizer, word classes are represented in
terms of manner of articulation. The benefits are: 1) These broad phonetic classes are relatively
invariant across different speakers and phonetic contexts. 2) Only atiny subset of the words in very

large lexicon matches a given sequence of the classes.

We demonstrated that broad phonetics classification of words could, in principle, reduce the
number of word candidates significantly. It is found that the Mandarin broad class representation
can uniquely specific 19% words in a 44404-word lexicon, and the expected cohort size is only
62.4. Thus, a subsequence recognizer only need to search 64.2 words instead of 44404 words. It is
also marked that the percentage of uniquely specified word (UNIQ) of 6 broad classes are very
similar for the languages, they are 19.0%, 16.7% and 15.7% for Mandarin, Cantonese and English
respectively. Since the broad class recognizer only makes use of the broad features of an input
phoneme, minor change in the acoustic realization would not affect the result of first lexical access
stage. Thus, the representation is both powerful at differentiating between words, and robust with

respect to acoustic variability.

Therefore, lexical access, through the broad classes feature, is undoubtedly a feasible way to cut

down the computation time of alarge-vocabulary isolated-word recognizer.
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Chapter 4 Character and Word Language Model

4.1 Introduction

N-gram language model simultaneously encodes syntax, semantics and pragmatics. They
concentrate on local dependencies. It is especially effective for structural languages, such as English
where word order is important and the contextual effects among neighbor words is strong. On the
other hand, n-gram language model processes inherit deficiencies in exploiting long-range
constraints. Researchers have tried different approaches to solve the problem [31][32][33].
However, these attempts have yielded little improvement at the high expense of computational cost.

Thus, in this thesis, we concentrate on n-gram language model only.

People tend to speak more freely (less constraint in syntax or grammar) in telephone conversation.
It makes the building of language model even more difficult. Not much work of language model has
been done for Chinese large-vocabulary telephone speech. IBM [39] has presented their
experiments of Call Home corpus. However, the detailed analysis of the language model has not
been published. In this chapter, we analyze and compare the characteristics of Chinese word

language model and character language model.

While word language model has been found to provide powerful constraints for speech recognition,
it is also known that word language model suffers from out-of-vocabulary and sparse data
problems. These problems are particularly severe in Chinese, as new Chinese words can be created
with a high degree of freedom. Furthermore, as there are no clearly defined word boundaries in
Chinese, some forms of word segmentation procedures must first be performed before word
language model can be applied. In this chapter, we explore the possibility of using character
language model, which can potentially alleviate some of the known problems with word language

mode!.
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4.2 Motivation

While many researchers assume that word level language model is better than character level
language model. Few researchers compared the performance of both language models. The
motivation of the chapter comes from the fact that the assumption may not be true, and it is worth to
have systematic procedures for the comparison. In our experiments, the performances of language

models are compared based on the perplexity.

Perplexity

The most common response after experiencing large-vocabulary speech recognizer is "It doesn't
make sense!”. The better the language model we have, the lower the occurrence of nonsense
sentences. How can we identify a better language model? Language model is commonly measured
by "perplexity” which is the extent of constraints of a given language model in a recognizer. This
term roughly means the average number of branches at any decision point during the decoding of
the message. For a ssmple language model, in which all of the V words is allowed to follow any
word with probability 1/ . The perplexity of this model is V7. This concept can be extended

further, where the probability of words following each other is not uniformly 1/7 . From Rabiner &

Juang [34], perplexity B, is defined in term of entropy H. B =2"

And we estimate H over Q words of datato be H ;:

H :—élogP(wl,wz,...w )

p q

Which for an n-gram moddl is:

1 0
H,= _aglog PW, W, 5, W,y )
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In practice, we can only estimate probabilities using some test data, and thus only an estimation of
perplexity can be obtained. The more data is used to train and test the language model, the better

this estimate should be.

For speech recognition, fewer possible words means an easier task for the recognizer. Hence, a
language model with low perplexity is more desirable. It will generaly result in faster and more
accurate recognition. The relationship between perplexity and word accuracy is not guaranteed,

although we expect models with lower perplexity introduce better recognition results.
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4.3 Call Home Mandarin corpus

4.3.1 Acoustic Data
Our study is based on the second release (apr95) of Mandarin Call Home corpus [37][38],

distributed by Linguistic Data Consortium (LDC). The CalHome Mandarin corpus consists of 120
telephone conversations between native speakers of Mandarin. All speakers were aware that they
were being recorded. They were given no guidelines concerning what they should talk about. Once
a caler was recruited to participate, he/she was given a free choice of whom to call. Most
participants called family members or close friends overseas. All calls originated in North America.
The corpus is a large-vocabulary, conversational and telephone speech corpus. Speech is
transcribed and time-aligned with human intervention. Conversations take place in an unprompted
manner with no specified topics for talker to follow. Each recording is 10 to 30 minutes long. The
transcription is in native orthography, covering 10 minutes of each call. Unlike Switchboard [40],
transcription in Call Home is time-aligned interactively by speaker turns instead of on a word-by-

word basis.

Because of the Call Home corpus speech is collected over international connections, there are
channel noise and distortions to deal with. Moreover, handsets and speakerphones are often used in
the case of multiple talkers on one end. The average number of speakers per conversation in
Mandarin Call Home is 2.81 instead of 2 for Switchboard. In view of poor quality of telephone
speech, not al the transcribed speech from conversation is suitable for training. After the non-
Mandarin speech, laughter and corruptive channel noise are removed, the usable portion of training

speech is about 9.0 hours.

There are 80 conversations in the training set and 20 in the development test set. The training set
contains 19K sentences and 5744 unique words. The average word length is about 1.39 characters.

Detailed statistics of the corpus can be found in Table 17.
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Transcription Training Development Testing

# of dialog 80 20
# of sentence 19,965 5,378
# of word 127,063 34,699
# of character 177,148 48,218
# of unique word (w-vocab.) 5,774 2,936
# of unique character(c-vocab.) 2,098 1,466
Average word length 1.394 character/word 1.390 character/word

Table 17: Detailed statistics of Call Home Corpus

4.3.2 Transcription Texts

Mandarin Call Home exhibits strong characteristics of spontaneous speech with lots of disfluencies,
hesitations, repetitions of phrases, and word dlurring, which makes human transcription
complicated. Unlike Switchboard corpus, no conversation topic is specified in Call Home. Takers
speak in a more relaxing manner in Call Home than in Switchboard because they are family
members or close friends. Moreover, proper names such as human names and abbreviations for

organizations frequently appear in the context.

The speech is transcribed in native orthography, Chinese characters, by human transcribers. There
are several problems for Mandarin transcription, which do not occur in western languages. For
example, word boundaries in Mandarin are ambiguous and cannot be clearly distinguished by

simple rules [41]. Some examples of texts used as test sentences are as follows.

<s> |ifl] 28 FiIRFfe SR R At </s>

<> il FE A7 1JEE bl LA K Al </s>
To have better analysis of my testing result, the characteristic of usable portion of training speech
data and transcription of IBM’s experiment [39] and those of my experiments are compared in
Table 18. It is notice that IBM include less transcription for training (7.7hrs vs. 9.8hrs). It might

account for the small variation of our results.
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Corpus IBM-Call Home CUHK-Call Home

# of Recording(Training/ Devtest) 80/20 80/20
Transcribed length of training 7.7 hrs 9.8 hrs
# of Turns 12,000/3,000 19,965/5,378
# of Words for LM 170K 177K
Trigram Perplexity 288 313.23

Table 18: Baseline perplexity compareto IBM
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4.4 Methodology: Building Language Model

A bigram language model can be seen as a VxV matrix of probabilities, where V is the size of the
vocabulary in a specific task. The bigram and trigram probabilities can be estimated by the simple
relative frequency approach.

C(Wn—l > wn )

c(w, )

c(wn—Z > wn—l > wn )

c(wn—Z > wn—l )

Bigram: P(w, |w, )= f(w,|w,_)=

Trigram:P(w, |w, ,,w,_)=f(w, |w, ,,w )=

where the function ¢(.) counts the number of string in the blanket

The use of relative frequencies as a way to estimate probabilities is known as Maximum Likelihood
Estimation (MLE) [35][36]. Table 19 and Table 20 show the bigram and unigram counts of 7 words
in Call Home corpus. The relative frequencies are then calculated by normalizing the bigram with
their unigram counts. Table 21 shows the bigram probabilities after normalization. Note that 'N/A’
log probahilities are caused by zero bigram counts, which is undesirable. Actually, we have chosen
7 sample words which are more related to each other, the majority count of full-version bigram
matrix should be zero. From the Table 19, we aso notice that the disfluency problem isvery severe,
for example, there are 259 number of bigram Fk-F¢, 73 number of bigram fti- {1 and 17 number of
bigram {[JE:-{ [J&£. Generally, those bigrams would not be appeared in written text. However,

people tend to repeat their words in telephone conversation.

Wt \ Wi 1% G| I SURE iy = T f]pE
% 259 126 119 6 10 6 4
At 21 2 1 7 6 5 1
HBH 50 0 12 13 0 30 4
1 11 6 5 73 10 17 7
= 0 1 0 0 4 50 3
T 100 0 2 44 6 1 7
I 7 0 1 5 0 12 17

Table 19: Bigram count for 7 words (out of 5774) in Call Home Corpus
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Unigram | fi A ALE |l = T {1
Count 4568 423 571 2246 281 2953 881
Table 20: Unigram count for 7 word in Call Home Corpus
Wt \ W, B4 Nl pSLblal i = T NS
559 -1.1929]  -1.5058| -1.5306| -2.8280| -2.6062| -2.8280| -3.0041
A -1.2576| -2.2788| -2.5798| -1.7347| -1.8016| -1.8808| -2.5798
5E -0.9657 N/A| -1.5855| -1.5507 N/A|  -1.1875] -2.0626
e -2.2843|  -2.5476| -2.6268| -1.4624| -2.3257| -2.0953| -2.4806
= N/A| -2.3483 N/A N/A|  -1.7462| -0.6493| -1.8712
T -1.4461 N/A|  -3.1450| -1.8026| -2.6679| -3.4461| -2.6010
- -2.0787 N/A|  -2.9238| -2.2248 N/A| -1.8446| -1.6933

Table 21: Log-probabilities of bigrams for 7 word in Call Home Corpus

As illustrated above (N/A entries in log-probabilities table), a bigram/trigram language model
would give zero probability to string W which contains an unseen type of bigram/trigram. If the
bigram/trigram missing-rate is high, a large number of word errors would be introduced in a

recognizer, which operates with the statistical decision criterion:

P(W)P(A|W)=max POW)P(A|W)

Actually, we found that 58% of the word trigrams and 26% of the word bigrams appearing in the
test set never took place in the training set. One approach to solve the zero probability problem is
using backoff technique. In the model, the probability backoff from atrigram to a bigram, and then

to aunigram estimation. Theideal isincorporated in the approximated formula.

ﬁ(wi W, 5,w,)

if

cw, ,,w,_,,w)=0 and

cw,_ 5w, ,w,)>0
P(Wi | WFZ’WFI) = OZ(WZ:;)P(W, | WH)
a(w, )P(w,)

if

C(Wi—l > W,) > 0

otherwise

n—1

where a(w!,),a(w, ,)are factors that depend on the counts ¢ and assure that the probability P

when summed over al wordsw, addsupto 1.
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P isadiscounted version of bigram and trigram. The discount method used for the simple backoff

bigram in our experiments is shown below:

Bigram : ﬁ(wn lw, )= (1 1 jc(wn_lawn)

Cew,)) eOw,)

An intuitive impression for the quality of the language model can be conceived from Table 22. The
simple backoff language mode! is used to predict the potential words for the sentence "<s> il #
R OFLE 1Y & A 2P i </s>". Table 22 manifests all the words that are predicted to
be more likely than the actual word, given the language model has perfect knowledge of the
preceding word. For example, knowing the preceding word " 15", the language model estimates
that the most likely next word is "—}fl", and the word #&¢r |[F[li]... are all more likely than the

actual word %/J%" which is estimated as the 219-th likeliness, given that particular past.

We observe that the language model is quite effective at predicting most function words (e.g.
e, /7%, ft) but that is uncertain about some content words {#{f., %)i). Another observation is

that the language model provides powerful constraints to a speech recognizer. In the above
example, the correct words are always within the top 800 candidates, instead of 5774 words. It is
quite amazing that without any acoustic information of the current word, a recognizer is able to
predict accurately the potential words. Thus the searching time for the recognizer can be greatly
reduced. Of course, we cannot make the conclusion merely based on the example. An objective and

guantity measure of language model quality would be presented in the following sections.
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Rank Wy W» W3 Wy W5 We W+ Wg Wo Wio Wii Wiz
1] <o WA G | HEA | </s>| @t </s>| </s>| | K| </s>
2 Wo | </s>| A& WG| </s> | HRE | 7| A7 | 2
3 | At e | At ] B | k| IR </s>
4 L N It W th ) </s>|
S Mol |k I N vl N 2 I s S I 1
6 | <0 N 8 N 2 A =3 A |
7 5 | BiE i | B | sk | W | e
8 ] 1y f| ) wE g fEE ] T
9 B | A | A — ] W

10 | AN RK| —| W
11 1F G| A 7| fls
12 N UGk | EPIEL ] R | sk
13 ik fti | Ar | |
14 Stk (5] WA | Wd | A
15 i} B Fe |
16 £ 55 v L 1 O o I 3
17 #B iE i | IR | R
34 g I 1 N < 1 0 55
40 g2 4| HE

219 S i

782 e

783 x

784 *F

785 (ESEE

Table 22 Word prediction by a backoff bigram language model for "<s> ftf #F AN HLE fth 114
e 1 20 If </s>"
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4.5 Character Level Language Model
Out-of-vocabulary (OQOV) rate and perplexity of different character language model are analyzed.

There are 156 out-of-vocabulary characters in the test set, some of them with higher OOV count are
listed in Table 23. The total number of OOV word token is 298, which represents 0.62% of the total

number of wordsin the test set.

Count | 11/ 10| 8| 8 7| 7| 7| 7| 7| 5 5/ 5 5 4 4| 4 4 4 3 3
OOV | Mii| r5| | 7| sA| w1 80| &g B B8] e Y #£5| i | £ e S FP|
Count | 3| 3| 3 3 3 3 3 3 2 2 2 2/ 2| 2] 2| 2] 2 2] 22
OOV | HY % br| IR| %] M| k| By W S w8 7| Wi M| ) 5] MR OHE| FR
Count | 2| 2 2| 2] 2| 2| 2| 2] 2 2] 2 2] 2 2/ 2 2] 1 1 1 1
OOV | | | Ih| & #&] & it =] & € [ O W Wi Fr] JF T #Y 8 I

Table 23: List of top frequency out-of-vocabulary characters

Table 24 exhibits the perplexity and OOV rate of the smple backoff character bigram and trigram.
Figure 12 visualizes those perplexity results. Eight language models are compared in Table 24.
They are divided into two groups: cheating and fair models. Cheating models are included in the
experiments to give awider range of perplexity analysis. Since bigram and trigram language models
are the most common types of language model implementation methods, both of them are employed
in the experiment. Smoothing techniques are also included, aimed at further improving the
perplexity of language model. More detailed analysis of smoothed technique would be presented in

Chapter 5.

Cheating language models are language models, which are trained from testing transcription. Hence
the cheating language models has better statistic information than fair language models, which
trained on training transcription. The cheating language models always have lower perplexity than
the fair ones, and would normally perform better in recognition tasks. Each group contains four
members. They are bigram/trigram language model with/without smoothing. Since many possible

Chinese character trigrams w,,w,,w, never actually take place even in very large corpora of training
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text, it is noticeable that the simple backoff character trigram (Perplexity, PP=96.03) has a higher
perplexity than the simple backoff character bigram (PP=63.13). It suggests that there is insufficient
training data for trigram language model. Hence, most of the subsequence experiments are worked

with bigram language model.

It is aso noticeable that smoothing technique reduces the perplexity of fair language models, but it
increases the perplexity of cheating language models. It suggests that the smoothing technique

would not be usefully if the target language model aready has good statistic information.

Furthurmore, it is found that OOV rate of character language model is only 0.62%, while it is
4.15% (shown in Table 26) for word language model. For a recognizer without using statistical
language model, each of the 2098 character is equally probable to follow any word. As described in
section 4.2, its perplexity is 2098. By using the ssmple backoff language model, the perplexity is

reduced from 2098 to 63.13, i.e. 97% improvement.

Character Level Test on Perplexity/ oov
Language Model Entropy OO0V (%)
(Character)
Fair Bigram Testing transcription 63.13/ 298 hits
(no smoothing) Hit on 2-gram:50,663 (86.34%) 5.98 bits 0.62%
Hit on 1-gram:8,013 (13.66%)
Fair Trigram Testing transcription 96.03 / 298 hits
(no smoothing) Hit on 3-gram: 34720(59.17%) 6.59 bits 0.62%
Hit on 2-gram: 15943(27.17%)
Hit on 1-gram: 8013(13.66%)
Fair Bigram Testing transcription 4410/ 298 hits
(GT smoothing) Hit on 2-gram:50,663 (86.34%) 5.47 bits 0.62%
Hit on 1-gram:8,013 (13.66%)
Fair Trigram Testing transcription 43.06 / 298 hits
(GT smoothing) Hit on 3-gram: 34720(59.17%) 5.43 bits 0.62%
Hit on 2-gram: 15943(27.17%)
Hit on 1-gram: 8013(13.66%)
Cheating Bigram Testing transcription 21.70/ 0 hits
(GT smoothing) 4.48 bits 0%
Cheating Trigram Testing transcription 11.20/ 0 hits
(GT smoothing) 3.48 bits 0%
Cheating Bigram Testing transcription 17.19/ 0 hits
(no smoothing) 4.10 bits 0%
Cheating Trigram Testing transcription 5.90/ 0 hits
(no smoothing) 2.56 bits 0%

Table 24: Character level Language Model for CALL HOME spoken speech transcription
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Figure 12: Character Perplexity Character level language model
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4.6 Word Level Language Model

The advantage of using word language model is that it provides a better description of the language.
However, it suffers from large out-of-vocabulary (OOV) rate. There were 845 OOV words in the
test set. Some of them with higher OOV count are listed in Table 25. Most of these words occurred
only once. The total number of out-of-vocabulary word token is 1441, which represents 4.15% of
the total number of words in the test set. We notice that most of the OOV for the character level
language model are rarely used character, while the OOV for the word level language contains

many frequently used word, such as iz iz, i 1L .

Count 18 16| 13 11| 10 9 9 9 9 8
OOV | HM| x| wuifll ArZ] /5| 000 W9RS| BRI RIS
Count 7 7 7 7 7 7 7 7 6
OOV | M| Fefb] fte]  f] #04] #ofd] PN ) ] 12

Table 25: List of top frequency out-of-vocabulary words

Moreover, Chinese has no clearly defined word boundaries. Thus, some forms of word
segmentation procedures must be performed before the word language model can be applied. In
addition, the Chinese lexicon contains more than 40,000 words, and therefore there are potentially

40,000" n-grams, making sparse data a challenging problem.

An perplexity and OOV analysis, which is similar to the analysis of character language model (in
section 4.5), is done for word language models. Table 26 and Figure 13 exhibit the perplexity of the
word language models. Similar to character language model, the improvement in perplexity is very
substantial for word level language model. The word perplexity reduced from 5776 to 175.13,
which is aso 97% improvement. Moreover, the simple backoff word trigram (PP=313) has higher
perplexity than the simple backoff word bigram (PP=175). By comparing to the Table 11 and Table
12, it isfound that both character and word language gives similar effects when similar changes are
applied. Such as changing from bigram to trigram or applying smoothing technique on unsmoothed

language models.
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Word Level Test on Perplexity/ oov
Language Model Entropy 00V (%)
(WORD)
Fair Bigram Testing transcription 17513/ 1441 hits
(no smoothing) Hit on 2-gram:32615 (74.10%) 7.45 bits 4.15%
Hit on 1-gram:11399 (25.90%)
Fair Trigram Testing transcription 313.23/ 1441 hits
(no smoothing) Hit on 3-gram:18,654 (42.38%) 8.29 bits 4.15%
Hit on 2-gram:13,961 (31.72%)
Hit on 1-gram:11,399 (25.90%)
Fair Bigram Testing transcription 90.88 / 1441 hits
(GT smoothing) Hit on 2-gram:32615 (74.10%) 6.51 bits 4.15%
Hit on 1-gram:11399 (25.90%)
Fair Trigram Testing transcription 94.51/ 1441 hits
(GT smoothing) Hit on 3-gram:18,654 (42.38%) 6.56 bits 4.15%
Hit on 2-gram:13,961 (31.72%)
Hit on 1-gram:11,399 (25.90%)
Cheating Bigram Testing transcription 2991/ 0 hits
(GT smoothing) 4.90 bits 0%
Cheating Trigram Testing transcription 1547/ 0 hits
(GT smoothing) 3.95 bits 0%
Cheating Bigram Testing transcription 18.35/ 0 hits
(no smoothing) 4.20 bits 0%
Cheating Trigram Testing transcription 4.96 / 0 hits
(linear smoothing) 2.31 bits 0%

Table 26: Word Level Language Model for Call Home spoken speech transcription
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Fair Bigram Fair Trigram Fair Bigram Fair Trigram Cheating Cheating Cheating
(smoothed) (smoothed) Bigram Trigram Trigram
(smoothed) (smoothed) (smoothed)
Language Model

Figure 13: Word Perplexity of Word level Language Model
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4.7 Comparison of Character level and Word level Language Model

The perplexities of language models presented in Table 24 and Table 26 are on the two different
bases. Perplexity in the Table 24 is based on aword-level analysis, whereas perplexity in Table 26
is based on a character-level analysis. In order to compare information on the two bases, we define
PP. =4/PP, .

where PF, is the average word perplexity, PF. is the average character perplexity, and L is the

average length of a word .

Let the entropy of a sentence is E. Sentence entropy is equal to the sum of character or word

entropy, ie. E = ZEc = ZEW. Since the average word length is L character per word, the L times

the average character entropy (Ec) would equal to average word entropy (Ew). Hence,

Ew = L- Ec. By trandating the entropy formulato perplexity formula, we provide PP. = /PP .

After normalizing the perplexities to the same basis, we found that word language model has a
better performance on perplexity, while character language model has a better performance on

OOV rate.

Hence, we need to adjust OOV rate of both language models, such that the two language models are
comparable. The easiest method to adjust the OOV rate is to change the vocabulary size. Table 27
and Table 28 describe the effect of vocabulary size on the two language models. Figure 14 and
Figure 15 present those data in graphical form. For both language model, we found that increasing
the vocabulary size reduces the OOV rate. However, increasing the vocabulary size also increase
the perplexity of the language model, which is not desirable. In other words, increasing the
vocabulary size of a speech recognition system has two conflicting effects. 1) reduces the OOV
rate, which reduces OOV related recognition errors;, 2) the added lexical entries increase the
average acoustic confusability of words, which results in recognition errors. Hence, compromise

must be made on certain vocabulary size, such that the problems of large OOV rate and high
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perplexity are minimized. In this thesis, extensive recognition experiments have not been done to

found the optimal vocabulary size. Nevertheless, OOV rate and perplexity of language models with

different vocabulary sizes are compared.

Vocab. Size PP* Entropy PP (010)% (016)% 2-gram 1-gram
(Word) (character) (%) hit hit
2100 193.09 5.46 bits 44.10 298 0.62% 86.34% 13.66%
2000 192.06 5.46 bits 43.93 333 0.69% 86.58% 13.42%
1750 187.16 5.43 bits 43.12 464 0.96% 86.93% 13.07%
1500 180.67 5.39 bits 42.04 668 1.39% 87.44% 12.56%
1250 172.95 5.35 bits 40.74 946 1.96% 88.10% 11.90%
1000 163.24 5.29 bits 39.08 1400 2.90% 89.08% 10.92%
750 151.40 5.21 bits 37.02 2135 4.43% 90.40% 9.60%
500 131.22 5.06 bits 33.40 3759 7.80% 92.64% 7.36%
250 104.69 4.83 bits 28.39 7828 16.23% 95.17% 4.83%
Table 27: Effect of vocabulary size on Character Level Language Model
Vocab. PP Entropy PP* ooV O0V% 2-gram 1-gram
Size (Word) (character) hit hit
5774 90.88 6.51 bits 25.64 1441 4.15% 74.10% 25.90%
5500 89.88 6.49 bits 25.44 1481 4.27% 76.13% 23.87%
5000 88.47 6.47 bits 25.15 1586 4.57% 76.76% 23.24%
4500 87.11 6.44 bits 24.87 1665 4.80% 77.20% 22.80%
4000 85.40 6.42 bits 24.52 1772 5.11% 77.61% 22.39%
3500 82.66 6.37 bits 23.95 1947 5.61% 78.24% 21.76%
3000 80.52 6.33 bits 23.50 2102 6.06% 78.86% 21.14%
2500 76.82 6.26 bits 22.72 2382 6.86% 79.86% 20.14%
2000 73.02 6.19 bits 21.91 2702 7.79% 80.95% 19.05%
1500 67.46 6.08 bits 20.69 3239 9.33% 82.61% 17.39%
1000 60.15 5.91 bits 19.06 4049 11.67% 84.99% 15.01%
500 46.48 5.54 bits 15.83 6141 17.70% 89.83% 10.17%

Table 28: Effect of vocabulary size on Word Level Language Model
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Figure 16 compares the word perplexity of the word-level and character-level language models, as
function of the OOV. As usual, we notice that increasing the vocabulary size aways reduces the
OOV rate. We aso found that the word-level bigram consistently results in lower word perplexity
than the character-level bigram, suggesting that the word-level language model maybe more

appropriate for speech recognition.
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Figure 16: Perplexity vs. OOV % for Word Language Model & Character Language Model
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4.8 Interpolated Language Model

We are estimating a language model for the specific domain task, Call Home speech recognition,
where the amount of training datais limited. Thereis actually alarge amount of data available from
another domain, such as newspaper. A language model trained on the larger corpus may be more
robust, but will not match the target domain. A simple solution, which take advantages of the large
corpus language model and the specific domain language model, is to interpolate the parameters of
both language models. In this experiment, we make use of another text corpus from LDC, which is

HUBS5 corpus. A HUB5 language model is generated base on the corpus.

4.8.1 Methodology

The probability of agiven sentence assigned by the interpolated model is defined as a weighted sum

of the probability assigned by the original models:

P(w| ILM) = (1 — &) P(w| CHLM) + aP(w| HBLM)

A=)y O, Iw, _+alyp 500, [w, )
(=a)Peyy 00w, D+apyp (6, DPyp O6)
(=)Bryy 00, PPeyy (O8)+aPyp 500, 1w, )

A=)y (O, Doy (0% aByp (0, PPy O8)

P(w|ILM) =

where o is the interpolation ratio,  is the backoff weight, and CH-LM stand for Call Home LM,
HB-LM stand for HUBS LM.

The weight o isfound by using the estimation maximization (EM) agorithm [43], which minimizes
the perplexity of the interpolated model over the training data. The Interpolated Language Model
Bigram is then generated through the formula above. There are four possible cases, i.e. both CH-
LM and HB-LM has the bigram, only CH-LM has the bigram, only HB-LM has the bigram, both

CH-LM and HB-LM do not have the bigram.
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4.8.2 Experiment Results
Both perplexity and OOV rate can be improved by interpolating the Call Home language model

with HUB5 conversation transcription. By using the Estimation Maximization (EM) agorithm, it is

found that the perplexity is optimized when o=0.2.

Figure 17 shows the change of word perplexity at different interpolation ratio for simple backoff

language models. There is 6.3% improvement in perplexity.

—-— Word Perplexity

Word Perplexity
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Figure 17: Word Perplexity of (Call Home & HUBD5) Interpolated Language Model

The improvement of perplexity and OOV rate is less significant in the smoothed language model
but it is still noticeable. As shown in Table 29, our interpol ation methods have successfully reduced

the OQV by 6.8%. In addition, the perplexity improves from 90.88 to 88.90.

Language Model Perplexity (0]6)Y
Smoothed FWB 90.88 1441
Interpolated and Smoothed FWB 88.90 1343

Table 29: Perplexity and OOV reduction of Interpolated Language Model
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4.9 Chapter Conclusion

In this chapter, we demonstrate a method for implementing language model for a large vocabulary
speech recognizer. We compare the performance of language models by an objective measure,
perplexity. The simple backoff character bigram reduces the perplexity from 1468 to 63.13,
whereas the simple backoff word bigram reduces the perplexity from 5776 to 175.3. In other words,
both bigram language models reduce the perplexity by 97%. This shows that language model
provide powerful constraints to a recognizer. By comparing the language models at wide range of
OOV and at same perplexity unit, it shows that word level language model always gives a lower
perplexity. It suggests that word level language model is more appropriate for speech recognition.
We also demonstrate an interpolation method, which further reduce the perplexity of language
model. By using the interpolated language model, we achieved 6.8% reduction in OOV and 2.17%
reduction in perplexity. Furthermore, some perplexity results for smoothed language mode are also

presented, and detailed discussion on smoothing techniques can be found in Chapter 5.
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Chapter 5 N-gram Smoothing

5.1 Introduction

The problems discussed in the previous chapter are related to the estimation of P(W|Wn.2,Wh.1) for
trigram or P(wp|wh.1) for bigram based on the relative frequency f(Wn|Wn-2,Wn.1) and f(Wn|Wn.1).
Although backoff technique helps to solve the zero probability problem, the backoff model is
incapable to estimate the actual probability of unseen events well. We have found that there is a
severe sparse data problem for both language models. For example in language modeling for a
6000-word vocabulary, there are 36 million possible word bigram. Nevertheless, for a specific task,
the training corpus rarely has more than 2 million words. A direct approach to improve the language
model is to derive it from a much larger training corpus. However, this approach introduces other
problems. First, we may not able to get a sufficiently large corpus (e.g. hundred million words).
Second, the resulting language model would still be confounded to a specific domain, from which it
was extracted. They are the two major motivations for researchers to work in a better smoothing

method.

To overcome the drawbacks of the conventional maximum likelihood estimation and the
incapability of the ssmple backoff n-gram, a number of different approaches have been proposed.
Such as floor method [44], discounting technique related to the Good-Turing formula [45][46],
Witten-Bell discounting [47], linear and absolute discounting [48]. However detailed comparison

for the effectiveness of those smoothing methods on Chinese text has not been done.

In this chapter, we describe our work on the smoothing of n-gram models. Four smoothing
techniques, which significantly improve the existing trigram models, are explained in detail. We
aso present and extensive empirical comparison of the smoothing techniques, which was

previously lacking in the literature.
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5.2 Motivation

In this chapter, we describe and compare different smoothing techniques. Smoothing is one of the
most important technique to solve the zero probability problem of language models. Many
smoothing techniques are proposed by researchers. The motivation of performing series of
experiments in this chapter is to identify the most appropriate smoothing method for Call Home
Mandarin speech, and perhaps the result can be extended to other Mandarin telephone speech. Four
faovous smoothing technique, which is developed for western language, are borrowed in the
experiments. They are Witten-Bell smoothing, Good-Turing smoothing, linear and absolute

smoothing.
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5.3 Mathematical Representation

Any language model can be seen as a probability generator. It predicts the probability of next word
base on the statistics in the training data and the preceding words of testing data [49]. However, the
training data is always limited, so that it fails to observe some typical event classes. Let us denote
the event class under consideration by k£ =1.2,...,K . Their sample count is then denoted as c,
which means the number of event k observed in the training text. The corresponding probability for
event k is then denoted as p(k). In other words, we then have C independent trials with K possible

outcomes, where the sample counts Ny denote the number of trial resulting in outcome k.

The maximum likelihood estimation for p(k) is p(k) = %" However, most of the events k are never

seen in the training text because there are many more event classes K than the number of observed
event C. Thus most of the event classes has zero outcoming probability, due to Cx = 0. The

problem of sparseness of data can be captured by the following equation: ¢, <C << ¢, < K.

Since all event classes k with the same sample count ¢ must be assigned with the same probability
and are therefore grouped into the same equivalence class. Therefore, we define n; as the number of
class numbers. The value n; is then referred as count frequency because it is the number of classes
that was observed exactly r times. Except add-one smoothing, each of the smoothing technique
described in throughout this chapter makes use of the value n, Table 30 summarizes the frequently

used notation in this chapter.
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Symbol

Meaning

\4

Vocabulary Size

c(Wn-1, Wy) Bigram count for wy; followed by wy,

c(Wn-1) Count for unigram wy,.
Count for bigram with prefix word wy.;

c, Original counts for n-gram i

c * Discounted counts for n-gram i

; Discount ratio = ¢, */¢,

g, Different between original count and discounted count:
8 =¢ * —C;

K Total number of n-gram event

C Total count of n-gram event
For unigram N =V ; for bigram N = related unigram count

n, Number of n-gram that occur exactly ¢ times

R Number of observed event

R(w) Number of observed bigram with prefix w

Z Number of unseen event

Z(w) Number of unseen bigram with prefix w

Table 30: Frequently used notation for smoothing techniques
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5.4 Methodology: Smoothing techniques

Each of the mentioned smoothing methods assign a non-zero probability to the unseen events by
discounting each count c(k) > 0 , then redistributing the discounted probability mass over al ng
unseen n-gram. The first one to be introduced is the add-one smoothing method. Add-one
smoothing is also called floor-smoothing method, which give each n-gram afloor count 1. Add-one
smoothing is very easy to implement, but it is a poor method of smoothing. The weakness of add-
oneisthat it isworse at predicting the unseen n-gram probabilities. Gale and Church summarize a
number of problems with the add-one method [50]. The next mentioned smoothing method is
Witten-Bell smoothing method. It is only slightly more complex than add-one smoothing but gives
much better results. The main idea behind the Witten-Bell smoothing is that "Use the count of
things you have seen to help estimating the count of things you haven't seen." This idea gives a
simple but useful estimation for unseen events. A more complex smoothing method cal Good-
Turing smoothing method is aso introduced. The basic idea of Good-Turing smoothing is to re-
estimate the low or zero count n-gram by looking at the number of n-grams with a higher count.
The last two smoothing methods are absolute and linear smoothing. They are sharing the same idea
that each original count is subtracted by certain value. In the case of absolute discount, the
subtracting value is an 'absolute’ constant. Therefore, we have "absolute discount’ as her name.
Simultaneously, the subtracting value of linear discount is 'linear’ to the origina count. Hence, we
have the name ’linear discount’. To give arough estimation of the complexity of each method, Table

31 manifests the number of lines of program code for each of the implementation.

Smoothing method Lines of C coding
Add-one 40
Witten-Bell 250
Good Turing 300
Absolute 150
Linear 150

Table 31: Implementation complexity of different smoothing methods
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5.4.1 Add-one Smoothing

A simple way to perform smoothing is add-one smoothing. It is by just taking the matrix of n-gram
counts and adding one to al the counts. Although this algorithm rarely used in smoothing of
language model, it introduces important concept that would be used in other smoothing methods.

An example of add-one smoothing is shown below:

Add-one smoothed bigram probability are computed by normalizing each row of modified counts

by recal culating unigram count:

c(w,,w,)+1

ﬁ(wn | Wn—l) = )+V

c(w

n—1

where c(Wn.1, Wy) IS the bigram count for wy,.; followed by w,, and c(wy.1) is the unigram count for

word Wp.1.

The add-one smoothed language model can also be described in terms of discount ratio (dc). It isthe

ratio of discounted counts (c*) to the original counts (c):

*
d, = < where c*(w,_,,w,)=(c(w,_,,w,)+ 1)M
c cw,_)+V

Table 19 shows the add-one smoothed counts for the bigram mentioned in chapter 4. Table 21
shows the log-probabilities of add-one smoothed bigram. Y ou may notice that the simply add-one
smoothed solves the zero probability problem in original bigram. For example, the origina
language model would give zero probability to a string " [JEE 41 =", since the P(4t! | 1 [-J%) equal

to zero. It would introduce recognition error if the string were really appeared in the testing

sentence. With add-one smooth technique, P(I | { [/%) is now equal to 3.35E-04 instead of zero.
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Wit \ Wy Ed A FLE i = T {1

E577 260 127 120 7 11 7 5

Al 22 3 2 8 7 6 2

HSHE 51 1 13 14 1 31 5

fth 12 7 6 74 11 18 8

= 1 2 1 1 5 51 4

T 101 1 3 45 7 2 8

£ [F 8 1 2 6 1 13 18

Table 32: Add-one smoothed bigram counts for 7 words in Call Home Corpus

Wyt \ Wy Ed A HIH i = T P
559 -1.4603| -1.7715| -1.7961| -3.0302| -2.8339| -3.0302| -3.1763
A -2.1838| -3.0491| -3.2252| -2.6231| -2.6811| -2.7481| -3.2252
HI3E -1.8374| -3.5449| -2.4310, -2.3988| -3.5449| -2.0536| -2.8460
1t -2.6353| -2.8694| -2.9363| -1.8453| -2.6731| -2.4592| -2.8114
= -3.5075| -3.2064| -3.5075] -3.5075| -2.8085| -1.7999| -2.9054
T -1.7657| -3.7700{ -3.2929| -2.1168| -2.9249| -3.4690| -2.8670
A -1 -2.6786| -3.5817| -3.2807| -2.8036| -3.5817| -2.4678| -2.3264

Table 33: Log-probabilities of add-one smoothed bigram for 7 word in Call Home Corpus

The effect of add-one smoothing can be manifested by reconstructing the count matrix from the

probability in Table 34. Each probability in Table 34 is multiplied by its original unigram count, so

that the number of smoothed unigram count is then preserved as original. Note that add-one

smoothing has made a very big change to the counts: c(¥% 4fl) changed from 259 to 158.27. The

effect can also be seen in the log-probability table: P(4fl | k) decrease from -1.5058 (Table 21) in

the un-smoothed bigram to -1.7715 in the add-one smoothed bigram. The big change in the counts

and probabilitiesis due to large portion of probability massis moved to the unseen events.

Wit \ Wy 54 Al FHLE ftiz = T e
E57 158.27 77.31 73.05 4.26 6.70 4.26 3.04
A 2.77 0.38 0.25 1.01 0.88 0.76 0.25
HIHE 8.30 0.16 2.12 2.28 0.16 5.05 0.81
1t 5.20 3.03 2.60 32.07 4.77 7.80 3.47
i 0.09 0.17 0.09 0.09 0.44 4.45 0.35
T 50.65 0.50 1.50 22.56 3.51 1.00 4.01
1 |- 1.85 0.23 0.46 1.38 0.23 3.00 4.15

Table 34: Add-one smoothed bigram counts (reconstructed) for 7 wordsin Call Home Corpus
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5.4.2 Witten-Bell Discounting

Witten-Bell discounting [47] is based on a Poisson process formulation for the appearance of new
tokens, which was originally introduced to estimate the number of unseen biological species [46].

Later it was applied to estimate the rate of appearance of new words in natural language text [51].

Witten-Bell can be viewed as a generalized Laplace’s of succession, which only deal with binary
event. Supposing that there are k of event types instead of the two. Out of complete set of C
observations, it supposes there are ¢; of type 1, ¢, of type 2 and so on. These random variables are

related by: ¢, +c, +...+¢, =C.

Witten-Bell estimates the total probability mass of all the unseen types with the number of observed

types divided by the number of tokens C plus observed types R:

Plnext token will be of the i type] =———
C+R

Pnext event will be novel] =—*—
C+R

We can apply the Witten-Bell formula to our smoothing problem. For example, the probability of
an unseen bigram wi.1Wn2 is calculated by using the probability of seeing a new bigram starting
with wy.1. Note that the number of seen bigram types R and the number of bigram token C are

conditioned by the previous word w.1.

_ R(w,_,)
Zw, Dlew, )+ R(w, )]

prwlw)

where Z is the total number of bigram with zero count. Each of the formerly zero bigram now gets
its equal share of redistributed probability mass. For the non-zero count bigram, we then discount

them through the same manner:
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. B C(Wl-,|w,')
pEw w_)= c(w_)+Rw_))

To calculate the Witten-Bell discount for 7 word Call Home experiments, we need the number of
bigram R(wn.1) which has been seen in the training text. The vaues for the selected words in the

Call Home corpus are listed in Table 35.

Bigram with Prefix P Al HhE it
# of Bigram 617 184 122 505

T 1
465 312

S|

Table 35: The number of seen bigram for 7 words in Call Home Corpus
Since the vocabulary size is V, V=5776, and there are exactly V potential bigrams which can begin

with a given word w, the number of unseen bigram is Z(w) =V - R(w).

Bigram with Prefix B5% A HI3E i = T £ -t

—

# of Bigram 5159 5592 5654 5271 5681 5311 5464

Table 36: The number of unseen bigram for 7 wordsin Call Home Corpus

Table 37 shows the re-estimated probability of Witten Bell smoothing method. For comparison

reason, the bigram count of Witten Bell smoothing method is re-constructed on Table 38.

W1 \Wa E2 A4 HTH tt H 7 %
P -1.301 -1.614 -1.639 -2.937 -2.715 -2.937 -3.113
Al -1.461 -2.482 -2.783 -1.938 -2.005 -2.084 -2.783
HE -1.142 -4.507 -1.762 -1.727 -4.507 -1.364 -2.239
fth -2.398 -2.661 -2.741 -1.576 -2.439 -2.209 -2.594
= -4.352 -2.575 -4.352 -4.352 -1.973 -0.876 -2.098
T -1.534 -4.591 -3.233 -1.890 -2.756 -3.534 -2.689
- -2.232 -4.320 -3.077 -2.378 -4.320 -1.997 -1.846

Table 37: Witten Bell smoothed |og-probabilities for 7 word in Call Home Corpus

Wat \ Wi 54 Al LA ftiz = T { [

% 228.180|] 111.006] 104.839 5.286 8.810 5.286 3.524
Al 14.634 1.394 0.697 4.878 4.181 3.484 0.697
HIE 41.198 0.018 9.887 10.711 0.018 24.719 3.296
1t 8.981 4.899 4.082 59.599 8.164 13.879 5.715
= 0.012 0.747 0.012 0.012 2.989 37.367 2.242
T 86.396 0.076 1.728 38.014 5.184 0.864 6.048
- 5.169 0.042 0.738 3.692 0.042 8.862 12.554

Table 38: Witten Bell smoothed bigram count for 7 words in Call Home Corpus
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5.4.3 Good Turing Discounting
The Good-Turing (GT) discount method is suggested by Turing and developed by Good [53]. For

certain n-gram occurs ¢ times, Good-Turing re-estimated it to ¢* with the formula:

n,
c*=(c+1)—<-
n

C

N is the number of n-gram that occur exactly c times. Hence, Ny is the number of bigrams with
zero count, and N is the number of bigram, which occurred only once. For example, the modified
count for unseen bigrams is then estimated by dividing the number of singleton by the number of
unseen bigrams. Table 39 gives an example of the use of Good-Turing discount to the bigrams for
the Call Home task. The first column is the original count c. The second column is the number of
bigram which has the related count c. Thus, 2677 bigrams has a count of 3. The third column shows

the Katz Good-Turing smoothed count.

c n, c*(GT)

0 33308413 0.0011686
1 38923 0.3141021
2 6925 1.1052781
3 2677 1.9248795
4 1332 2.8544832
5 779 4.1867221
6 550 4.8287431
7 385 6.0956292

Table 39: Good Turing smoothed bigram counts for words in Call Home Corpus

Since we assume the large bigram/trigram counts are reliable, the discounted c* is not used for all
counts ¢ in our experiment. We adopt the Katz [45] modified Good-Turing model for our

experiments, in which only counts less than eight (1 < ¢ <7) are modified.

Since the total number of smoothed count must not be changed after smoothing, a remedied

equation is developed to preserve the total count.
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Since the counts given to unseen n-gram are: ¢, = n, * (0 + 1)ﬂ =n,
ny

k
and in order to preserve the total count, we must have Z n (c, —c,*)=n,
1

The unique solution to the above equation is:

(c+D)n 3 (k+Dn,,

c n n

e+l

Table 40 shows the smoothed count of 7 words in Call Home Corpus by Katz Good-Turing method.

Thelog probability is shown in Table 41.

Wit \ Wi ER4 Al HIH it = i {1
B39 259.000{ 126.000{ 119.000 4.829 10.000 4.829|  2.8545
A 21.000 1.105 0.314 6.096 4.829 4.187| 0.3141
HLE 50.000 0.001 12.000 13.000 0.001 30.000] 2.8545
fth 11.000 4.829 4.187|  73.000 10.000 17.000]  6.0956
= 0.001 0.314 0.001 0.001 2.854]  50.000 1.9249
T 100.000 0.001 1.105|  44.000 4.829 0.314| 6.0956
A {-pE 6.096 0.001 0.314 4.187 0.001 12.000| 17.0000
Table 40: Good Turing smoothed bigram counts for 7 words in Call Home Corpus
Wit \ Wi ER4 Al HIH it = i {1
B39 -1.246 -1.559 -1.584 -2.976 -2.660 -2.976 -3.204
A -1.304 -2.583 -3.129 -1.841 -1.943 -2.004 -3.129
HLE -1.058 -5.689 -1.677 -1.643 -5.689 -1.280 -2.301
fth -2.310 -2.668 -2.730 -1.488 -2.351 -2.121 -2.566
= -5.381 -2.952 -5.381 -5.381 -1.993 -0.750 -2.164
T -1.470 -6.403 -3.427 -1.827 -2.786 -3.973 -2.685
A {-pE -2.160 -5.877 -3.448 -2.323 -5.877 -1.866 -1.715

Table 41: Good Turing smoothed Log Probability for 7 wordsin Call Home Corpus
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5.4.4 Absolute and Linear Discounting

The probability Pr for absolute discounting and linear discount [48][56] can then be written in a

genera forms:

1 : 1 1 .
f)r :E(cr _gr) If Cr>0 [)' :E'EZ,»Onsg“' If Cr :O

where g, is defined as the differences between the original count ¢ and the smoothed count c*

For absolute discount, g, =b where b is a constant. Intuitively it is equivalent to sample
subtracting the constant b from each count. For linear discounting, g, = ac, where o is a constant.
In other word, the original count is subtracted by a value, which is in proportion to its original

count. Unlike the Good-Turing method, the discounting function is applied to all non-zero count.

Absolute discounting define the probability as,

p-S=b iteso p=bB ifc=0
C cz

where b is a constant with value: » = i )
n, +2n,

Linear discount is then defining the probability as,

P=(-a)= if ¢, >0 P =2 ifg=0
C Z

»

where a is a constant with value: o = % )

Table 42 and Table 43 show the re-estimated probability by absolute and linear smoothing methods.
Although the absolute and linear smoothing are relatively easy to be calculated, their perplexity
performance in our Call Home experiments are as effective as the Good-Turing and Witten Bell

smoothing methods.
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38923

In our Call Home task, b value for bigram is. b =
38923 +2-6925

=0.73756, while « vaue for

bigramis. a = 38923 _ 0.23307
167002
Wit \ Wi H Al K1 th = i {1
559 258.262| 125.262| 118.262 5.262 9.262 5.262 3.262
A 20.262 1.262 0.262 6.262 5.262 4.262 0.262
HI3A 49.262 0.016 11.262 12.262 0.016]  29.262 3.262
1t 10.262 5.262 4262|  72.262 9.262 16.262 6.262
) 0.012 0.262 0.012 0.012 3.262| 49.262 2.262
T 99.262 0.065 1.262 43.262 5.262 0.262 6.262
- 6.262 0.042 0.262 4.262 0.042 11.262 16.262
Table 42: Absolute smoothed bigram counts for 7 word in Call Home Corpus
Wit \ Wi ER4 Al HIHE it = i {1
557 198.635 96.633 91.265 4.602 7.669 4.602 3.068
A 16.106 1.534 0.767 5.369 4.602 3.835 0.767
HI3A 38.347 0.077 9.203 9.970 0.077|  23.008 3.068
1t 8.436 4.602 3.835| 55.986 7.669 13.038 5.369
) 0.038 0.767 0.038 0.038 3.068|  38.347 2.301
T 76.693 0.426 1.534] 33.745 4.602 0.767 5.369
£ ]-Jig 5.369 0.124 0.767 3.835 0.124 9.203 13.038

Table 43: Linear smoothed Bigram counts for 7 word in Call Home Corpus

The different between two discounting models is that absolute discount affects the high counts
much less than low counts, while linear discounting scales down all counts by the discount factor

d =(1-a).
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5.5 Comparison of Different Discount Methods

We have explored the effectiveness of the four different discount methods to overcome the sparse
data problem. These discount methods are: linear, Witten Bell, absolute, and Good Turing. As
Figure 18 shows, compare to the simple backoff method, all the four smoothing methods give more
than 39% reduction in perplexity for the Call Home task. Good-Turing smoothing is the most
effective one among those methods. Specifically, the Good-Turing smoothed word bigram and
character bigram perplexities are 90.88 and 193.09 respectively. These results compare favorably
to the simple backoff bigram perplexities of 175.13 and 317.93. As shown in Table 44, it is quite
amazing that the simple absolute discount method gives the perplexity value 91.97, which is better

than the more well-known and more sophisticated Witten-Bell algorithm.

Discount Method | Word-LM Perplexity Character-LM Perplexity

Simple backoff 175.13 63.13'%7 =317.93
Good Turing 90.88 44.10"7 =193.09
Absolute 91.97 44.25'%7 =194 .01
Witten Bell 93.88 44.47"% =195.35
Linear 106.00 48.22"=218.62

Table 44: Comparison of different Discounting Methods for the Call Home task
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Figure 18: Comparison of different Discounting Methods for the Call Home task
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5.6 Continuous Word Speech Recognizer

To examine the contribution of the proposed smoothing methods to the recognition accuracy, we
have incorporated our language models into our continuous speech recognizer. Having reviewed
some typical art-of-the-state speech recognition system, the chosen system is designed using
Hidden Markov Models. However, there are only a few systems with similar parameters for

comparison, such as IBM Call Home experiments.

5.6.1 Experiment Setup

All recognizers in the experiments used 408 base syllable as speech units. The architectures of the
recognizers in all experiment are the same: they all use the hidden Markov Mode (HMM)
technique for acoustic modeling. All 408 HMMs has 8-states and 8 mixtures. The HMM states are
arranged in aleft-to-right, no-state-skipping topology. The segmental k-means algorithm is used for
training and the Viterbi algorithm is used for decoding. 13 MFCC, 13 AMFCC, Energy and an
AEnergy are used as feature vectors to the recognizer. Since our main theme is to compare the

language models, no context-depend models are made to improve the recognition result.
Details of the different Language Models

1. No Language Model (No-LM): All of 408 base syllable are output candidate, with grammar

network [sil] <Base_syllabe> [sil].

2. Fair Character Bigram (FCB-LM), Fair Word Bigram (FWB-LM): Language model is formed

base on the Call Home Training Transcription (170K words)

3. GT Smoothed Fair Word Bigram (SFWB-LM): FWB-LM with smoothing techniques. Please

refer to section 5.3.3 for the detail s the implementation.
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4. Interpolated & GT Smoothed Fair Word Bigram (ISFWB-LM): Language model is formed by
interpolating fair Call Home language Model and Hub5 language model (250K Words). Please

refer to section 4.8 for details of the implementation.

5. Cheating Word Bigram (CWB-LM): Language model form base on Call Home testing

transcription (48K Words).

5.6.2 Experiment Results:

All the five experiment results are shown in Table 45 and Figure 19. The percent accuracy is
calculated by taking into account all of the deleted, inserted, and substituted words as given in the

following equation:

sub.err + del.err + ins.err

error =
total words

% Accuracy = (1—%error)*100

Thus, it is possible to have an error rate greater than 100% or negative accuracy. While these error
rates are much higher than for tasks involving read speech, they are comparable to the initial results

obtained from the IBM research center.

By using the smple word bigram language model, we have the syllable accuracy increased from
20.17% to 27.24%, which is 35% improvement compared with system without language model. In
addition, the Good Turing smoothed word bigram produces the syllable accuracy 31.46%. It is a
significant improvement when compared with the simple backoff character bigram. Moreover, the
interpolated language model can further push the accuracy up to 32.02%, which is 0.8%
improvement over the smoothed one. Furthermore, we notice that if the perplexity is lowered to

18.35 (by cheating method), we can have 38.28% syllable accuracy.
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These results are not as good as current state-of-the-art speech recognizer system for a couple of
reasons. First, instead of using the context-dependent initial-final model, we use the isolated base
syllable acoustic models, which may not be well trained in data insufficient situation. Second, we

do not embed any tonal information in our speech recognizer, which is assumed able to settle some

recognition ambiguity.

Language Model | Word Perplexity Syllable Character

Accuracy (%) Accuracy (%)
No LM N/A 20.17% N/A
FCB-LM N/A 27.24% 23.25%
FWB 175.13 29.37% 25.24%
SFWB-LM 90.88 31.75% 27.94%
ISFWB-LM 88.90 32.02% 28.13%
CWB-LM 18.35 38.28% 36.09%

Table 45: Recognition results for different language models for the Call Home task
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Figure 19: Recognition results for different language models for the Call Home task
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5.7 Chapter Conclusion

In this chapter, we study the effect of various smoothing techniques in n-gram language models of
Chinese. Detailed algorithm and its underlying inspiration are also presented. The Good Turing
smoothing method give the best perplexity result, which is 90.88 for word language model.
Moreover, the Good Turing smoothed bigram language model gives 31.46% syllable accuracy for
the Call Home recognition task. On the other hand, the absolute and linear smoothing methods are
easier to implement. It may then useful for simple application. Moreover, we can achieve 38.28%

syllabi accuracy, if the perplexity islowered to 18.35.

All the language models in this thesis are trained by full set of the Call Home Mandarin training
transcription. However, there are only 127 thousand words in the training data and we have 33
million possible bigrams. We expect that the result can be further improved if a larger training

corpusisavailable.
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Chapter 6 Summary and Conclusions
In thisfinal chapter, | summarize the results from the previous chapters. Next, | will describe some
possihilities for improvement for the system and its components. Finally, | will suggest how the

work described in the thesis might be forward.

6.1 Summary

The am of this thesis is to study lexical access and language modeling in Mandarin speech
recognition. Lexical access attempts to provide a speech recognizer a small subset of potential word
from a large vocabulary, so that the searching speed for the recognizer can be dramatically
increased. While statistic language model tries to capture and characterize the syntax constraints in

alanguage. Proper language modeling is crucial to the performance of a speech recognition system.

Fundamental theory for the works in the thesis is described in chapter 2. The characteristic for
Chinese is highlighted, which may be useful for western readers. Also the background theories for
the components of our experimental recognizer is also described, such as acoustic modeling,

recognizer search algorithm, statistical language model and smoothing techniques.

Chapter 3 presents our analysis on the lexical access by broad class features. The Mandarin broad
class analysis is compared with English and Cantonese. It is found that the Mandarin broad class
representation can uniquely specific 19% words in a 44404-word lexicon, and the expected cohort
sizeis only 62.4. Thus, a subsequence recognizer only need to search 64.2 words instead of 44404
words. It is a'so marked that the percentage of uniquely specified word (UNIQ) of 6 broad classes
are very similar for the languages, they are 19.0%, 16.7% and 15.7% for Mandarin, Cantonese and

English respectively.

In chapter 4, two different kinds of language modeling approaches are studied. They are character

level language model and word level language model. It was found that at the same level of OOV,
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the word level language model gives a lower perplexity than character language model. This

suggests that word level language model should be more appropriate for speech recognition tasks.

Smoothing methods for improving the language models are introduced in chapter 5. Four different
kinds of smoothing techniques are compared. They are Witten-Bell, Good-Turing, absolute and
linear smoothing. Detailed algorithm and its underlying inspiration are also presented. It is found
that the Good-Turing algorithm give the lowest perplexity results for our Call Home task. An
experimental continuous Mandarin speech recognizer is also constructed to test the real recognition
performance for the language models. The system achieves 38.28% syllable accuracy when the

word perplexity is at 18.35.
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6.2 Further Work

In this section, we will mention some possible future extensions of this work.

While the lexical access method is proved an effective way for a fast search recognizer. It may not
be practical in the rea recognition task. For example, the recognition result for the broad class
model may not be good, which causes the appropriate candidate is not passed to the next level
detailed recognizer. Finally, this leads to the recognizer error. Therefore, a large isolated word

recognizer must be built to test the performance of lexical access.

The language models used in our experiments are in character and word level only. It may be

Interesting in building a syllable or morpheme level language mode!.

The smoothing methods used in this thesis tries to estimate the probability of unseen n-gram by the
counts of seen n-gram. However, it losses some linguistic information. We can have a better
estimation by checking the n-gram starting with its synonyms. For example, the probability of an
unseen word pair wyw, can be expressed as. p(wiwz)=p(wswz) where ws = arg max Sim(wz,w) and
Sim(w,w) isasimilarity function to express the similarity between the two words. The similarity of
the two words can be represented as a square matrix A. The elements of this matrix are the
probability of in which a word followed by other words, i.e. the element &; is the probability of
word w; follow by word w;. We can than compare different columns in the matrix to find the

similarity.

ay  ap ap,
A= ay 4y a,,
anl an2 ann
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6.3 Conclusion

The major work presented in this thesis has contributed to two aspects. The first one is the study of
lexical access for large isolated word speech recognition. The construction of lexical access models
that attempt to speed up alarge vocabulary isolated word recognizer. The second one is the study of
language model for large vocabulary spontaneous speech recognition. The language model and its
smoothing method provide a powerful tool for predicting next word for a recognizer. The results of

this thesis show that linguistic knowledge is certainly beneficial to speech recognition.
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