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Abstract

PCI is perhaps the most successful bus design ever made, both on the technical and the marketing
levels. Our work is divided into several sections: reviewing computer busses in general, related bus
protocols, bus design principles, reviewing the PCI protocol, discussing PCI implementations using
programmable logic chips, and finally, we propose PCI protocol improvements, simulate them, and
analyze the results.

In the first section present an introduction to computer busses and their various parameters. We also
briefly review the following busses: ISA, LPC, MicroChannel, EISA, VESA Local Bus, VME,
NuBUS, FutureBus+.

In the second section, we also review the following bus standards, derived from the basic PCI spec:
PMC, CompactPCI, PXI, PCI-ISA, PISA, CardBus, AGP, HiRelPCI, PC/104-Plus, and SmallPCI.

In the third section we present background material including: synchronous logic design principles,
synchronous vs. asynchronous bus overview, and backplane physics.

The next section contains a description of the PCI protocol, explaining the basic protocol operations
and commands, configuration registers, and PCI to PCI bridges.

Section 5 contains background material on FPGA and CPLD chips, as well as design considerations
for PCI masters and targets that are specific to CPLD and FPGA implementations (as opposed to
ASIC implementations). Most of these design considerations are design tips, used to reduce the design
size, and to achieve the 33MHz speed requirement. We also show a typical design flow used for
designing and simulating PCI devices. Both the design flow and the CPLD implementation notes are
based on an actual working implementation of a PCI card designed, built, and debugged by the
author.

In the last section, we discuss one of the drawbacks of PCI, which is efficient handling of targets with
a long initial read latency. We suggest three alternatives for solving this problem.

One alternative is to return a “retry hint” during the target retry cycle, indicating how long it would
take the target to complete the transaction. Now the master can retry the cycle only when the data is
available. Between these events, other bus masters may use the bus.

The other solution we propose is a new PCI command which posts multiple short read requests to the
target. The data is returned by the target as one or more bus master write transactions. This has the
effect of adding split bus transactions to PCI.

We present a complete simulation environment, including synchronous logic simulation, PCI protocol
simulation, and simulation of our PCI extensions. We use the simulation environment to simulate the
latency hint protocol extension using a test bench modeled as close as possible to a typical PCI bus
configuration as found on common PCs.

The results we have shown are that on a typical PC load the “retry hint” protocol extension gains up
to 4% improvement on the bus utilization.
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1. Introduction to the PCI Bus Architecture
The PCI (Peripheral Component Interconnect) local bus [(PCISIG, 1995), (Shanley, 1995), (Kendall,
1994)] is a high speed bus. The PCI Bus was proposed at an Intel Technical Forum in December
1991, and the first version of the specification was released in June 1992. The current specification of
the PCI bus is revision 2.1, which was released on June 1, 1995. Revision 2.2, which is due to be
published soon, would add support for Hot insertion and removal of cards, power management, and
incorporate several other ECRs that have been accumulated since Revision 2.1.

Since its introduction, the PCI bus has gained wide support from all the computer industry. Almost all
PC systems today contain PCI slots, as well as the Apple and IBM Power-PC based machines, and the
Digital Alpha based machines. The PCI standard has become so popular it influenced the creation of
more than one related standard based on leveraging PCI technology.

The PCI Bus is designed to overcome many of the limitations in previous buses. The major benefits of
using PCI are:

• High speed
 The PCI bus can transfer data at a peak rate of 132MBytes/sec using the current 32 bit data path

and a 33MHz clock speed. Future implementations featuring a 64 bit data path and 66MHz clock
speed may transfer data as fast as 524MBytes/sec. Even at its basic mode, PCI delivers more
than tenfold the performance levels offered by its predecessor in the PC world, the ISA bus.

• Expandability
 The PCI bus can be expanded to a large number of slots using PCI to PCI bridges. The bridge

units connect separate small PCI buses to form a single, unified, hierarchical bus. When traffic is
local to each bus, more than one bus may be active concurrently. This allows load balancing,
while still allowing any PCI Master on any bus to access any PCI Target on any other PCI bus.

• Low Power
 Motherboards can lower their power requirement by reducing the clock rate as low as 0Hz (DC).

All PCI compliant cards are required to operate in all frequency ranges from 0Hz to 33MHz.

• Automatic Configuration
 All PCI compliant cards are automatically configured. There is no need to set up jumpers to set

the card's I/O address, IRQ number, or DMA channel number. The PCI BIOS software is
responsible for probing all the PCI cards in a system, and assigning resources to every card, as
required.

• Future expansion
 The PCI specification can support future systems by incorporating features such as an optional

64 bit address space, and 66MHz bus speed. The specification defines enough reserved fields in
all the bus definitions (configuration space registers, bus commands, addressing modes), that any
unforeseen enhancement will not hinder compatibility with present systems.

• Portability
 By incorporating the (optional) OpenBoot standard, any device with OpenBoot Firmware can

boot systems containing any microprocessor and O/S. Even without OpenBoot, it is common to
see drivers for many video cards and SCSI controller for multiple CPU architectures and
operating systems.

• Complex memory hierarchy support
 The PCI Bus supports advanced features such as bus snooping to allow cache coherency to be

kept even with multiple bus masters, and a locking mechanism to support semaphores.

• Interoperability with existing standards
 The PCI Bus allows interoperability with existing ISA cards by supporting subtractive decoding

of addresses (allowing addresses not decoded by PCI cards to be routed to an ISA backplane).
The standard also supports the fixed legacy addresses for VGA cards and IDE controllers
(required for system boot). Another feature supporting backward compatibility allows different
devices to respond to different I/O byte addresses even if they share the same 32 bit word.
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2. Computer busses
It is widely recognized that the computer system bus affects the system characteristics in several
important ways:

• The bus bandwidth and transfer parameters place a limit on the system performance.

• The system bus is an interface that connects hardware components produced by different vendors
and provides interoperability.

• The wide variety of configuration options supported by increasingly complex and sophisticated
I/O devices make manual configuration a difficult and error-prone task. Support for software-
based automatic configuration has become a necessity.

• When multiple processors share a bus with common resources, some form of support for
multiprocessing is required to arbitrate the use of shared resources.

Even though memories are getting faster, CPUs get faster quicker. Although the memory burst speed
can be increased by using interleaving, the initial latency cannot be reduced, and in fact becomes the
dominant factor in bus usage. This is just one of a number of parameters, other than demand for raw
bus bandwidth, that have changed in recent years and must be considered in modern system bus
design.

We describe design principles and tradeoffs in modern microprocessor system buses (FutureBus+,
VME64, PCI) as well as some of their predecessors (ISA, MicroChannel, EISA, and NuBus) to
provide perspective and a basis for comparison. The section consists of two main parts: description of
bus architectures, and comparison and design tradeoffs. We begin the next section with a brief
historical perspective.

2.1 Historical Perspective
It is interesting to review the way microprocessor system buses have evolved beginning with the ISA
and up to new modern buses, such as PCI, FutureBus+, and VME64, and how various tradeoffs and
compatibility issues were addressed in each design.

ISA Bus
The ISA Bus [(Messmer, 1995), (Shanley & Anderson, 1995), (Solari, 1992)] originated in the IBM
PC, introduced in 1981. In it's first version, the ISA Bus was only 8 bit wide, with a 1Mbyte
addressing range. When the IBM AT was introduced, another connector was added along the original
XT Bus connector, adding 8 additional data lines, 4 additional address lines, and more
interrupt/DMA lines. There was no organization defining the ISA bus, so when more AT compatible
machines appeared on the market, the ISA Bus became a de-facto standard. Only in a later stage the
IEEE defined the ISA bus as IEEE 996, but this was done as an afterthought. In fact, the objective of
new systems having ISA slots is to be compatible with as many ISA cards as possible, IEEE compliant
or not. Later on, Plug and Play was added to ISA bus. There are even a few non x86 based machines
using the ISA bus (some SGI machines).

MicroChannel (MCA)
When IBM introduced it's PS/2 line of computers in 1987, one of the key features in IBM’s attempt to
recapture the PC market was the MicroChannel bus [(IBM, 1989), (Pescatore, 1989)]. This was a
completely new bus that had improved characteristics such as automatic configuration (no hardwired
addresses), faster speed, and optional 32 bit data and address support. The MicroChannel was
incompatible with the ISA Bus, however. IBM's licensing agreement required manufacturers to pay
IBM for every MicroChannel based machine they sold, a policy which, in retrospect, might have been
a major reason for the MicroChannel’s failure to gain a substantial market share. The MicroChannel
was also used on some of IBM’s RS6000 workstations.



Design and Implementation of PCI Bus based systems

12

EISA
Compaq decided to solve the same problem solved by IBM's MicroChannel bus, using a different
approach. The EISA Bus [(Messmer, 1995), (Solari, 1992)] was designed to be backward compatible
with the ISA Bus by using a unique connector which was compatible with the ISA edge connector, but
had additional pins for its extended functionality on a second row of contact fingers on the PCB's edge
connector. This allowed EISA based machines to use old ISA cards as well as the new EISA cards in
the same slots. Old ISA cards would simply connect only to the top row of connectors on the EISA
socket, while EISA cards has longer fingers reaching the lower row of connector fingers. EISA cards
could not be used on ISA machines, even in ISA mode, due to the longer EISA edge connector. Like
MicroChannel, EISA hasn't really caught on, since EISA cards were much more expensive. EISA was
used mainly on server machines which required multiple network cards and multiple disk controllers,
which made efficient use of the bus mastering features and the extra bandwidth of this bus.

VME
VME [(Peterson, 1989), (VITA, 1994)] is the standard bus type on high performance multiprocessor
servers, and high end embedded systems. VME began it's life as a 16 data bit/24 address bit bus for
680X0 based machines called VERSAbus. VERSAbus was later modified to use the EuroCard form
factor, and was renamed to VME (Versa Module Eurocard). Today VME supports 32 data bit/32
address bit cards, and VME64 supports 64 bit cards. VME system supports all popular
microprocessors today, including the 680X0, the SPARC, the Alpha, and the X86.

NuBus
The NuBus [(Byte, 1987), (MR, 1987)] standard originated at MIT in 1979. Western Digital bought
the rights to the NuBus technology from MIT in 1981, but later sold the rights to Texas Instruments,
which used it for it's Explorer line of LISP machines and System 1500 Unix system. When Apple
introduced the Mac II, it incorporated NuBus slots. NuBus is also an IEEE standard, IEEE 1196. It
uses the same DIN connector as VME, but has a card form factor similar to that of a PC card. NuBus
bears some similarity to PCI. Both buses are 32 bit, multiplexed, synchronous, and support an
automatic configuration mechanism.

FutureBus+
The FutureBus+ [(Aichinger, 1992), (IEEE, 1990), (Theus, 1992)] standard has a long history. Work
began on FutureBus in 1979 (prior to VMEbus). The specification produced was very similar to VME,
but the sponsoring committee felt it wasn't "good enough" and sent the specifications back to the
FutureBus committee. This led to the collapse of the working group, and only in 1984 the foundation
for a new specification was laid. The specifications were prototyped in 1985 and the first FutureBus+
(notice the name change!) systems were shipped in Tektronix 32032 based workstation in 1986. In
1987, the standard was published as IEEE 896.1-1987 . In 1989 FutureBus+ was independently
selected as the baseline specification by the VME International Trade Association (VITA) for it's
"Next Generation Architecture Bus Standard". It was also chosen for the Telecom industry's "Rugged
Bus", and the Navy's "Next Generation Computer resources" (NGCR) program for mission-critical
computing.
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Local Buses: VESA and PCI
When 486 machines became widely available, it was necessary to have a standard for 32 bit cards that
could provide fast video and disk performance. Since EISA was expensive, a much simpler design
appeared on the market, the VESA (Video Electronics Standards Association) Local Bus [(Messmer,
1995)]. VESA Local Bus is mostly an extension of the 486 CPU bus, routed to an external connector.
The VESA Local Bus was added as the third connector in the XT/AT ISA connector row, which
means that all VESA Local Bus cards are long cards. The VESA Local Bus had a very limited goal
(accelerating video and hard disks), so it's design is simple and cheap. The VESA Local Bus
disappeared from the market when the Pentium and the PCI bus [(Shanley, 1995)] have arrived, for a
few reasons:

• Local Bus cards are inherently more expensive than PCI cards, because they are longer (use more
PCB material) and use a very long edge connector with golden fingers. They are also
mechanically less reliable.

• The Local Bus specification is less advanced than PCI (limited burst capabilities, no plug and
play, no bridges, limited number of slots).

• 486 based machines did not require an interface chip for the local bus, making local bus
motherboards cheaper than PCI motherboards. The introduction of the Pentium with its entirely
different system bus required a Local Bus interface chip, which made Pentium Local Bus
motherboards as expensive as PCI based motherboards.

LPC - Low pin count
LPC [(Intel, 1997)] is a very recent standard proposed by Intel (V1.0 is dated Sep 27, 1997) designed
to replace ISA for motherboard peripherals (serial ports, parallel port, floppy interface, on-board
audio). Instead of the hard-to-design ISA interface, which also has many lines (at least 36), a new
interface with a minimum of 6 signals for a host, and 7 signals for a target was proposed. The
interface was inspired by PCI and is synchronous (Usually slaved to the PCI clock rate), and has only
a clock line, reset line, one control line (LFRAME#), and 4 bi-directional address/data pins. The new
interface is slightly faster than ISA and supports all the legacy ISA functions (memory and I/O R/W,
interrupt request, DMA request, bus masters), all at their legacy addresses. With the new LPC
standard it is possible to design a Super-IO chip (The industry nickname for the chip containing the
serial/parallel/floppy interfaces) with a reduced pin count (up to 88 pins, down from 160 pins),
thereby reducing cost and board space. The same can be applied to an on-board SoundBlaster
compatible audio interface, also using legacy ISA resources.

LPC contains a few improvements over ISA, including support for 4GB memory addressing (unlike
ISA’s 16MB), support for power down modes, and I/O & Memory cycle retries in an SMM handler.

LPC does not support the ISA Plug and Play mechanism, since LPC is intended for motherboard-only
peripherals. These peripherals are known to the BIOS writer, and there is no need to probe the bus,
looking for these devices.

LPC has no defined connector pinout, and there is no intention to produce LPC cards. The only
expansion slot type in the next generation PCs would be PCI (and one AGP slot for a video card).
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2.2 Bus Architectures

ISA
An ISA system consists of a single bus through which the CPU is connected to all the peripherals. In
early PC systems, memory was also on the ISA bus, As shown in Figure 1. When CPU clock rates
have broken the 8MHz barrier, the main CPU memory was moved to the local CPU bus to run at the
CPU clock speed, instead of the ISA bus speed (8MHz), as shown in Figure 2. Some of the peripheral
chips were integrated into the chipset, and are no longer directly on the ISA bus.

CPU DRAM

ISA Bus (16 bit data, 24 bit address)

On board peripherals
(DMA, Interrup, etc.)

Hard Disk
controller

Floppy Disk
controller

Graphics
controller

BIOS ROM On-board
Logic

Figure 1 - Classic ISA system
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Graphics
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BIOS ROM On-board
Logic32 bit data,

32 bit address

Figure 2 - Modern ISA system

The bus signals are asynchronous, and are derived from the original 8088 and 80286 CPU bus. The
bus is normally controlled by the CPU or DMA controller, which means that almost all ISA cards are
simple slaves. The ISA bus also supports external bus masters, but almost no cards use this feature.
The ISA bus does not support bursts and until recently did not support Plug and Play.

This structure is simple and requires very little logic to control and access the bus. On the other hand,
at 8MHz the bus performance is not high, with a theoretical rate of 8MB/s for write, and 5.33MB/s for
read.
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Comparing the ISA bus to PCI, its only advantage is its simplicity. Simple cards can be built from
cheap TTL components. The slow speed of the ISA Bus, and the low pin count of TTL devices makes
it possible to build cards using Wire-Wrapping techniques.

The ISA has numerous drawbacks compared to PCI: Until recently, it had no Plug and Play standard,
it can’t share interrupt lines, it is only 16 bit wide, it is slow, and even then it is almost impossible to
realize the full ISA bandwidth potential, due to limitations of the definition of the ready and wait state
bus lines.

Since the ISA Bus is widely used, it is of special importance, and therefore we will discuss the ISA
Bus structure in more detail in Appendix A.

MicroChannel
The MicroChannel bus supports a 16-bit I/O address space, as in the AT, and a 24-bit (optional 32-
bit) memory address space. Data ports participating in the transfer may be 8-, 16-, or 32-bit wide, and
the port size may change dynamically, in every cycle. The MicroChannel supports single or burst
transfers, and a bus arbitration method with 16 priority levels. A DMA controller provides DMA
services to devices connected to the bus. Finally, a software-based configuration method eliminates the
need for DIP switches and jumpers.

CPU DRAM

32 bit MCA bus

Keyboard
Interface

Hard Disk
controller

Floppy Disk
controller

Graphics
controller BIOS ROM

CPU bus

BUS
Controller BUS Buffer CACP

Interrupt
Controller

DMA
Controller

Figure 3 - MicroChannel architecture

Figure 3 illustrates a typical MicroChannel system. Transfers occur between a master and a slave. A
master drives the address and control signals, such as timing strobes and the direction of the transfer.
To perform a transfer, a master must become bus owner. To that end, a master must request the bus,
and wait until it is granted the bus after one or more arbitration cycles. Then it can execute one or
more transfer cycles, and relinquish the bus. The MicroChannel supports 16- and 32-bit masters. In
addition to bus masters, there are two special masters: the system master and the DMA controller. The
system master configures all MicroChannel adapters. Normally, the system master is the default
master. It has the lowest arbitration priority, and it owns the bus when nobody else does.

The DMA controller transfers data between two slaves. The DMA controller is a master in the sense
that it drives the address and control signals. The arbitration, however, is done by the slaves
participating in the transfer.
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A slave can participate in a transfer in either direction, under the control of a master. There are 8-,
16-, and 32-bit slaves. A DMA slave is a special kind of slave, which performs a transfer to another
slave via the DMA controller. Like all slaves, a DMA slave does not drive address and control signals.
Unlike other slaves, a DMA slave requests the bus, participates in arbitration cycles, and is granted
the bus according to its own arbitration level.

The MicroChannel architecture defines a Central Arbitration Control Point (CACP), whose function
is to initiate arbitration cycles when one or more requests are pending, and to allow sufficient time for
resolution. Every adapter capable of requesting the bus is allocated a unique, four-bit arbitration level,
at system start up. Arbitration levels range from 0000 to 1111 in descending priority order, with 1111
(lowest) assigned to the default master.

When the CACP begins an arbitration cycle, each requesting adapter drives its arbitration level on the
four-bit arbitration bus. The resolution is decentralized and is performed by arbitration logic
implemented in each adapter that can request the bus. An adapter that identifies a higher priority level
on the arbitration bus must withdraw its request from the current arbitration cycle. The CACP allows
sufficient time for this process, at the end of which the level of the device with the highest priority
level remains on the arbitration bus. That device becomes the next bus owner. This logic is very
similar to the NuBUS arbitration logic, which can be seen in Figure 80.

In burst mode, a device may remain the bus owner as long as no other devices request the bus. If there
is another device requesting the bus, the bursting device must release the bus with the time limit
specified by the MicroChannel specification. To prevent situations in which low priority devices wait
indefinitely for the bus, likely to occur in systems that support high-priority bursting devices, the
MicroChannel defines a fairness algorithm that work as follows. When an adapter is preempted, it
cannot participate in another arbitration cycle as long as other devices are waiting for the bus. This
guarantees that all pending requests are granted in their priority order, and no device will be granted
the bus for the second time until all requesting devices have received access to the bus. Only bursting
masters are required to implement the fairness algorithm. This algorithm is also used by NuBUS bus
masters.

EISA
The EISA architecture is quite similar to the MicroChannel architecture shown in Figure 3. To
remain compatible with ISA, EISA allows the use of ISA cards, and also retains the maximum 8.33
MHz clock rate. The EISA bus controller (EBC) supports 32- and 16-bit EISA adapters, and 16- and
8-bit ISA adapters. Transfers may occur between ports with different widths. For example, assume a
32-bit EISA bus master performs a write to an 8-bit ISA slave. The bus master gains access to the bus
and drives address and data signals on the bus. The 8-bit ISA slave indicates it can only perform 8-bit
transfers. At this point, the EISA bus controller takes over and drives on the bus the same signals as
the bus master. Then the bus master deactivates its drives, and the signals, now driven only by the bus
controller, remain steady on the bus. Finally, the bus controller splits the 32-bit data into four ISA
byte writes. Read accesses are accumulated and combined into 32-bit reads in a similar way. The EBC
implements the logic that splits/combines data and generates multiple access cycles, and bus masters
are not required to duplicate it.

EISA supports burst cycles. There is also a more recent specification of an enhanced burst cycle, that
provides higher transfer rates while keeping the bus clock at 8.33 MHz for compatibility. A 66Mbyte/s
rate is achieved by performing 32-bit burst transfers on both edges of the clock. A 133Mbyte/s rate is
achieved by multiplexing the 32-bit address bus to transfer 64 bits (using both the address and data
buses), on both edges of the clock.

A common problem in ISA machines is the lack of interrupt lines. EISA solves this problem by
allowing interrupt levels to be level-sensitive, instead of edge-triggered. Multiple devices may share
the same interrupt line. While one device is serviced, the interrupt line remains active indicate
pending interrupts from other devices. ISA adapters are edge-triggered, and require separate interrupt
lines even if plugged into an EISA bus. Only multiple EISA adapters can share the same line.
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VME
VME systems are usually based on a passive backplane with one or more CPU cards, and one or more
I/O cards. VME backplanes may have as many as 21 I/O cards thanks to its asynchronous bus
structure. VME cards come in 3 sizes: 3U, 6U, and 9U. 3U cards has a single 96 pin connector, and
only 16 bits of data and 24 bits of address. 6U cards has two 96 pin connectors. The extra connector is
used to add 8 extra address lines, 16 data lines, and 32 user pins. The user pins allows extra user
cables to be connected to the card through the back of the backplane, allowing rapid switching of
cards without removing the cables from the card first. The user pins are also used for routing
additional private busses between cards in addition to the VME bus. Most standard cards today are 32
bit wide 6U cards. 9U cards are even bigger, and have a third user connector.

The actual bus width is dynamic, and set during the transaction. A cycle begins by driving the
address, a 6-bit address modifier code specifying the address width (16/24/32) and operation type
(r/w), and the address select line. The data bus width is set using the DS[1:0], LWORDA and A01
lines. A 32 bit capable card will also accept 8 and 16 bit cycles. An 8 or 16 bit wide card may choose
to accept 32 bit transaction, but it will have to ignore the extra data. VME cannot resolve data bus
width like the 680X0 bus can.

A master card may choose to do address pipelining by starting a new address cycle before the current
data cycle is finished. This is possible thanks to the non-multiplexed bus. The arbitration logic is
daisy chained, and has 4 levels.

VME also optionally supports hot insertion and removal of cards which is a must for fault tolerant
systems.

Some recent additions to the standard includes the VXI standard (VME based measurement
instruments on a card controlled by software), allowing complex CPU controlled test and
measurement systems containing multiple instruments. VXI inspired the creation of its PCI
equivalent, the PXI bus (see section 3.1.5).

NuBus
NuBUS is a 32 bit wide, 10Mhz synchronous bus. NuBUS uses standard VME type DIN connectors
with 3 rows of 32 pins each. The clock signal is 75ns high, and 25ns low, with signals changing on
the rising edge, and latching on the falling edge. This allows 25ns for hold time and clock skew.
Every card has a unique slot ID which is used to map a unique 16MB memory area at the top 256MB
of the memory map and is used for configuration. The bus itself is multiplexed with 32 bit for data
and address. A simple, non-burst transfers involves driving the address and command lines for one
cycle. The two lower bits of the command lines TM[1:0] and the two lower bits of the address lines
AD[1:0] indicate the transfer size (byte/word/longword), alignment, and operation (read/write). The
target acknowledges the cycle and returns status information (OK, error, timeout, or retry).

The theoretical non-burst data rate on NuBUS is 20MB/s by doing a 2 cycle read/write operation. In
practice, read operations may take 3 cycles or more.

Block transfers are done in NuBUS by using two special TM[1:0] and AD[1:0] codes indicating burst
read or burst write. Burst length is encoded using AD[5:2]. Possible burst lengths are 2, 4, 8, 16
longwords, and the starting address must be naturally aligned1. During burst, words are acknowledged
by asserting TM[0], and ACK is generated only for the last word in the burst, with a status code.
Since the longest burst is 16 longwords, the fastest possible cycle gives a peak transfer rate of
37.5MB/s. Non-burst capable boards can respond with ACK for the first word, which tells the bus
master that bursts are not supported for this particular target.

Arbitration between bus masters is done via a 4-bit arbitration bus. A distributed algorithm similar to
MicroChannel is used to select the winner. Bus fairness is guaranteed by not allowing the current bus
master to arbitrate the next cycle while the current bus cycle is still running (other cards may do so).
Bus locking may be achieved by keeping the card ID on the arbitration bus, with the request signal
active, for multiple cycles.
                                                       
1 A naturally aligned block must be 2N words long, and its start address must be an integer multiple of the block

size. As a result, bits [N-1..0] of the block start address are always 0.
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Interrupts are not supported by NuBUS. Instead, virtual interrupts can be generated by bus master
cards which use the bus to write values to a predefined address. This address may be identified by the
CPU support chips and be used to generate an interrupt on the local CPU bus.

Due to the close similarity between PCI and NuBUS, a complete technical description of NuBUS is
found in Appendix B.

FutureBus+
The FutureBus+ standard is split into multiple sections:

• The electrical characteristics of the FutureBus+ signals such as signaling levels and load curves.

• The mechanical section defines the FutureBus+ form factor parameters such as card dimensions
and the connector type used.

• The FutureBus+ protocol is the core of the standard, and defines the various signals and their
behavior.

The use of separate definitions allows some parts of the standard to evolve, while staying compatible
with other aspects of the bus.

Some of the special features of FutureBus+ can be summarized here:

• Architecture, Processor, and technology independence.

• No technology based upper limits. The only speed limiting factor in the standard should be
physical limitations (speed of light). The result of this guideline was an asynchronous bus which
can go faster as technology improves.

• Fault Tolerance: parity protection on all lines, fully distributed arbitration protocol (to reduce the
risk of a single failure point), live insertion and removal of modules, dual bus operation, and fault
detection and isolation mechanisms.

• Full support for cache coherency protocols, and split transactions.

• Message passing protocol for efficient multiprocessor communication.

• Full Support for bus to bus bridges. Bridges for the following buses has been defined in the
standard: VMEbus, Multibus II and SCI (Scalable Coherent Interface) [(Tving, 1993)].
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Figure 4 - FutureBus+ architecture

One of the major applications of FutureBus+ is multiprocessing, as illustrated in Figure 4. The most
striking feature in Figure 4 is the hierarchy of buses interconnected by a set of bridges. The parallel
protocol supports split transactions, required for efficient communications across buses. FutureBus+
integrates a MESI cache coherence protocol, and supports snarfing. While somewhat more complex to
implement than a read invalidate protocol, snarfing allows cache-to-cache transfers of modified cache
blocks without updating the memory. Snarfing can save significant bus bandwidth as it performs a
single transfer of the modified cache block to the requester, rather than two transfers (memory write
of the modified block followed by a memory read by the requester) in the simpler read invalidate
protocol.

PCI
PCI is a local bus, sometimes also called an intermediate local bus, to distinguish it from the CPU
bus. The concept of the local bus solves the downward compatibility problem in an elegant way. The
system may incorporate an ISA, EISA, or MicroChannel bus, and adapters compatible with these
buses. On the other hand, high-performance adapters, such as graphics or network cards, may plug
directly into PCI (see Figure 5). PCI also provides a standard and stable interface for peripheral chips.
By interfacing to the PCI, rather than to the CPU bus, peripheral chips remain useful as new
microprocessors are introduced. The PCI bus itself is linked to the CPU bus through a PCI to Host
bridge [(Wang et. Al., 1995)].
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The basic PCI transfer is a burst. This means that all memory space and I/O space accesses occur in
burst mode; a single transfer is considered a “burst” terminated after a single data phase. Addresses
and data use the same 32-bit, multiplexed, address/data bus. The first clock is used to transfer the
address and bus command code. The next clock begins one or more data transfers, during which
either the master, or the target, may insert wait cycles.

PCI supports posting. A posted transaction completes on the originating bus before it completes on the
target bus. For example, the CPU may write data at high speed into a buffer in a CPU-to-PCI bridge.
In this case the CPU bus is the originating bus and PCI is the target bus. The bridge transfers data to
the target (PCI bus) as long as the buffer is not empty, and asserts a not ready signal when the buffer
becomes empty. In the other direction, a device may post data on the PCI bus, to be buffered in the
bridge, and transferred from there to the CPU via the CPU bus. If the buffer becomes temporarily full,
the bridge deasserts the target ready signal.
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In a read transaction, a turnaround cycle is required to avoid contention when the master stops driving
the address and the target begins driving the data on the multiplexed address/data bus. This is not
necessary in a write transaction, when the master drives both the address and data lines. A turnaround
cycle is required, however, for all signals that may be driven by more than one PCI unit. Also, an idle
clock cycle is normally required between two transactions, but there are two kinds of back-to-back
transactions in which this idle cycle may be eliminated. In both cases the first transaction must be a
write, so that no turnaround cycle is needed, the master drives the data at the end of the first
transaction, and the address at the beginning of the second transaction. The first kind of back-to-back
occurs when the second transaction has the same target as the first one. Every PCI target device must
support this kind of back-to-back transaction. The second kind of back-to-back occurs when the target
of the second transaction is different than the target of the first one, and the second target has the Fast
Back-to-Back Capable bit in the status register set to one, indicating that it supports this kind of back-
to-back.

To reduce data transfer time on PCI, a bridge may combine, merge, or collapse data into a larger
transaction. Combining refers to converting sequential memory writes into a single PCI burst
transaction. For example, a write sequence of (32-bit) double words 1, 3, and 4 can be combined into
a burst with four data phases, the second data phase having the byte enables off. Transactions whose
order is not sequential, for example 4, 3, and 1, must remain as separate transactions. Merging refers
to converting a sequence of memory writes (bytes or 16-bit words) into a single double word. Unlike
combining, merging can occur in any order. For example, bytes 1, 0, and 3 can be merged into the
same double word with byte enables 0, 1, and 3 asserted.

For arbitration, PCI provides a pair of request and grant signals for each PCI unit, and defines a
central arbiter whose task is to receive and grant requests, but leaves to the designer the choice of a
specific arbitration algorithm. PCI also supports bus parking, allowing a master to remain bus owner
as long as no other device requests the bus. The default master becomes bus owner when the bus is
idle. The arbiter can select any master to be the default owner.

Four interrupt lines are connected to each PCI slot. A multifunction unit may use all four, other units
may use only a designated line (one of the four). The value in the Interrupt Line register determines
which IRQ should be activated by the interrupt signal of the PCI unit. (For example, IRQ14 of the AT
architecture, if the PCI unit is a disk adapter). The BIOS fills this field during system initialization.
Later, when the operating system boots, the device driver reads this field to find out to which interrupt
vector the driver’s interrupt handler should be bound to.

PCI provides a set of configuration registers collectively referred to as “configuration space.” By using
configuration registers, software may install and configure devices without manual switches and
without user intervention. Unlike the ISA architecture, devices are relocatable - not constrained to a
specific PCI slot. Regardless of the PCI slot in which the device is located, software may bind a device
to the interrupt required by the PC architecture. Each device must implement a set of three registers
that uniquely identify the device: Vendor ID (allocated by the PCI SIG), Device ID (allocated by the
vendor), and Revision ID. The Class Code register identifies a programming interface (SCSI
controller interface, for example), or a register-level interface (ISA DMA controller, for example). As
a final example, the Device Control field specifies whether the device responds to I/O space accesses,
or memory space accesses, or both, and whether the device can act as a PCI bus master. At power-up,
device independent software determines what devices are present, and how much address space each
device requires. The boot software then relocates PCI devices in the address space using a set of base
address registers.

2.3 Comparison and Design Tradeoffs

Address and Data Transfers
Usually the number of address pins (either separate address pins or multiplexed address/data pins)
determines the amount of addressable memory on a bus. Some buses (and PCI specifically) can
generate addresses larger than the bus width by splitting the address phase across two bus cycles. A
card using a wider data bus can transfer data faster, but requires more pins, it is less reliable, requires
more components, and is more expensive. Non only that, but any CPU with an N-bit wide data bus
can hardly make effective use of a bus which is wider than N bits.
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A multiplexed bus shares the same lines for both address and data. In a non-multiplexed bus, there are
separate address and data lines. Non-multiplexed buses require more lines, but they are slightly faster
on write (since address and data can be sent at the same time), and they can start a new read cycle (by
driving the new address) while the current read cycle is still taking place. On the other hand, if a burst
cycle is taking place, there are multiple data phases for every address phase, so the extra speed
improvement by having a non multiplexed bus is relatively small. If the same lines used by a non
multiplexed bus for addressing were used as extra data lines on a multiplexed bus, burst transfer
would be faster on the multiplexed bus, using the same number of pins. Most new buses (PCI,
FutureBus+, VME64) are multiplexed.

Name ISA EISA MicroChannel VME NuBus FutureBus+ PCI
Min. Data Bits 8 (XT) 32 16 16 32 32 32
Max. Data Bits 16 (AT) 32 32 64 32 256 64
Min. Addr. Bits 20 (XT) 32 24 24 32 32 32
Max. Addr. Bits 24 (AT) 32 32 64 32 64 64
Multiplexed Addr/Data
Bus

No No No Both Yes Yes Yes

Table 1 - Data and Address Bus

In the first row of Table 1, the number of data bits refers to the minimum number of bits required on
the implementation, not on the actual data transfer. For example, all EISA cards have 32 data bits, but
not all data cycles are 32 bit. Some cycles may be 8 or 16 bit.

VME uses non-multiplexed 32 bit address/32 bit data bus. VME64 combines these address/data lines
to a multiplexed 64 bit address/ 64 bit data bus. Note that Max. VME Addr./Data Bits (second and
fourth row of Table 1) refer to VME64 only.

Throughput
Bus throughput calculations can be quite complex, so we mention only a few parameters here. The
single word throughput measures the theoretical rate (in MB/s) at which an arbitrary single word read
requests can be performed. The burst throughput is the theoretical rate at which reads can be
performed (in MB/s) using the largest possible burst cycle possible on the bus.

When an address is transferred on the bus for every data word read or written, the bus is called non-
bursting. When a bus can have a single address phase followed by multiple data phases (usually for
consecutive addresses) the bus can do burst transfers. Burst data transfers lowers the overhead for
large transfers (such as video screen manipulation and disk/networking I/O), by allowing the slave
device to pipeline the subsequent data words while transferring the current word on the bus. It also
removes the address phase overhead for every word.

Name ISA EISA MicroChannel VME NuBus FutureBus+ PCI
Max throughput,
Non Burst

8MB/s 16.66MB/s 13.11MB/s N/A 20MB/s 200MB/s 33.33MB/s

Max throughput, burst N/A 33.33MB/s 21.05MB/s 80 MB/s 37.5MB/s 4GB/s 133.33MB/s
Multiple Bus Masters Yes Yes Yes Yes Yes Yes Yes
Split Transactions No No No No No Yes Some

Table 2 - Throughput

Referring to Table 2, the ISA throughput figure in the second row is based on no wait state cycles (2
clocks/cycle) at 8MHz with 16 bit data. This is a purely theoretical number, based on zero delay
between the data request and the data acknowledge signals. The MicroChannel throughput figures are
based on typical parameters. The maximum throughput, burst performance assumes a 190ns burst
cycle time. A burst cycle in MicroChannel is the same as a non burst cycle, except for bus arbitration.
Non burst cycles are allowed to use the bus only for one cycle. The VME data is for VME64.
FutureBus+ specifies two transfer modes, an asynchronous (handshake) mode, and a synchronized
packet mode. Packet mode is optional in FutureBus+ profile B. The max throughput non-burst data
show in Table 2 are based on FutureBus+ profile B performance figures in for 64-bit asynchronous
mode.

The ability to have multiple bus masters means that every card on the system can request the bus and
generate read or write cycles by driving the address, data, and control pins. Cards on a bus with a
single master cannot actively generate cycles on the bus. They can only be passively read or written.
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Even though memories are getting faster, CPUs get faster quicker. Therefore if memory access time
used to be less than 10 machine cycles, today the penalty for memory access may be a few dozen
cycles. Although the memory burst speed can be increased by using interleaving, the initial latency
cannot be reduced, and in fact becomes the dominant factor in bus usage. More time is spent on
waiting for the initial latency, and less time is spent reading the data. By splitting the read request
from the data transfer, the dead time between the request and the data transfer can be used to send
more requests to other memory agents or to receive data from previous requests. This way the initial
latency is not reduced, but the bus is free during that time for other requests and is not wasted.

Split transactions is a mechanism allowing a master to request data, disconnect from the bus, and
have the target reconnect later to the bus and send the data when it is available. This allows other bus
master to use the bus during the latency time.

PCI standard 2.1 requires a master accessing a target to retry the data transfer if it is encountering a
target retry on the first data word. This allows a target with a very long latency to receive requests
from masters, disconnect, and get the data to an on board buffer. When the master retries the same
address, it will receive the data immediately. This is not a true split transaction, because the master
can’t really know when the target data is ready. If the master retries too early, it wastes bus
bandwidth. If it retries too late, it will end up with a longer latency than what is needed, and limit the
target’s ability to queue additional requests, since buffer storage is wasted, waiting for the master to
empty it.

Synchronous and Asynchronous Buses
In synchronous buses all the bus signals are sampled on the edge of a system clock. All signals obey
the setup and hold requirements relative to the clock signals. This has the advantage that no
handshaking is needed to transfer a single word. Asynchronous buses, on the other hand, are
handshaking data transfer without any central clock signal. Control signals can change anytime
without any restrictions.

Each bus has its limitations. An asynchronous bus can adapt well to different number of peripherals
on the bus by giving better performance on a bus with a smaller load. A CMOS based asynchronous
bus can drive a large number of slots or a very long bus (SCSI-1 is a good example of a potentially
long asynchronous bus) without any problems, even at the price of reduced performance. A
synchronous bus on the other hand will work faster, but will not work at all if the bus is overloaded or
made longer, causing the total propagation delay to exceed the clock cycle time. If a synchronous bus
is designed in advance to support a large number of slots or a long backplane, then the performance
will be much worse, even when the same bus is not loaded with extra slots, because the clock rate is
fixed.

In section 4.2 we discuss synchronous and asynchronous busses in greater depth.

Name ISA EISA MicroChannel VME NuBus FutureBus+ PCI
Bus Clock 8MHz 8.33MHz Async. Async. 10MHz Async. 0 - 33MHz
Number of Bus slots Undef. 15 15 21 15 32 4

Table 3 - Bus clock and number of slots

The number of bus slots determines the expandability of the bus. Usually a bus has both architectural
limitations to the number of slots, as well as electrical limitations. An example of an architectural
limitation is the number of bits of a slot ID code, while an electrical limit is, for example, the 10 load
maximum for a pin in the PCI standard. An electrical limit can be overcome by improving technology
without hurting compatibility while an architectural limit requires changes in the standard in order to
be solved.

As we just said, the PCI standard allows 10 electrical loads per bus. A PCI peripheral on a card counts
as two loads, while an on-board peripheral counts as one load. A motherboard can have, therefore, up
to 4 slots (see Table 3). Since PCI buses can be linked with bridges (up to 256 buses), A theoretical
maximum of 2560 on-board PCI devices can share one PCI system, (or up to 2050, excluding the
bridges).
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The number of ISA slots is not limited by the standard, but limited by practical implementations.
Typical systems use up to 8 slots. Logically, it is possible to have 15 bus slots on EISA,
MicroChannel, and NuBUS. EISA is limited by the pre-assigned configuration space at XC80h
through XC84h. MicroChannel and NuBUS are limited by the 4 bit distributed arbitration logic. In
practice, the EISA timing specifications are limiting the number of physical slots to 7. MicroChannel
and NuBUS might have the same practical limitations.

Multiprocessing Support: Locking and Snooping
When multiple processors are sharing a common bus with common resources, a semaphore is
required to arbitrate a specific resource between multiple processors. A semaphore is set by the
processor requesting the resource, and cleared when the resource is freed. A semaphore must be read
before it is set, because it might be already set. The semaphore read and set operations must be atomic
because if two processor may read the semaphore at the same time and both see the semaphore is
clear, they may both try to set it simultaneously.

Bus locking allows a specific memory range to be locked by a master, causing this memory area to be
accessible only by the same master until the lock is released. A more limited way of bus locking is the
Read-Modify-Write cycle which allows a master to read a word, modify it, and then write the result
back to the same address, with a guarantee that no other master can access the bus between the read
and the write operation. These hardware primitives allows the system software to build more complex
locking mechanisms for resource arbitration between multiple processors.

In multiprocessor systems we usually find one or more processors with local cache memory on a
common bus, sharing common memory which is also on the bus. A data coherency problem is caused
by the local caches since data modified by one processor in memory is not reflected in another
processor if that processor has a copy of that word on his local cache. Not only that, but on a write-
back cache system a word may be written back to memory but in fact be written only to the write back
cache. Later, a different word in the same cache line is written by a different processor, and flushed to
memory. If the first word with its entire cache line is also flushed to memory, it will erase the rest of
the cache line in memory, destroying newer data. A possible solution is bus snooping, which allows a
processor to watch the bus all the time, invalidate (or update) its local cache copy of data which
appears on the bus, and even allows it to interrupt a write cycle on the bus in order to flush its own
write back cache first, before allowing the cycle to restart.

Name ISA EISA MicroChannel VME NuBus FutureBus+ PCI
Bus Snooping No No No No No Yes Yes
Bus Locking No Yes No Yes Yes Yes Yes

Table 4 - Locking and snooping

Bus Locking is defined for PCI, but most targets don’t support it. PCI bridge support is optional (since
2.1), and its usage is highly discouraged. Bus Locking is implemented in VME by a Read-Modify-
Write cycle, unlike the PCI locking mechanism, which allows other transfers to take place while the
lock is still in place.

Bus Snooping is essential for PCI, because modern PCI based systems typically have bus master PCI
cards and local CPU caches with write back capabilities. The snooping mechanism is required when a
dirty cache line is partially overwritten by an external PCI bus master.

Plug and Play
A Plug and Play capability is the definition of a standard way for a bus master to interrogate all the
devices on the bus and identify them (including type, manufacturer, and model), their resource
requirements (memory and I/O address space, interrupts, and DMA channels), assign specific
resources to each device, or disable any specific device. It also defines a common header for an
optional bootstrap ROM, which can do further device specific initialization. It can even go as far as
defining a neutral language for ROMs which is processor independent, allowing the same card to run
its initialization code on all processor types if their system software supports an interpreter for that
language.
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Name ISA EISA MicroChannel VME NuBus FutureBus+ PCI
"Plug and Play" Yes/No Yes Yes Yes Yes Yes Yes

Table 5 - Plug and Play

ISA “Plug N’ Play” (or PNP) is a new standard, supported by some ISA cards only since 1995. A fully
compliant ISA “Plug and Play” system requires a PNP aware motherboard, PNP cards, and a PNP
aware operating system, such as Windows 95.

A VME board may contain CR/CSR registers which carry identification information and
configuration registers, but since these are defined as optional, not all boards may have them.

All PCI cards are plug and play, but most PCI cards do not support the OpenBoot standard for neutral
language boot code (only some Apple Macintosh PCI cards do). Some Power-PC system
manufacturers have gone the trouble of implementing a software X86 emulator to allow booting from
SCSI bus masters on Power PC based PCI systems.

Interrupt Support and DMA
There are many ways to implement interrupt support. Some buses have minimal interrupt support
with no interrupt lines. A device can generate an interrupt by writing to a special address on the bus,
or generating some other special type of bus cycle. Interrupt priority is handled by the regular bus
arbitration logic. Most buses, however, have dedicated interrupt lines, which determines the
maximum number of interrupt levels on the system. On systems which use level triggered interrupts,
the interrupt event is active as long as the interrupt line is asserted, while edge triggered interrupts are
generated during the transition of the interrupt lines from a low state to a high state or vice versa.
Interrupt sharing is harder when using edge triggered interrupts, because edge transitions on an
interrupt line which is already active are invisible.

DMA channels are a special feature that makes it easier to build a bus master card. Every DMA
channel has a pair of handshake lines on the bus, which are connected to the DMA controller. A
DMA transfer takes place after a program initializes the DMA channel by setting the data direction,
base address, and number of words. The card will then read or write to the block of memory specified
in the DMA channel registers simply by handshaking word transfers using the dedicated lines. The
DMA controller takes care of the actual bus cycle generation, address generation, address increment,
and word count. Since every DMA channel requires at least two lines per channel, and requires
dedicated DMA logic, only a limited number of DMA channels are available.

Name ISA EISA MicroChannel VME NuBus FutureBus+ PCI
Number of Interrupts 6/12 12 11 7 N/A N/A 4
Interrupt type Edge Level/Edge Level Level Virtual N/A Level
DMA Channels 3/7 7 N/A N/A N/A N/A N/A

Table 6 - DMA and interrupts

The 6/12 ISA interrupt lines and 3/7 DMA channels in Table 6 correspond to XT/AT cards
respectively. EISA supports level-sensitive interrupts, but ISA adapters are edged-triggered, for
compatibility reasons, even if plugged into an EISA bus. PCI defines 4 interrupt lines per slot, but
these 4 lines aren't necessarily common to all slots. In theory a 4-slot PCI system may have 4 unique
lines for every slot, and use as little as one or as many as 16 CPU interrupt lines.

Virtual Interrupts are predefined addresses in the memory map. A card that wishes to interrupt the
CPU must act as a bus master and write to this address. Apple’s version of NuBUS added a line called
NMRQ (Non Master ReQuest), which acts like the usual interrupt line.

Physically, the MicroChannel bus does not define any DMA request/grant signals, but unlike other
buses with no DMA signals, the MicroChannel system architecture specifies an on board DMA
controller, which works by generating normal bus cycles, reading from the source and writing to the
destination. This DMA controller does not require special bus support from the bus itself other than
normal read/write cycles.
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3. PCI Bus related standards
Although the PCI standard has many benefits, it was designed for the desktop PC market, and cannot
be directly used in most embedded systems or in industrial applications due to packaging, reliability,
or maintenance considerations. As a result, a number of PCI related standards were developed. These
standards bring PCI performance to other segments of the computer industry, and enable the use of
PCI silicon, software, and firmware in non-desktop systems. While the proliferation of PCI related
standards is certainly evidence of the success of PCI, some confusion arises because it is not always
clear why are so many standards needed, what are the differences between them, and which standards
apply to a specific system. This section deals with these questions. We describe standards that enable
the use of PCI technology in industrial applications, embedded systems, laptops, and mobile systems.
We also describe an extension of the PCI, the AGP bus, developed for graphics and multimedia
applications.

3.1 Industrial Applications: Backplane Expansion
Price is the dominant design consideration in desktop PC systems. In critical embedded computing
systems used in telecommunication, industrial automation, and military applications, in addition to
cost there are at least two other primary factors:

 • Reliability

In desktop PCs, ISA and PCI adapters are inserted into card-edge connectors located on a
motherboard. A PCI card is typically fastened only at one point of the edge opposite to the
connector. This mechanical arrangement has poor shock and vibration characteristics, the card
edge connectors are subject to shifting or even disconnection. This situation is compounded by
the use of an “active” backplane: a motherboard on which both ICs and connectors are mounted.
In an industrial or military environment, the mechanical stresses involved in supporting cards
may lead to failures in the motherboard.

In critical embedded systems, these reliability concerns are addressed by the use of pin and socket
connectors, front panel retainers that lock the card to the frame, and card guides. Every card is
mechanically supported on all four edges. Reliability is also enhanced by the use of a “passive”
backplane, whose primary function is to provide electrical connections; mechanical stresses on
the backplane are low due to the use of front panel retainers and card guides.

 • Maintenance

Low MTTR (mean time to repair) is a key requirement in critical embedded. Failures in a
passive backplane are uncommon due to improved mechanical characteristics, as we have seen
above, and the lack of active components. The motherboard used in desktop PCs is much more
likely to fail simply because ICs mounted on it may fail. Hence the use of a passive backplane
considerably simplifies maintenance; all ICs and other active components are mounted on cards
plugged into the backplane that can be speedily removed. This simple replacement procedure
applies to all the cards in the system, such as processor cards or peripherals. The system
controller is simply one of the cards plugged into the backplane.

The VME bus has been the dominant architecture used in the telecommunications, industrial
automation, military, and medical markets (see sections 0 and 0).

Although the VME architecture is expected to continue to dominate the industrial system market at
least in the near future, the success of PCI has led to three standards that apply PCI technology to
industrial systems: PCI-ISA passive backplane standard, PMC, and CompactPCI. A fourth standard,
HiRelPCI is currently developed by an IEEE working group. A fifth standard, PISA, is very similar to
PCI-ISA, but its industry support is presently very weak. These standards are summarized below and
described in the rest of this section.
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PISA Passive
Backplane

PCI-ISA Passive
Backplane

PMC CompactPCI HiRelPCI

Connector Edge Card Edge Card Pin & Socket Pin & Socket Pin & Socket
Installation Perpendicular Perpendicular Parallel Perpendicular Perpendicular
Shock
Resistance

Poor Poor Good Good Good

Off-the-shelf
PCI Adapters

No Yes No No No

Off-the-shelf
ISA Adapters

Yes No No No No

Organization PISA PICMG IEEE PICMG IEEE
Dimensions
(in.)

3.9 × 6.9 3.9 × 12.3 2.9 × 5.9 3.9 × 6.3
9.2 × 6.3

4.5 × 8.4
10.4 × 11.3

Table 7 - PCI related industrial standards

3.1.1 PCI-ISA Passive Backplane
The PCI-ISA standard specifies a passive backplane with two buses, ISA and PCI, and a CPU card
whose dimensions are identical to the dimensions of the long style PCI cards. The CPU card contains
all the components normally located on the motherboard (including the PCI chip set that implements
the PCI-ISA bridge), and two connectors, one for the ISA bus and one for the PCI bus. Hence the
“active” motherboard is replaced with a plug-in CPU card, and I/O expansion cards plug into a
passive backplane that has only connectors on it. As we have seen above, the passive backplane
improves reliability and simplifies maintenance.

The standards supports up to 15 ISA slots and up to 4 PCI slots, as in desktop PCs, and allows the use
of off-the-shelf ISA and PCI adapters. The adapters use standard ISA and PCI edge connectors. These
connectors are less reliable than the pin-and-socket connectors used in VME and CompactPCI
systems. Some backplanes offer up to 13 PCI slots by using one or more PCI to PCI bridge chips on
the backplane.

3.1.2 PISA Passive Backplane
This standard is very similar to PCI-ISA, and has the same objectives. The method, however used by
the PISA standard is to pack both the PCI and the ISA bus on a new high density edge connector, very
similar to the EISA connector. This edge connector has two rows of contacts. The upper row on each
side are ISA signals, while the lower row on each side contains the PCI signals.

As a result, PISA single board computers may use half length cards. This makes PISA based systems
even cheaper than PCI-ISA. It also means PISA system with its short CPU card may take half the
volume of a PCI-ISA system. This makes PISA systems almost as small as PC/104 based systems.

Not only that, a PISA slot can accommodate both an ISA based CPU card, and a PISA CPU card.

The PISA standard, however, is relatively new, and has far less support than PCI-ISA. It is yet to be
seen whether this standard will gain industry acceptance like PCI-ISA.

3.1.3 PMC - PCI Mezzanine Card
The PMC standard [(IEEE, 1995)] uses existing PCI silicon and packages them in a different form
factor, suitable for mounting on existing CPU cards, mostly in VME based systems. This allows
manufacturers of VME based system to enjoy VME’s expandability with the wide selection of PCI
based solutions. PMC is defined as an IEEE standard, IEEE P1386.1, and backed by VITA, the VME
manufacturers organization.
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Single PMC card

Single PMC card

VME Host VME Host

Double PMC card

Figure 6 - PMC modules mounted on a VME64 board

PMC is basically an I/O expansion card for single board computers. As shown in Figure 6, two single
PMC cards or one double PMC card may be attached in parallel to a VME board. In desktop PCs, PCI
cards are placed in perpendicular to the motherboard. PMC provides a low profile configuration for
systems that cannot directly use the PCI solution due to space limitations. PMC does not replace the
VME bus.

3.1.4 CompactPCI
The CompactPCI [(Force, 1997), (PICMG, 1995)] standard attempts to replace VME directly by using
PCI chips on a 3U or 6U form factor cards (called Eurocards, see Figure 7). The use of the Eurocard
mechanical form factor, common in embedded systems due to the popularity of the VME bus, and the
use of card guides and pin-and-socket connectors result in a rugged and reliable package; this is the
main reason for the adoption of the Eurocard mechanics in the CompactPCI. An added benefit is that
VME and CompactPCI cards, having the same form factor, may be mixed in the same frame. The two
buses may be interconnected by a CompactPCI - VME bridge.

CompactPCI uses high density connectors (defined by ANSI as IEC-1076) designed for telecom
products. 3U cards use two connectors (see Figure 7). The lower connector contains 32-bit PCI
signals. The upper connector is to be used by 64 bit cards. 6U cards use three additional connectors
for user defined I/O. Note that the lower two connectors are identically defined in 3U and 6U cards.
Hence as far as PCI bus signals are concerned, 3U and 6U cards are electrically interchangeable.
Unlike normal PCI, the CompactPCI standard allows up to 8 cards on a backplane without a bridge
chip, mostly due to the use of the high quality connector, and a large number of GND pins.
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6U Eurocard

3U Eurocard

160 mm

160 mm

100 mm

233.35 mm

Figure 7 - 3U and 6U form factor Eurocards

In comparison with VME, the CompactPCI solution has the following benefits:

• CompactPCI systems use the same PCI chips and the same software as desktop PC systems.
Operating systems, drivers, and applications that run on desktop PCs also run on CompactPCI
systems. Hence several operating systems and a large number of applications are available for use
on CompactPCI platforms.

• PCI chips are produced in large quantities for the global PC market. As a result, low cost silicon
is available and can be used in CompactPCI systems. Due to high integration levels, a PCI chip
set consists of only a few chips; this considerably simplifies system design.

• The CompactPCI peak bandwidth is 132 MByte/s for the 33 MHz 32-bit implementation, and 264
MByte/s for the 33 MHz 64-bit implementation; this is identical to the PCI bus peak bandwidth.

3.1.5 PXI - PCI eXtensions for Instrumentation
PXI [(NI, 1997)] is derived from CompactPCI, and related to CompactPCI in the same way VXI
relates to VME. PXI was invented by National Instruments, a company specializing in computerized
test equipment. PXI was intended to leverage the PCI technology for instrumentation users. This
includes test and measurement systems embedded on a CompactPCI card, controlled by a
CompactPCI CPU card running Windows 95 or Windows NT. The advantage of PXI over VXI and
GPIB is the high speed bus and the lower cost of PCI peripherals.

The standard addresses three areas:

• Mechanical architecture

The specification defines mechanical requirements for PXI modules and backplanes, including:
System slot location, cooling requirements and environmental testing requirements.

• Electrical architecture

The specification defines electrical requirements for PXI modules and backplanes, including: A
reference clock, a trigger bus, a local bus and a star trigger bus.
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• Software architecture

Unlike other busses, the PXI specification requires cards to be delivered with a VISA driver
(Virtual Instrument Software stAndard). VISA allows application software to access
instrumentation modules in a transparent way, whether they are controlled by IEEE 488, VXI,
RS232 or PXI.

PXI use the user signals on the J2 CompactPCI connector, and reassigns some of the signals used only
in the CompactPCI system slot such as REQ#[6:0] and GNT#[6:0]. The extra signals are used for the
following:

A 10MHz reference clock (with a 100ppm accuracy over all the supported temperature range) is
delivered to all PXI modules. The clock and backplane must provide a skew of less than 1ns between
slots.

The trigger bus allows intermodule synchronization and communication. The PXI_TRIG[7:0] lines
are shared between all modules, and can be used for clocking and triggering independently of the PCI
protocol. The trigger bus use PCI signaling levels.

The local bus is a group of 13 signals that are daisy chained between adjacent slots. The behavior of
the local bus is user defined, and may be used for transmission of analog signals up to +/-42VDC and
200mA.

The star trigger bus originates from a special Star trigger slot, which is next to the system slot. The
Star trigger bus use the local bus, which is unused because the star trigger slot is next to the system
slot. The star trigger bus is used to route triggering and clock signals to one or more PXI frames.

3.1.6 HiRelPCI - High Reliability PCI
HiRelPCI [(IEEE, 1996)] is currently under work by the IEEE1996 working group. It uses a similar
connector to CompactPCI, and adds features from SCI [(Tving, 1993)] to address a very large number
of nodes. The current draft of the proposal specifies two board formats, 6SU and 12SU, both larger
than the corresponding VME and CompactPCI 3U and 6U Eurocard formats (see Figure 7).

A unique feature of HiRelPCI is its support for SCI. The proposal extends PCI to include a packet
mode in which packets are sent over SCI/Serial Express buses to other components of a distributed
system. Packet transmissions are not visible by normal PCI transactions. To enable sustained
operation with a single fault, HiRelPCI provides redundancy on several levels: redundant elements
(power supplies, processors, or boards), chassis redundancy, backup serial communications on 6SU
style boards, and dual PCI and TDM buses on 12SU style buses.

3.2 Embedded Systems: Single-Board Computer Expansion

3.2.1 PC/104-Plus
PC/104 is the embedded system version of the ISA bus. PC/104-based embedded systems incorporate
16- and 32-bit x86 processors running at 16 - 33 MHz clock rates. Many of these systems are
upgraded versions of earlier implementations that used 8-bit microcontrollers, and their bandwidth
requirements are adequately met by the 5 Mbyte/s ISA (PC/104) bus. The introduction of the Pentium
CPU in embedded systems, however, led to the need to extend the PC/104 bus. The result is the
PC/104-Plus standard [(PC104, 1997)], which defines a new form factor and a pass-through connector
for PCI, but remains compatible with existing PC/104 cards. PC/104-Plus offers the following:

• Compact 3.6” by 3.8” cards.

• Self stacked cards provide expansion without backplanes or card cages.

• The use of pin-and-socket connectors and four corner mounting provide reliable electric
connections and good shock and vibration characteristics.
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As illustrated in Figure 8, a typical system may consist of PC/104 (ISA) cards and PC/104-Plus (PCI)
cards stacked using pass-through connectors. As in other ISA systems, the 104-pin ISA bus is split
into two connectors. The 120-pin PCI bus in PC/104-Plus modules is implemented using a high-
density (2 mm) connector, hence it takes less space than the ISA connectors. The PCI connector pins
are thinner and more vulnerable than the ISA connector pins. Since PC/104 systems do not use card
guides, a connector pin “shroud” serves as a guide of the PCI connector and protects the PCI
connector pins.

120-PIN PCI BUS

104-PIN ISA BUS

3.8"

3.6"

(a) PC/104-Plus Card

PC/104
ISA Card

PC/104-Plus
PCI Card

PC/104-Plus
PCI Card

(b) Stack of one PC/104 and two PC/104-
Plus Cards

Figure 8 - PC/104 and PC/104-Plus cards

3.3 Laptops and Mobile Systems
As its name indicates, release 1.0 of the PCMCIA (Personal Computer Memory Card International
Association) standard was designed for memory cards used primarily in laptop PCs. These Type I
cards are about the size of a credit card and are 3.3 mm thick. The next version of the standard
(release 2.0) enabled the use of network, modem, and other I/O expansion cards by introducing a
higher capacity, 5 mm thick, Type II form factor. Backward compatibility is maintained, Type I cards
may be inserted into Type II slots. Release 2.0 also defines a Type III form factor, with a thickness of
10.5 mm, primarily used for hard disk drives. Two vertical Type II slots may contain either two Type
II cards or a single Type III device.

The version of the standard released in 1994 (and updated a few times since then) was renamed PC
Card [(PCMCIA, 1997)], instead of PCMCIA release 3.0. PC Cards use the same form factor and
Type I, Type II, or Type III thickness as PCMCIA release 2.0.

3.3.1 CardBus
The PC Card [(Shanley & Anderson, 1995b)] standard also defines several enhancements; the
enhancement pertinent to our discussion is a 32-bit, 33 MHz, interface called CardBus. The CardBus
interface is very similar to PCI, but addresses additional issues such as hot plug and power down
which are essential in laptop implementations. CardBus cannot use PCI chips directly, but it is very
easy to modify existing PCI chips to be CardBus compatible. CardBus uses Type I, Type II, or Type
III thickness, the same form factor, and the same connector as PC Card. A PC Card may use a
CardBus slot; a connector key, however, prevents a user from inserting a CardBus card into a PC
Card slot.
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Card Services

Socket Services Socket Services

Adapter Adapter

Slots Slots

Figure 9 - PC Card and CardBus software support

Each PC Card (or CardBus) slot is connected to an adapter; an adapter can control multiple slots
(called sockets in PC Card literature). Since adapters from different vendors often have different
hardware interfaces, a software layer called Socket Services provides a generic interface to PC Card
adapter hardware. Hence Socket Services hide inconsistencies in the hardware interface. The next
software layer, Card Services, enables the use of the same slot for different PC Cards. Card Services
manages a pool of resources (such as memory maps, I/O addresses, and interrupt request lines) and
assigns resources to PC Cards plugged into the system.

3.3.2 Small PCI
SmallPCI [(PCISIG, 1996)] is a small form factor of PCI endorsed by the PCI SIG, with dimensions
and connector very close to those used by CardBus. SmallPCI and CardBus target different market
segments, however. CardBus is intended to be a standard for end-user cards and as such supports hot
swapping and PCMCIA backward compatibility, but, as we have seen, requires special software
support for its operation (socket services). On the other hard, SmallPCI is intended to be used by
OEM manufacturers who want to install small functional modules based on PCI chips inside their
products. Potential applications include set-top boxes, PDAs, traffic controllers, elevator controllers,
navigational systems, and other products that require small form factor packaging.

SmallPCI supports all the features of a standard PCI card, without 64 bit extension, and with the
added CLKRUN signal. CLKRUN controls the PCI clock frequency for reduced power mode support.
A SmallPCI card has the same form factor as PC Card and CardBus, and is inserted, in parallel to the
system board, into a connector mounted on the system board. The connector is keyed to prevent
insertion of PC Card or CardBus devices.

3.4 3D Graphics: AGP
AGP (Accelerated Graphics Port) is a relatively new standard [(Intel, 1996)] developed by Intel to
provide a high bandwidth graphics expansion slot for PCs. Because of its high speed, AGP is designed
to run as a point-to-point protocol; hence it supports a single graphics expansion card. By providing a
high bandwidth path between the graphics controller and the system memory (see Figure 10), some of
the 3D data structures may be shifted from the local memory of the graphics card into the main
memory. The graphics engine may efficiently use both the local memory and the main memory. The
result is that demand for additional memory may be satisfied by simply allocating main memory
space, without increasing the cost of the local memory on the graphics card.
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Figure 10 - System Architecture: AGP/PCI vs. PCI only

As shown in Figure 10, AGP does not replace the PCI bus. Essentially, AGP is an additional
connection point into the main memory, through the bridge chipset. This path is both logically and
physically independent of the PCI bus. Most I/O devices use the PCI bus; AGP is intended for the
exclusive use of graphics devices. AGP maintains compatibility with the standard PCI protocol, but
uses additional (sideband) signals to add new AGP data transfer modes. With new memory
technologies such as SDRAM and Rambus, future memory systems may have enough bandwidth to
easily drive both the PCI and AGP busses at their peak bandwidth simultaneously.

Note the distinction between the PCI bus and PCI transactions. The PCI bus may only run PCI
transactions. The AGP bus, however, may run both PCI and AGP transactions, since the AGP
standard is an extension of the PCI standard. Traffic on the AGP bus may be a mixture of interleaved
AGP and PCI transactions.

Compared with the PCI standard, AGP offers the following benefits:

• Optional 133MHz mode, with a sustained throughput of over 500 MByte/sec.

• Demultiplexed address and data transfers. By adding an optional, 8 bit address bus, multiple read
requests can be queued up through this bus, while the main address/data bus is used for data
transfer, achieving 100% actual bus usage (rather than asymptotic performance level on infinitely
long bursts, as in the PCI bus).

• Pipelined memory operations. By decoupling read data transfers from read requests, multiple
requests may be initiated without waiting for the completion of the first request, thus hiding the
memory access latency.

Pipelined Operation
Pipelined operation enables the graphics controller to insert new requests between data transfers (see
Figure 11). At the end of the current data transfer, the data flow may be temporarily suspended and
the bus used for either one or more address transfers, specifying one or more new requests, or for a
PCI transaction. Transactions are never preempted; the data transfer may be suspended at the end of
the current transaction, but not in the middle of it. PCI transactions cannot be pipelined, the data
phase must always follow the transaction’s address phase.
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A1 A2 Data-1 A3 Data-2

(b) Interleaved AGP and PCI transactions. A PCI transaction (A, Data) is inserted between
AGP data transfers Data-2 and Data-3. The PCI transaction cannot be pipelined, and wait
states must be inserted when necessary.

A Data-3Datawait states

A1 A2 Data-1 A3 Data-2 Data-3

(a) Pipelined AGP transactions. Two requests (A1, A2) are
followed by a data transfer (Data-1) and a third request (A3).

Figure 11 - AGP bus transaction pipelining and interleaving

Demultiplexed Address and Data Transfers
In Figure 11 and in the above discussion, we have assumed that the multiplexed address/data bus is
used to perform address transfers, as in the PCI bus. AGP defines a separate, optional, 8-bit address
bus, and supports demultiplexed address and data transfers. In conjunction with pipelining, this
feature enables 100% use of the main bus for data transfers, even when data transfers are short.
(Compare this with the PCI bus, where only long burst transactions approach full utilization of the
bus for data transfers.) The width of this sideband address bus is limited to 8 bits to keep the pin count
down. Each transfer on the bus consists of two 8-bit phases, for a total of 16 bits.

A full AGP request is broken into three 16-bit parts, referred to as Type 1, Type 2, and Type 3. The
encoding of the three types, where A is a bit of the address field, L is a bit of the transfer length field,
and C is a bit of the command field is shown below. Note that the address field is split across the three
types.

Type 1: 0AAA AAAA AAAA ALLL

Type 2: 10CC CC-A AAAA AAAA

Type 3: 110- AAAA AAAA AAAA

Hence a full request consists of 33 address bits, four command bits (CCCC), and three bits (LLL) that
determine the length of the transfer in 8-byte increments. The address bits are the 33 upper bits of a
36-bit address; memory may be accessed at 8-byte boundaries, and the lower three bits of the address
are always zero. Type 1 contains the 12 least significant bits of the address. Once a full request is
issued registers retain the Type 2 and Type 3 parts, and as long as these two parts do not change only
the Type 1 part has to be transferred for each request. Because of locality, this is common occurrence.
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4. Bus Design Principles

4.1 The physics of the backplane bus
In this section we are going to discuss the physical parameters of typical busses based on backplanes.
We will show how the bus speed depends on the number of slots, and more specifically on the total
capacitance of each signal.

A high speed signal on a backplane bus acts as a transmission line, whose characteristic impedance
and propagation delay are given by:

Z L C0 =  [1]

t l LCpo = [2]

Where:

L Distributed inductance per unit length

C Distributed capacitance per unit length

l Length of the bus signal.

For a typical microstrip backplane, we can calculate the following equations:

( ) ( )[ ]Z L C h w t0 87 598 08= ⋅ +ln . . ohms [3]

t po r= +1017 0 475 0 67. . .ε ns/ft [4]

Where:

εr Relative dielectric constant of the PCB material (typically εr = 4.7)

r, t, h See Figure 12.

Where:

Dielectric Insulation h

w

t

Ground Plane

Signal Line

Figure 12 - Cross section of a microstrip bus line

If we substitute typical values of t = 1.4 mils, w = 25 mils, h = 1/16 inch, we get: Z0=100 ohms and
tpo=1.7 ns/ft.

These values correspond to an unloaded backplane. If we add slots to the system, the total capacitance
on every signal is now CL, and the new values for a loaded backplane are:

( )Z Z C CL L= +0 1  [5]
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( )t t C CpL po L= ⋅ +1 [6]

Where:

CL Distributed load capacitance per unit length

A typical unloaded backplane has a typical capacitance of 20pf/ft. However, a typical backplane bus
has 15 slots per foot. With a typical 3-5pF for each connector, and 10-15pF for the actual signal
transceiver, we get CL=300 pF/ft, and the loaded backplane parameters are now:

( )Z L = + =100 1 300 20 25  ohms [7]

( )t pL = ⋅ + =17 1 300 20 68. . ns/ft [8]

The slow propagation delay is only one problem. Another problem arises, which is the current that
needs to be driven by the bus transceiver. A transceiver drives two bus lines (assuming its in the
middle of the bus), at a tyical 3V swing. The current required is:

( )I V Z mAD L= =3 2 240 [9]

this is much more than a typical driver can supply.

If the driver cannot drive this amount of current, several round-trip delays to the nearest termination
are required for the waveform to cross the receiver threshold region. With each round trip delay at
2⋅tpL=13.6 ns, it may take up to 100ns for the signal to settle down.

There are a few solutions to this problem:

1.  Limit the number of slots.

2.  Use better bus drivers, with lower capacitance. For a discussion of low capacitance driver
implementation, see [(Balakrishnan, 1984)].

3.  Use reflective wave signaling. With this method, the bus is not terminated. The electrical wave
propagates down the bus, reflects off the unterminated end and back to the point of origin,
thereby doubling the initial voltage excursion to achieve the required voltage level.

As we will see later, these solutions are used by PCI.

4.2 Synchronous vs. Asynchronous busses
Synchronous buses are called synchronous because all the bus signals are sampled on the edge of a
system clock. All signals obey the setup and hold requirements relative to the clock signals. This has
the advantage that no handshaking is needed to transfer a single word. Asynchronous buses, on the
other hand, are handshaking data transfer without any central clock signal. Control signals can
change anytime without any restrictions.

Let us demonstrate this with a small example:

Bus A is an asynchronous bus transferring data in one direction, with REQ# and ACK# active as
handshake lines:

1. Source drives data.

2. Source asserts REQ# to signal that the data is ready.

3. Target samples data.

4. Target asserts ACK# to signal it has taken the data.

5. Source deasserts REQ# after ACK# is asserted, otherwise the Target may assume that another
transfer is taking place since REQ# is still low.
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6. Target deasserts ACK# after REQ# is deasserted, otherwise the Source may assume on the next
transfer that ACK# is asserted because of the next transfer when it's in fact asserted from the last
transfer.

0ps 20ns 40ns 60ns 80ns 100ns 120ns 140ns

REQ#

ACK#

BUS0 X 0 X 1

Figure 13 - 4 Phase Asynchronous data transfer

Bus B is a synchronous bus transferring data in one direction, with REQ# and ACK# active as
handshake lines:

1. Source drives data and asserts REQ# to be sampled on the rising edge of the next clock pulse.

2. If the Target intends to sample the data on the next clock, it asserts ACK#. Otherwise, ACK#
remains deasserted. ACK# will be sampled only on the next clock edge.

0ps 50ns 100ns 150ns 200ns 250ns 300ns

CLK

REQ#

ACK#

BUS0 0 1 2 3

Figure 14 - Synchronous data transfer

On the 1st rising clock edge, REQ# is asserted and the data is ready. Since ACK# is also asserted,
data is sampled.

On the 2nd clock rising edge REQ# is deasserted, since data is not ready yet.

On the 3rd clock rising edge REQ# is asserted, but ACK# is deasserted, so data transfer doesn't take
place.

On the 4th rising edge, REQ# is still asserted with the previous clock data, but now ACK# is asserted,
so data is sampled.

On the 5th rising edge, Both REQ# and ACK# are asserted, so a new data item is sampled.

On the 6th rising edge, Both REQ# and ACK# are asserted, so a new data item is sampled.

4.2.1 The relative merits of Synchronous and Asynchronous Buses
1. Asynchronous bus speed depends only on the speed of the source and the target. A faster target

and a faster source means faster transfer rate.

2. Synchronous bus wait states are always an integer multiple of the clock period, so in average,
half a cycle is always wasted on a synchronous bus for wait states. A synchronous bus with a
40ns clock cycle, for example, requires 2 cycles i.e. 80ns to access a 50ns RAM. An
asynchronous bus might take 50ns plus some overhead caused by handshaking.

3. A synchronous bus samples all data by the clock edge, all the signals must be valid by the clock
edge. Since the clock speed is fixed, this usually means that the number of loads the bus can
drive is limited since load capacitance may limit the signal switching speed below the clock
speed. The PCI bus, for example, is limited to 10 loads. since every expansion slot equals 2 loads
(the connector counts as one load), this limitation translates to 4 expansion slots. On-board PCI
peripherals count as only one load. It is possible to design synchronous buses with a large
number of loads, but it requires a lower clock speed, which is really a waste if most installations
uses only 2 or 3 slots. Asynchronous buses, on the other hand, will dynamically adjust to a much
larger variety of bus conditions. A 20 slot asynchronous bus may be slower than a 3 slot
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asynchronous bus, but it works. We have demonstrated in section 4 that the speed difference
between an unloaded bus and a 15 slot bus may be up to a factor of 4.

4.2.2 Estimating timing requirements of a synchronous bus
We assume that the bus control logic, which limits the effective data transfer rate of the bus is
implemented in a PAL. PALs, or Programmable Logic Arrays, are general purpose, programmable
components, used to implement logic equations. This is a simplified model, but is sufficent for us. In
[(Kunkel & Smith, 1986)] a much more complex model can be seen, which also takes into account
clock and data skew. It also breaks down the flip flop structure into gates for the timing analysis.

A timing module of a PAL in a synchronous mode is:

Logic
Array Register

tSU tCO

Figure 15 - Synchronous logic timing model

The parameters are:

tSU Minimum setup time required for the incoming data to be valid prior to the clock

tCO Maximum guaranteed time from the rising clock edge to output valid.

In a synchronous bus, all the signals are changed on the rising clock edge (and hence are valid after
tCO), travel through the bus (we assume a propagation delay of tBUS), and must be valid before the next
rising clock edge (hence a setup time of tSU). Since a valid data might be transferred every clock cycle,
the maximum data rate is:

( )F
t t tsync

CO BUS SU

=
+ +

1
 [10]

4.2.3 Estimating timing requirements of an asynchronous bus
A timing module of a PAL in an asynchronous mode is:

tPD

Logic
Array

Figure 16 - Asynchronous logic timing model
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The parameters are:

tPD Maximum guaranteed time from data input to data output.

In an asynchronous bus, a bus transaction is completed after N sequential bus events. A bus event can
be defined as a change in one of the bus signals causing another bus signal to change. A complete bus
transaction can be described as a connected graph made of bus events. In our asynchronous bus
example, the bus transaction was made of 4 events (REQ# going low, causing ACK# to go low,
causing REQ# to go high, causing ACK# to go high). We can assume that a bus event will take a
minimum time of tPD, so the data rate of our asynchronous bus example is:

( )F
t tasync

PD BUS

=
⋅ + ⋅

1
4 4

 [11]

In reality, this is a bit more complicated. When ACK# goes high, for example, we can transfer the
next word of data. Since REQ# going low qualifies the data as valid, it must be asserted after the data
is valid, so if it takes tDO to produce the next data word on the bus, then REQ# will go down only after
max(tPD, tDO) after the last cycle ended. We can also assume it takes tDO to sample the data on the
target, so ACK# will go down only after max(tPD, tDO). So, the data rate is really more like:

 ( )F
t t t tasync

PD BUS PD DO

=
⋅ + ⋅ + ⋅

1
2 4 2 max( , )

 [12]

For most PALs, the following rule of thumb holds: t t tSU CO PD< < , but: t t tSU CO PD+ > . Also

usually: t tPD DO< .

4.2.4 Improved asynchronous bus protocols
The asynchronous bus protocol we have shown is really the slowest form of an asynchronous bus.
Here are two simple methods to increase the data rate:

1. We can assume that the source and the target will not miss the REQ# and ACK# assertions, so
we make them into pulses, which means that REQ# is deasserted without waiting for ACK# to
be asserted, and ACK# is deasserted without waiting for REQ# to be deasserted. This cuts down
the data rate to:

 ( ) ( )
1

2 2
1

4 2⋅ + ⋅
≥ ≥

⋅ + ⋅t t
F

t tPD BUS
async

PD BUS

[13]

2. An even better method is to use both edges of REQ# and ACK#, so that we don't need to deassert
them at all. For example, when REQ# goes high to low, a word is transmitted. When REQ# goes
low to high, the next word is transmitted. ACK# can work the same way. This way we can
increase the data rate to:

  ( )F
t tasync

PD BUS

=
⋅ + ⋅

1
2 2

[14]

 This can be shown on the following timing diagram:

0ps 20ns 40ns 60ns 80ns 100ns

REQ#

ACK#

BUS0 X 0 1 2

Figure 17 - 2 Phase asynchronous data transfer
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4.2.5 Metastability Considerations for Asynchronous buses
Usually, even when asynchronous buses are used, they end up driving a synchronous microprocessor.
This means that in practice, the asynchronous bus events must be synchronized to a local clock on
each target. This limits performance even further for two reasons:

1. As stated, the time it takes to response to a synchronous event is usually longer than responding
to an asynchronous event since t t tSU CO PD+ > .

2. In order to synchronize an asynchronous signal, it must be sampled by a at least one register, in
order to prevent metastability2. This adds even further delay. A good example is the MC68020
and MC68030 microprocessors which use an asynchronous bus externally, and synchronizes it
internally to the processor's clock, adding one extra clock cycle delay for every input signal. This
is one of the reasons the MC68040 uses a fully synchronous bus instead.

4.2.6 Selecting a bus type
As we have demonstrated, both bus types have limitations. An asynchronous bus can adapt well to
different number of peripherals on the bus by achieving better performance on a backplane with a
smaller load. A CMOS based asynchronous bus can drive a large number of slots or a very long bus
(VME is a good example of an asynchronous bus with many slots) without any problems, even at the
price of reduced performance. A synchronous bus on the other hand will work faster, but will not
work at all if the bus is overloaded or made longer, causing the total propagation delay to exceed the
clock cycle time. If a synchronous bus is designed in advance to support a large number of slots or a
long backplane, then a worst case design rule dictates lower performance, even when the same bus is
not loaded with extra slots, because the clock rate is fixed.

4.3 Synchronous design methodologies
Designing synchronous circuits can be easier when general design techniques are applied. We will
review some of these techniques and see how it can help us design synchronous circuits.

4.3.1 The general synchronous models
A synchronous circuit can be described in a general way by the following diagram.

Clock

Combinatorial
Network RegistersInputs

Outputs

Figure 18 - The general synchronous model

The combinatorial block in the diagram represents a network of basic gates with no feedback paths.
Loops may be closed only through synchronous registers. Synchronous circuits work by latching a
new state only on a clock edge. This means that as long as the slowest path in the combinatorial
network has a faster propagation delay than the clock cycle time, the synchronous timing
requirements will be held. If the clock cycle is faster, the setup timing requirements on the register
inputs may be violated.

                                                       
2 Metastability occurs when a signal that is latched by a clock edge on a register is changing within the defined

tsetup and thold. In this case, the register output is undefined, and may exhibit unusual effects such as
oscillations, for an arbitrarily long time. Metastability cannot be prevented, but it can be statistically reduced
to a low probability, well below the expected lifetime of the product.
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The maximum clock frequency of the above circuit, is therefore:

F
t t tco su pd

max = + +
1

[15]

4.3.2 Synchronous Logic design
Figure 18 represents the general structure of a synchronous logic circuit. We will now provide an
example of a typical circuit, as implemented using programmable logic chips.

The original combinatorial block in Figure 18 was broken into multiple combinatorial blocks,
representing the basic units supported by the logic devices in use. These blocks are typically a 4- to 6-
input arbitrary expression in FPGA chips, while in PLD and CPLD chips these expression might have
up to 20 to 36 inputs, but with a limited number of product terms. For a general introduction to
CPLDs and FPGAs, see sections 6.1.1 and 6.1.2.

When designing synchronous logic circuits, the circuit must obey a few technical requirements:

1.  Setup and hold time requirements on input pins.

2.  Clock to output (tCO) requirements on output pins.

3.  Maximum path length between registers inside the chip, and between chips.

It is also important to remember that CPLDs, due to their fixed timing model usually include the
signal routing delay when calculating tPD, while FPGA timing calculations must include this term
separately, since it depends on the specific routing that was done. Different timing can be achieved by
placing the same logic at different places across the chip.

4.3.3 Optimizing Synchronous Logic circuits
In the following section, we will show a few techniques to optimize a synchronous circuit. The prime
objective of all these optimizations is to increase the maximum clock rate at which the
synchronous circuit can operate. We will discuss three main techniques for achieving this goal:

1.  Retiming.

2.  Fanout control

3.  Pipelining.

We will draw a sample circuit which will be used to illustrate some of the techniques. The circuit
below is a parity generator using both parallel and serial techniques. The circuit front end is a parallel
8 to 1 parity generator, followed by a single bit serial parity generator.
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Figure 19 - Parity generator example

As we can see, data is received in groups of 8 bits, which are passing a single combinatorial level (for
the enable logic), 3 more combinatorial levels (producing a single parity bit), and then another
combinatorial level, mixing the previous parity bit with the new bit. The result is then sampled in the
output register. Ignoring routing delays, the maximum frequency of this circuit is:

( ) ( )F
t t t t t t t t tsu pd su pd co su pd pd co

max
max , max ,

=
+ + +

=
+ +

1

5

1

4
[16]

In the next few sections we will see how we can increase this frequency by using the 3 techniques
mentioned above.

Retiming
The basic principle behind retiming is balancing the various combinatorial delays in the system. A
combinatorial delay begins at the input to a combinatorial gate, which can be either a circuit input
(I0-I7, EN), or the output of an internal register (Output Q of D0). The combinatorial delay ends at
either the circuit output (none here), or at the input of an internal register (Input D of D0). If we
measure all the possible paths and sort them according to their delay, our path delays will range from
tmin to tmax. Unfortunately, the maximum frequency is determined solely by we tmax. It is obvious from
here that if the total amount of delay in a system is fixed, it is best to distribute it evenly among all
paths. By using retiming techniques, we can do exactly that. We can short some paths at the expense
of some other paths. Retiming we can use the following basic transform:
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Figure 20 - Retiming transformation

Using this transformation, we can re-arrange Figure 19 like this:
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Figure 21 - Parity generator example - retiming example no. 1

We have now reduced the longest path , and now we get:

( ) ( )F
t t t t t t t t tsu pd su pd co su pd pd co

max
max , max ,

=
+ + +

=
+ +

1

4

1

3
[17]

We have to remember that this is at the expense of the output path which is now slightly slower. We
can do this trick again, and end up with:
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Figure 22 - Parity generator example - retiming example no. 2

We have now reduced the longest path again, at the expense of the output path.

To summarize, we use retiming to redistribute gate delays among different paths, without changing
the circuit behavior, provided we use a clock slow enough.
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Fanout control
Fanout control is used when a single signal has to drive a large number of inputs. When a large
number of inputs are driven from the same signal, there are two main problems:

1. The accumulated capacitance of all the inputs is causing the signal to propagate slower.

2. The signal routing across an FPGA or an ASIC becomes longer.

In order to solve the problem, we usually use the following transformation:
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Figure 23 - Fanout control by replicating registers

By using redundant registers, long paths are broken into multiple, parallel paths.

Here is an example of a sample chip layout, and how it is affected by replicating pipeline stages:

Figure 24 - The effect of register replication on FPGA/ASIC path length

As we can see, the layout on the left has one very short path and four very long paths. The layout on
the right has replicated the single register into two separate copies, creating six medium length paths,
thus reducing the maximum path length over the original layout on the left.

To summarize, we control fanout to redistribute routing delays across more, shorter paths, without
changing the circuit behavior.

Pipelining
System performance can be measured by more than one parameter. Latency is the time it takes an
input signal to propagate through the system to the output. Throughput is the rate at which the system
can process new input signals. For example:
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Figure 25- Latency vs. throughput

This circuit can accept new data every tco+2*tpd+tsu, but the input to output latency is
2*tco+4*tpd+2*tsu. If D0-D3 were removed, the latency would be shorted to tco+4*tpd+tsu, but the
throughput would drop, and the circuit would accept new data only every tco+4*tpd+tsu.

If a system has N combinatorial levels, its latency and throughput is N * tPD. When a pipeline stage is
introduced, the latency is increased to tCO + N * tPD + tSU but the throughput can drop to
tco+N/2*tpd+tsu, if the pipeline stage is placed after N/2 combinatorial levels. Since tPD is usually only
slightly more than tCO + tSU, it usually pays of to introduce pipeline delays for N>2, if the design
objective is to increase throughput. If we include routing delays, the effective tPD is even larger,
making pipeline even more important.

A pipeline stage can be easily added to any system, by adding a single delay to the system outputs
which can be delayed. By using retiming techniques, these delays can be moved backward along some
of the paths as needed. Since the system throughput is dominated by the longest path, it is best to
distribute the delay among all the paths as evenly as possible, as discussed above,

To summarize, we use pipelining to redistribute routing and gate delays by splitting long paths into
multiple, shorter paths, at the cost of changing the system behavior, albeit only by adding a fixed
output delay.

4.3.4 Synchronous systems with multi-phase clocks
All the pipeline examples we have shown so far, assumed that a single clock is driving the whole
pipeline at exactly the same time. In reality, this becomes an obstacle. Unlike the pipeline which
usually uses very short, point to point lines, the clock signal is distributed across the whole pipeline,
and it is not always practical to expect a uniform clock without any phase difference across all the
pipeline.
Instead, we may use a different approach. We will bisect the pipeline in such a way that some
registers (register group A) will be driven by clock A, while the rest (register group B), will be driven
by clock B, which is a delayed copy of clock A (obeying a few timing rules). We will make sure that
no signal is sampled by both register group A and register group B.
When different clocks are used for two neighboring stages, it is impossible to have overlapping
setup/hold timing, so a minimal clock delay must be guaranteed, to make sure that the clock delay is
greater than register setup time, and the clock-to-output time. This means that every pipeline stage is
updated separately, while the other register is idle. This requirements limits the maximum frequency
of such a pipeline, and it’s minimum clock cycle time is 2(tSU + tCO + tPD).
We can illustrate the pipeline in the following schematic diagram:
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Clock A Clock B

Register Group A Register Group B

Figure 26 - Grouping different synchronous clock zones

The timing diagram below demonstrates the timing calculations done in order to ensure proper timing
margins. Since all registers are the same type, all registers share tSU, tCO. The timing diagram shows
two identical clocks, A and B, with a phase difference. Data_A_Out drives Data_B_In and vice
versa. tBA and tAB are the timing margins that must be kept.

0ps 20ns 40ns 60ns 80ns 100ns 120ns

ClockA

Data_A_In

Data_A_Out

ClockB

Data_B_In

Data_B_Out

tCOS tCOS

tCOS tCOS tCOS

tSU tSU tSU

tSU tSU

tAB

tBA tBA

tSU

tCOS

Figure 27 - Timing analysis for multi phase synchronous systems

We can further divide Register Group B into two groups using two clocks, and so on. The result is
that we can have up to N different groups as long as any signal in the pipeline drives only one register
group.
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5. The PCI bus operation

5.1 The PCI Bus Signal Description
The PCI Bus is a multiplexed, synchronous, 32 bit bus. A minimal PCI target interface consists of 47
signals, while a master or master/target interface requires a minimum of 49 signals. The following
paragraph summarize the PCI signals. It is not intended to be a PCI design reference, only to illustrate
very generally how PCI works. In order to design a fully compliant PCI card, please refer to the PCI
standard [(PCISIG, 1995)].

5.1.1 Signal types
The PCI standard defines a few signal types:

• t/s
 Tri State. Signals of this type are shared bus signals and may be driven by only one driver at a

time. The rest of the bus peripherals should tri-state signals of this type when not in use. When
one driver stops driving a t/s signal, a new driver must wait at least one cycle before it can drive
the same signal. This is called bus turnaround and is used to prevent any case where two or more
drivers are trying to drive the same line.

 Example: AD[31:0], C/BE#[3:0], PAR, REQ#, GNT#, AD[63:32], C/BE#[7:4], PAR64.

• s/t/s
 Sustained Tri-State. Signals of this type are tri state signals. The difference between these

signals and normal t/s signals is that any driver driving these signals must drive them high for at
least one cycle before tri-stating them. By driving the signal high, the line is charged so when it
is tri-stated one cycle later, it will stay high. This allows rapid switching from one driver to
another, without undefined logic levels in between.

 Example: FRAME#, TRDY#, IRDY#, STOP#, LOCK#, DEVSEL#, PERR#, REQ64#,
ACK64#.

• o/d
 Open Drain. Signals of this type are wired-ORed. Multiple drivers may drive this signal to a low

state. When no driver is driving the signal, a pull-up resistor is used to keep it in the high state.
 Example: SERR#, INTA#, INTB#, INTC#, INTD#.

• in
 Input. Signals of this type are always input.
 Example: CLK, RST#, IDSEL, TCK, TDI, TMS, TRST#.

• out
 Output. Signals of this type are always output.
 Example: TDO.

5.1.2 System Signals
CLK
All the PCI Bus signals are fully synchronized to the PCI Clock signal, CLK.

RST#
This is the PCI Bus reset signal. It is asynchronous to the PCI clock signal.

5.1.3 Address/Data and Command
AD[31:0] t/s
This is the multiplexed address/data bus. All PCI transactions begins by a Master driving the address
on the 1st cycle. When the Master is doing a read transaction, the 2nd cycle is a turnaround cycle in
which the Master tri-states the bus and the target enables it’s data buffers to drive the results on the
bus. The actual data is transferred only beginning on the 3rd cycle onwards. When a Master is doing a
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write transaction, it can begin driving the write data on the 2nd cycle, because no turnaround cycle is
needed (the bus does not change direction).

C/BE#[3:0] t/s
These are dual function pins, and are always driven by the Master. During the 1st cycle, when
AD[31:0] is driving the address, C/BE#[3:0] is driving the bus command (Memory read, Memory
write, etc.). When AD[31:0] is driving the data, C/BE#[3:0] drive the byte enable for each byte lane
on the data bus. During a write transaction, the Master drives C/BE#[3:0] with information
specifying which byte lanes contain valid data. During a read transaction, the Master drives
C/BE#[3:0] with information specifying which byte lanes are requested by the master.
The byte enable signals are active low and are summarized in the following table:

Byte Enable Signal Maps To
C/BE#3 AD[31:24]
C/BE#2 AD[23:16]
C/BE#1 AD[15:8]
C/BE#0 AD[7:0]

Table 8 - PCI byte enable mappings

The PCI Bus commands are:

C/BE#3 C/BE#2 C/BE#1 C/BE#0 Command Type
0 0 0 0 Interrupt Acknowledge
0 0 0 1 Special Cycle
0 0 1 0 I/O Read
0 0 1 1 I/O Write
0 1 0 0 Reserved
0 1 0 1 Reserved
0 1 1 0 Memory Read
0 1 1 1 Memory Write
1 0 0 0 Reserved
1 0 0 1 Reserved
1 0 1 0 Configuration Read
1 0 1 1 Configuration Write
1 1 0 0 Memory Read Multiple
1 1 0 1 Dual Address Cycle
1 1 1 0 Memory Read Line
1 1 1 1 Memory Write and Invalidate

Table 9 - PCI commands

PAR t/s
The PAR signal used to ensures even parity across the AD[31:0] and C/BE#[3:0] signals, and is
always valid one cycle after the information on AD[31:0] is valid, i.e.:
1.  One cycle after an address phase (1st PCI cycle).
2.  One cycle after a Master asserts IRDY on a write transaction (i.e. data ready to be written).
3.  One cycle after a Target asserts TRDY on a read transaction (i.e. data is ready to be read).

5.1.4 Interface Control
FRAME# s/t/s
The FRAME# signal is used to start a PCI transaction. When the PCI bus is Idle, FRAME# is high.
When a Master begins a new PCI transaction, FRAME# is driven low. FRAME# is kept low during
all the transaction, until (but not including) the last data item transferred. When a Master read or
writes the last data item in a burst access cycle, FRAME# will be driven high when IRDY# is driven
low for the last time.
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IRDY# s/t/s
IRDY# is used by the Master to indicate its readiness to perform data transfer on a word by word
basis. When a Master is reading data, it will drive IRDY# high, until it can accept a data word. The
Master will then drive IRDY# low on the same cycle it samples the data from the Target. When a
Master is writing data, it will drive IRDY# high until AD[31:0] contains a valid data word to be
written. It will then drive IRDY# low on the same cycle AD[31:0] is valid for write. The actual data
transfer will take place only when both IRDY# and TRDY# are active. Once driven low, IRDY#
cannot be driven high until the current bus transaction is done (i.e. TRDY# or STOP# also driven
low).

TRDY# s/t/s
TRDY# is used by the Target to indicate its readiness to perform data transfer on a word by word
basis. When a Target is accepting data (Master writing data), it will drive TRDY# high until it can
accept the data word. The Target will then drive TRDY# low on the same cycle it samples the data
item from AD[31:0]. When a Target is supplying data (Master reading data), it will drive TRDY#
high until it can drive AD[31:0] with the requested data. The Target will then drive TRDY# low on
the same cycle it drives the requested data item on AD[31:0]. The actual data transfer will take place
only when both IRDY# and TRDY# are active. Once driven low, TRDY# cannot be driven high until
data is transferred (i.e. IRDY# also driven low).

DEVSEL# s/t/s
DEVSEL# is used by the Target to acknowledge the Master it is handling the current bus cycle.
When a Master begins a read/write transaction, it drives FRAME# low on the 1st cycle, together with
the requested address on AD[31:0]. All the Targets on the bus recognize the beginning of a new
transaction by FRAME# going low, and compare the address on AD[31:0] with their base address
registers. The Master expects one Target, who’s address range contains the address driven on
AD[31:0] to respond with a low DEVSEL# within 4 clock cycles. If no target responds within 4
cycles, the Master assumes that no Target exists on the bus at the specified address, and the
transaction is aborted by the Master.

IDSEL# in
IDSEL# is used by the Master to perform system configuration. A target will accept a configuration
transaction only when IDSEL# is driven high on the 1st cycle. Since every PCI slot has a unique
IDSEL# line, every slot can be uniquely accessed even before it's configured 3 . Empty PCI slots can
be identified since no DEVSEL# would be driven as a response to a configuration access for that slot.

STOP# s/t/s
STOP# is used by the Target to end the current burst read or write transaction. If a Master samples
STOP# low during a data word transfer, it must disconnect the bus and end the transaction. The state
of TRDY# and DEVSEL# while STOP# was driven indicates the termination type: Disconnect with
data, Disconnect without data, Target retry , or Target abort.

5.1.5 Arbitration
REQ# t/s4

REQ# is used only by bus Masters. When a Master wants to begin a transaction, it must first acquire
the bus by driving REQ# low. All the REQ# lines from all the PCI slots supporting bus masters are
connected to a central PCI Bus Arbiter, which will grant the bus only to one PCI Master at a time.

                                                       
3 Note: The PCI standard does not define a standard way in which a Master can drive a specific IDSEL line! On

most PC based platforms, each slot has its IDSEL line connected through a resistor to one of the AD lines,
usually beginning with AD16 for the 1st slot. A Master will select the specific slot configuration space by
making sure it drives an address enabling only a single card with IDSEL. Driving more than one card with
IDSEL will cause bus clashes when both cards drives DEVSEL#, trying to accept the cycle, and may even
lead to hardware malfunctions.

4 Notice that both REQ# and GNT# are marked as t/s. This is because the signals must be tri stated when the
PCI bus is reset.
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GNT# t/s
GNT# is used only by bus Masters. GNT# is driven low by the central PCI Bus Arbiter to the PCI
Bus Master when the Master is granted the use the shared PCI bus. GNT# lines are unique to every
PCI slot supporting bus Masters. When a Bus Master receives GNT# low, it is allowed to access the
PCI bus only after the current cycle taking place is ended. This is indicated by both FRAME# and
IRDY# being high.

5.1.6 Error Reporting
PERR# s/t/s
PERR# is used by a PCI card to report parity errors on the data phase. PERR# is driven by the
Master during a data read, and by the Target during a data write. PERR# timing is one cycle after
PAR is driven with a valid value. (PAR is driven by the Target during a data read, and by the Master
during a data write). Reporting parity error via PERR# is optional, and can be turned off by clearing
a control bit in the Target or Master configuration space. Also notice that address phase parity errors
should not be reported with PERR#.

SERR# o/d
SERR# is used by the Target or the Master to signal a system error condition, such as parity error
during a transaction address phase (The 1st cycle, when the address is transmitted). Unlike PERR#,
SERR# can be driven by any PCI target at any time since it is open drain. It is pulled high by a
resistor located on the motherboard, or on another central resource. SERR# should be used with care,
since on most system today it is meant to indicate a fatal system error which might imply a system
reset!

5.1.7 64 Bit Extension
The following signals exists only on 64 bit PCI cards or slots. The signals are available on a
secondary connector, similar to the ISA 16 bit extension of the XT bus. Using 64 bit cards on 32 bit
slots (in 32 bit mode of course) is permitted, as well as using 32 bit cards in 64 bit slots.

AD[63:32] t/s
AD[63:32] are used to hold the extra 32 data bits during 64 bit data transfer, and to hold the extra 32
address bits when accessing a resource located in the 64 bit memory space.

C/BE#[7:4] t/s
During the address phase of a 64 bit PCI transaction, C/BE#[7:4] are unused. During the data phase,
the C/BE#[7:4] lines are used just like the C/BE#[3:0] lines, indicating which byte lanes are valid.

PAR64 t/s
PAR64 is used in the same was as PAR, but contains the parity only for the AD[63:32] and
C/BE#[7:4] lines. It obeys the same timing rules as PAR.

REQ64# s/t/s
REQ64# is used by a 64 bit master to request a 64 bit cycle. It obeys the same timing rules as the
FRAME# signal.

ACK64# s/t/s
ACK64# is used by the target to accept a request for a 64 bit cycle. It obeys the same timing rules as
the DEVSEL# signal.
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5.1.8 Bus Snooping
The bus snooping lines allows a PCI bus master containing a write back cache to maintain the data
coherency on systems with multiple bus masters. For example, Bus master “A” contains a modified
copy of memory location “X” on his write back cache. In the same time, other bus masters may
independently try to modify memory location “Y”, sharing the same cache line as memory location
“X”. Since the cache logic writes back to memory whole cache lines, Bus master “A” must write back
it's modified copy of the cache line before the other master can write location “Y”, because otherwise
any new value for “Y” would be overwritten when Bus master “A” would write back its modified
cache line containing “X”.

SDONE in/out5

SDONE is used by a bus master containing a write back cache to signal the currently addresses target
not to acknowledge the current cycle until the master finishes searching for the specified address in its
write back cache. SDONE Will be high during the search, and low on the 1st cycle the search is
completed.
SBO# in/out
SBO# is driven high during the snoop address search (see above). If the address requested is cached
in the local write back cache and is dirty, SBO# will go low on the same cycle SDONE goes high, to
signal a back-off command to the target, so the modified cache line can be flushed. If SBO# goes high
when SDONE goes high, the requested address is not in the master’s cache, and the cycle can
continue normally.

5.1.9 JTAG (IEEE 1149.1)
JTAG is an IEEE standard defining a serial bus for system testing. JTAG is used by many chip
vendors for:

1. Board testing
 A PCB connectivity netlist can be verified by bypassing the output and input logic on the chip's

I/O pads and drive out test values. By chaining all the chips on a PCB with JTAG, it is possible
to test the PCB connectivity after manufacturing or during maintenance by driving values
through an I/O pin using the JTAG port of the source chip, and reading those values on another
I/O pin using the JTAG port on the target chip.

2. Software debugging of Microprocessors
 Most new microprocessors supports JTAG for the use of a background debug mode. This mode

allows reading and writing internal CPU registers, inserting breakpoints, single stepping the
CPU and even get a limited back trace. (For example, some members of the Motorola 683XX
family). This gives designers most of the capabilities of an expensive ICE at fraction of the price.

3. In-System-Programming of programmable logic devices
 Most of the large pin count FPGAs and CPLDs today use PQFP packages which are soldered

directly to the board during manufacturing. When using multiple chips it is very expensive to
program these chips on a programmer. It is also impossible to reprogram the devices once they
are soldered. Instead, CPLDs and FPGA chips are soldered to the board while they are still
blank, and are chained together on the board by a JTAG chain. A single JTAG connector on the
board can then be used to program all the chips without using an expensive and unreliable PQFP
adapter for off-board chip programming.

Unfortunately, the PCI committee never defied a standard way to access the JTAG port on the PCI
motherboard, nor did it define the JTAG bus topology. Because of this, only a few PCI designs
supported the JTAG pins on the PCI connector. Some motherboard manufacturers has even went as
far as violating the PCI spec and using the JTAG lines for an entirely different purpose such as Video
sideband signals!

TDI
TDI is a Test Input pin, and it is used to shift data and instructions into the JTAG port.

TDO
TDO is used to shift data out from the JTAG port.

                                                       
5 SDONE and SBO# are in for PCI targets and out for PCI masters.
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TCK
TCK is the JTAG clock. It is used to control the data shifting in and out of the JTAG port.

TMS
TMS is used to select the JTAG mode.

TRST#
TRST# is used to reset the JTAG port.

5.2 The PCI Bus Commands
As we have seen in section 5.1.3, the PCI Bus has defined 12 different commands and reserved 4
commands. The following paragraph contains a very short description of all the PCI Bus commands.
We will take a closer look at the commands later, in section 5.5.

Memory Read
A Memory Read command is used by a PCI bus master to read one or more memory locations from a
PCI bus target. It is recommended that Masters use this command when reading less than one cache
line.

Memory Read Line
This command is the same as the Memory Read command, with the exception that the bus master is
intending to read at least a cache line. This is a hint to the Target, which may use this hint to prefetch
more data in advance, or it may choose to ignore it and treat this command in the same way as the
Memory Read command. It is recommended that Masters use this command when reading between 1
to 2 cache lines.

Memory Read Multiple
This command is the same as the Memory Read command, with the exception that the bus master is
guaranteed to read one or more cache lines. This is a hint to the target, which may use this hint to
prefetch more data in advance, or it may choose to ignore it and treat this command in the same way
as the Memory Read command. It is recommended that Masters use this command when reading 2 or
more cache lines.

Memory Write
A Memory Write command is used by a PCI Bus master to write one or more memory locations to a
PCI target.

Memory Write and Invalidate
This command is the same as the Memory Write command, with the exception that the Master is
guaranteed to write one or more whole cache lines. This command is used to disable the snooping
mechanism, because writing an entire cache line means that any dirty data located in any cache is
now invalid and shouldn’t be written back. When using this command, the master must never write
incomplete cache lines.

I/O Read
An I/O Read command is used by a PCI bus master to read the one or more I/O locations from a PCI
target.

I/O Write
An I/O Write command is used by a PCI bus master to write one or more I/O locations to a PCI target.

Configuration Read
A Configuration Read command is used by a PCI bus master to read one or more Configuration
registers from a PCI target.

Configuration Write
A Configuration Write command is used by a PCI bus master to write one or more Configuration
registers to a PCI target.



Design and Implementation of PCI Bus based systems

53

Interrupt Acknowledge
This command is used by X86 platforms to pass the interrupt acknowledge cycles needed when a CPU
communicates with a 8259 Programmable Interrupt Controller. The X86 family chips has only one
INTR line, and the PIC is using the Interrupt Acknowledge cycle to notify the PCU which IRQ line
has been activated. In most PCI based PC motherboards, the PIC chips are NOT on the PCI Bus, and
all the Interrupt Acknowledge cycles appear on the CPU local bus and not on the PCI Bus.

Special Cycle
The Special Cycle command is used to send an event to all the PCI Bus targets. The event is identified
by an event code, which is allocated by the PCI SIG. Predefined events includes the X86 shutdown
and halt events. Unlike other cycles, Special cycles are not acknowledged by the PCI bus targets, i.e.
DEVSEL# is not asserted for this cycle.

Dual Address Cycle
A Dual Address Cycle is used to access a 64 bit address on 32 bit PCI slots. A Dual Address Cycle
command is sent together with the upper 32 address bits on AD[31:0] followed by the required
command (Memory or I/O R/W).

5.3 The PCI Address structure
The PCI bus recognizes 3 types of address spaces: Memory, I/O and Configuration. In the following
paragraph we will discuss these addresses spaces and describe the way an address is constructed for
the different PCI commands.

5.3.1 Memory address space
The Memory address space is the main address space used by PCI cards. A PCI memory address is 32
bit wide, or optionally, 64 bit wide. 64 bit addresses may be generated either by a 64 bit wide PCI bus
master and 64 bit wide PCI target (plugged on a 64 bit wide PCI backplane!), but can also be
generated in a 32 bit PCI slot when the Dual Address Cycle command is used. The PCI SIG
recommends all the resources occupied by a device to be mapped into the PCI memory space.

During memory read/write commands, the address is interpreted according to the following rules:

AD[31:2] Longword address in the 4GB Memory address space. Since only longword
addresses are allowed, target address are always aligned on a longword boundary,
i.e. it is impossible to have one target on address 1000h, and a different target on
address 1001h.

AD[1:0] Address increment mode, which defines how the next address in a burst sequence is
calculated. The address increment modes are indicated the following table:

AD[1:0] Mode Description
00 Linear increment mode The next word’s address in the burst will be the next

sequential address in memory after the current address.
01 Reserved
10 Cacheline wrap mode Same as Linear increment mode, but when the cacheline

boundary is crossed, the next address wraps around to the
beginning of the cacheline. When the burst length reaches the
cacheline size, the next address is incremented by the cache
line size into the same cacheline position in the next
cacheline.

11 Reserved

Table 10 - PCI addressing mode for memory read/write commands
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5.3.2 I/O address space
The PCI I/O address space is 32 bit wide, but most system does not support more than 16 bits of I/O
addresses. The PCI I/O address space is used mostly for backward compatibility with legacy hardware
on X86 based systems, and is not recommended for new designs. On most systems, I/O access is
slower than memory access, and I/O space is severely limited in the PC architecture. Note: On PCI
implementations where no I/O instruction exists, I/O space cycles may be generated by a special
mechanism, such as mapping part of the I/O space into a predefined memory area.

During I/O read/write commands, AD[31:0] contains the byte address in the 4GB I/O space. It is
possible to have I/O targets on a byte boundary. This is really important when more than one
peripheral may share addresses on a word boundary. Since data is still transferred by longwords, a
target must check the individual byte enables and disconnect when a Master tries to access bytes
outside the Target’s address space.

For Example:
Master drives an I/O write transaction with AD[31:0] = 379h. If the next data word is written with
C/BE#[3:0] = 0000b, it means bytes 378h to 37bh are meant to be written. Since 378h is below the
requested Target I/O address, it must disconnect without accepting the data!. This can be summarized
in the next table:

AD[1:0] C/BE#[3] C/BE#[2] C/BE#[1] C/BE#[0]

00b X X X X

01b X X X 1

10b X X 1 1

11b X 1 1 1

Table 11 - Legal CBE#[3:0] and AD[1:0] combinations for I/O read/write commands

5.3.3 Configuration address space
The configuration address space is a very small memory area, 256 bytes long, that is unique for every
PCI bus/device/function triplet in the system. The PCI standard defines a standard header that uses
the first 64 bytes of the header, and keeps the remaining 192 bytes user defined. Configuration space
is accessed when a configuration command is sent to a card while its IDSEL line is active. Unlike
other bussed PCI signals, IDSEL is uniquely driven into each card (a star topology), so when a card is
selected by an active IDSEL signal, it is the only active card in that cycle.

During configuration read/write commands, the address field can be interpreted in one of two ways.
Configuration Type 0 is issued from a master which is on the same bus as the target. Configuration
Type 1 is issued by a PCI Master trying to access configuration space on a PCI device hidden behind
one or more PCI to PCI bridges. Type 1 requests are intercepted by bridge devices, which may turn it
into a Type 0 request on the secondary bus, or forward it if the secondary bus is not the final
destination bus. We will take a closer look at PCI to PCI bridge devices in section 5.6.

Configuration Type 0:
AD[31:11] These lines are ignored. As we mentioned above, AD[31:16] are used in some

designs to generate IDSEL.
AD[10:8] Function Number. A single PCI card may incorporate multiple functions, each with

it’s own configuration space. Since each function has a separate configuration space,
it can be configured by a separate driver. This is very important when multiple
legacy cards are integrated on a new card, and it is desired to keep the old drivers
(for software compatibility).

AD[7:2] Configuration register number. This specifies one of 64 Long words. Only the first
16 registers are defined by the PCI standard. The rest are user defined.

AD[1:0] Always 00b.
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Configuration Type 1:
AD[31:11] Reserved.
AD[23: 16] Bus Number.
AD[15:11] Device Number.
AD[10:8] Function Number.
AD[7:2] Configuration register number.
AD[1:0] Always 01b.

5.4 The PCI configuration header
The PCI configuration contains information about the PCI card in a particular slot. Some of these
registers are read only, and some are read/write.

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Revision ID 08h

BIST Header Type Latency Timer Cache Line Size 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Base Address Register 2 18h

Base Address Register 3 1Ch

Base Address Register 4 20h

Base Address Register 5 24h

CardBus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved 34h

Reserved 38h

Max_Lat Min_Gnt Interrupt Pin Interrupt Line 3ch

Figure 28 - PCI configuration header 0

Here is a short list of some of the fields in this header:

Vendor ID

This read-only field contains a unique Vendor ID identifying the designer/manufacturer of this PCI
chip. PCI vendor ID codes are assigned by the PCI SIG (Special Interest Group) for SIG members.

Device ID

This read-only field contains a unique Device ID for this PCI device. This field is allocated by the
specific vendor designing/manufacturing the device. An operating system could use the Device ID and
Vendor ID fields to select a specific device driver for this chip.

Command

This read/write field contains a 16 bit command register. Some of the bits in this register are reserved,
and some are optional. Bits which are not implemented, must be read-only, and return 0 on read. Here
is a short explanation of all the different bits in this register.



Design and Implementation of PCI Bus based systems

56

Bit Location Description

0 I/O space enable. Writing 1 enables the device response to I/O space access. Defaults
to 0 after RST#. If device has no I/O, this bit must be hardwired to 0.

1 Memory space enable. Writing 1 enables the device response to Memory space access.
Defaults to 0 after RST#. If the device is not memory mapped, this bit must be
hardwired to 0.

2 Master Enable. Writing 1 enables bus master behavior. Defaults to 0 after RST#. If
this is a target only device, this bit must be hardwired to 0.

3 Special Cycle Enable. Writing 1 enables response to special cycles. Defaults to 0 after
RST#. If special cycles are not used, this bit must be hardwired to 0.

4 MWI Enable. Writing 1 allows a bus master to use the Memory Write and Invalidate
command. Writing 0 forces the use of Memory Write command. Defaults to 0 after
RST#. If the master does not support MWI, this bit must be hardwired to 0.

5 VGA Palette snooping enable. When 1, device must snoop VGA palette access (i.e.
snoop data on bus, but do not respond). When 0, treat like normal addresses. If device
is not VGA compatible, this bit must be hardwired to 0.

6 Parity error enable. When 0, Ignore parity errors. When 1, do normal parity error
action. If parity checking not supported, this bit must be hardwired to 0. Devices that
do not check for parity errors must still generate correct parity.

7 Address/Data stepping enable. If device does address/data stepping, this bit must be
hardwires to 1. If device does not do address/data stepping, this bit must be hardwires
to 0. If device can optionally do address/data stepping, this bit must be read/write, and
default to 1 after RST#..

8 SERR Enable. When 1, SERR# generation is enabled. When 0, no SERR# is
generated. Defaults to 0 after RST#. Cant be hardwired to 0 if SERR# not supported.

9 Fast back to back Enable. When 1, master is allowed to generate fast back to back
cycles to different targets. When 0, master is allowed to generate fast back to back
cycles only to the same targets. This bit is initialized by the BIOS to 1 if all targets are
fast back-to-back capable. Defaults to 0 after RST#.

15:10 Reserved. Must return 0 on read.

Table 12 - PCI Command configuration register

Status

This read-only field contains a status register. Some of the bits in this register are reserved, and some
are optional. Bits which are not implemented, must return 0 on read. Here is a short explanation of all
the different bits in this register.

Bit Location Description

4:0 Reserved. Must return 0 on read.

5 66MHz Capable. Return 1 if device is 66MHz Capable, 0 if only 33MHz supported.

6 UDF Supported. Return 1 if adapter requires UDF configuration file. Return 0 for
normal devices.

7 Fast Back to Back Capable. Return 1 if target is able to accept fast back to back
transactions when the transactions are not to the same target.

8 Data parity Error Detected. Implemented by PCI masters only. True if parity error
detected, PERR# set, parity error response bit is set.
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10:9 DEVSEL# Timing. 00 for Fast, 01 for Medium, 10 for Slow, 11 is reserved. These
bits must represent the slowest timing for all commands except for configuration read
and write.

11 Signaled Target Abort. Set by a target when it terminated a cycle with a target abort.

12 Received Target Abort. Set by a master when it detected a cycle ending with a target
abort. All masters must implement this bit.

13 Received Master Abort. Set by a master when it detected a cycle ending with a master
abort. All masters must implement this bit.

14 Signaled System Error. Set if device asserted SERR#. Must be implemented only by
device capable of generating SERR#.

15 Detected parity Error. Set if parity error detected. Must be set on error even if parity
error handling (bit 6) is disabled.

Table 13 - PCI Status configuration register

Revision ID

This read-only field contains a unique Revision ID for this PCI device. This field is used to identify
different versions of the same chip. For example, if different revisions of the chip contained different
bugs, a device driver software could use the Revision ID field to select different workarounds to
bypass different chip bugs.

Class Code

This read-only field contains a field describing the device type. Some of the device types identify
specific types of devices which can then be programmed by a generic device driver (for example, IDE
interface, VGA card, PCI to PCI bridge). Some other codes describe a device type, but still require a
specific device driver. (A SCSI controller, for example).  For a list of class codes please see Appendix
C.

Cache Line Size

This read/write field is filled by the BIOS or the operating system by the CPU cache line size. This
information is used by master and target devices if they support burst transfers in cacheline wrap
mode.

Latency Timer

This read/write field is used to initialize the PCI master latency timer. The latency timer is initialized
each time the PCI master device is granted the bus, and begins a countdown when its GNT# line is
deasserted. When the latency timer expires, the master must terminate its burst. This field can be
read-only for masters that does not support burst longer than two words, but must be less than 16.
Actually, not all the bits of this register must be implemented. One or more bits (beginning with the
least significant bit) can be made to return 0 instead, reducing the timer’s granularity.

Header Type

This read-only field contains a unique header type code in bits 6:0. Currently defined values are 0 for
the standard PCI header, 1 for PCI to PCI bridge header, and 2 for PCI to CardBus bridge header.
Header type codes of 3 and above are reserved. The header type controls the layout of the
configuration addresses in the range 10h to 3Fh.

Bit 7 of the header type field specifies whether this device is a multi function device. A value of 1
denotes a multi function device.

BIST

This read/write field controls Built-In Self Test for devices supporting this feature. If not used, this
field must contain 0.



Design and Implementation of PCI Bus based systems

58

Bit Location Name Description

7 BIST Capable Return 1 if device supports BIST, 0 otherwise.

6 Start BIST Write 1 to start BIST. Device will reset bit back to 0 when BIST
complete.

5:4 Reserved Must return 0

3:0 Completion Code Return 0 when completes with no errors. Non-zero values are
device specific errors.

Table 14 - PCI BIST configuration register

Base Address Register 0 through Base Address Register 5

These read/write fields are initialized by the BIOS or operating system by writing the desired base
address where the PCI device is to be located in the PCI memory map. A PCI device may use one or
more base address registers.

CardBus CIS Pointer

This read-only field is used by devices which are both PCI and CardBus compatible. It is used to point
to the Card Information Structure for the CardBus card.

Subsystem Vendor ID, Subsystem ID

These read-only fields are used to identify a specific product using a generic PCI chip. This field can
be used by device drivers to take advantage of specific features in some cards using generic PCI chips.
Subsystem Vendor ID values are assigned by the PCI SIG. Subsystem ID values are unique for every
Subsystem Vendor ID. This field is optional in PCI 2.1, but required according to Microsoft’s PC97
and PCI 2.2 (to be released soon). It must contains 0 if not used. When implemented by a PCI chip,
there is usually a way to set this field externally, most of the time through an external memory chip
connected to the PCI device. This way PCI board vendors can set this without making their own PCI
device.

Expansion ROM base Address

This is a special type of Base Address Register pointing to the card’s expansion ROM. Expansion
ROMs are optional, and may contain additional information about the card, boot code (in more than
one executable format, as well as the architecture independent OpenBoot format).

Interrupt Line

This read-write field is initialized by the BIOS or Operating system, and will contain a system specific
value identifying which hardware interrupt has been assigned to this card. This value is not used by
the card itself, but rather by the driver and operating system which reads this field to determine which
interrupt vector has been assigned for the device. This field is not used by devices not using interrupts.

Interrupt Pin

This read-only field defines which interrupt pin is used by this device. The values contained this field
are 1 to 4, corresponding to INTA# to INTD#. Devices not using interrupts should put 0 in this field.

Min_Gnt, Max_Lat

These read-only fields are used by the BIOS to calculate the desired value for the latency timer of this
device. The Min Gnt field measures, in 250us units, the minimum burst length this device requires.
The Max_Lat field describes, in 250us units, how often the device requires access to the PCI Bus.



Design and Implementation of PCI Bus based systems

59

5.5 Basic PCI Cycles

5.5.1 PCI Memory or I/O Read Cycle
The following timing diagram demonstrates a typical PCI memory or I/O burst read transaction.

1. At Clock 0 the Master begins the transaction by driving FRAME# low, the requested address on
AD[31:0], and the requested command on C/BE#[3:0] (I/O Read, Memory Read, Memory Read
Line, or Memory Read Multiple).

2. At Clock 1 the Target responds by asserting DEVSEL# low. Since clock 1 is used for bus
turnaround on read transaction (Master stops driving AD[31:0], Target starts driving AD[31:0]),
actual data transfer must begin only on cycle 2, so TRDY# and IRDY# must be high, since no
data is available yet.

3. At clock 2 both IRDY# and TRDY# are low, so the 1st data word is read (D0).
4. At clock 3 the Master is not ready to accept the new word, since IRDY# is high. The Target is

ready to transfer the next word since TRDY# is low. Since not both are low, no data is
transferred.

5. At clock 4 the master is able to receive data again, since IRDY# is low, and the 2nd data word is
transferred. Since FRAME# was high during this last cycle, both the Master and the Target end
the cycle.

6. At clock 5 the Target tri-states AD[31:0] (turnaround), and drives TRDY# high. The Master
also drives IRDY# high. This is done since IRDY# and TRDY# are sustained-tri-state lines,
and must be driven high for one cycle prior to tri-stating them. This is done in order to charge
the line, which will cause it to stay at a high level even after it is tri stated.
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Figure 29 - PCI Memory and I/O read cycle

5.5.2 PCI Memory or I/O Write Cycle
The following timing diagram demonstrates a typical PCI memory or I/O burst read transaction.

1. At Clock 0 the Master begins the transaction by driving FRAME# low, the requested address on
AD[31:0], and the requested command on C/BE#[3:0] (I/O Write, Memory Write, or Memory
Write Line).

2. At Clock 1 the Target responds by asserting DEVSEL# low. Since this is a write transaction, the
master keeps driving AD[31:0] (this time with data), and no bus turnaround cycle is needed.
IRDY# is driven low to indicate data is ready for write. Since the Target is driving TRDY#
high, it is not ready to accept the data. C/BE#[3:0] are loaded with the appropriate byte enables.

3. At clock 2 both IRDY# and TRDY# are low, so the 1st data word is written (D0).
4. At clock 3 the Master is not ready to send a new word (as indicated by the invalid content of

AD[31:0]), so IRDY# is driven high. The Target is ready to accept the next word since TRDY#
is low, but since IRDY# is high, no data transfer takes place.

5. At clock 4 the master is able to write data again, since IRDY# is low, and data is transferred.
Since FRAME# was high during this last cycle, both the Master and the Target end the cycle.
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6. At clock 5 the Target drives TRDY# and DEVSEL# high. The Master also drives IRDY# high.
It may even start a new transaction right now (this is called back to back transfers, when there
are no turnaround cycles between multiple transactions. Back-to-back transfers can only happen
after a write transaction, when no turnaround cycles are needed).
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Figure 30 - PCI Memory and I/O write cycle

5.5.3 PCI Configuration Read Cycle
The following timing diagram demonstrates a typical PCI configuration type 0 read transaction. Since
no address increment is defined for configuration cycles, burst behavior is undefined for configuration
space, and therefore not used. Usually, the target will disconnect after the 1st word.

Configuration type 1 cycles do not use IDSEL, and are identical to ordinary read cycles, but do not
support bursts, like type 0 configuration cycles.

1. At Clock 0 the Master begins the transaction by driving FRAME# low, IDSEL high, the
requested address on AD[10:0], and the requested command on C/BE#[3:0] (Configuration
Read).

2. At Clock 1 the Target responds by asserting DEVSEL# low. Since clock 1 is used for bus
turnaround on read transaction (Master stops driving AD[31:0], Target starts driving AD[31:0]),
actual data transfer must begin only on cycle 2, so TRDY# and IRDY# must be high, since no
data is available yet.

3. At clock 2 both IRDY# and TRDY# are low, so the 1st data word is read (D0). Since FRAME#
was high during this last cycle, both the Master and the Target end the cycle.

4. At clock 3 the Target tri-states AD[31:0] (turnaround), and drives TRDY# high. The Master
also drives IRDY# high. This is done since IRDY# and TRDY# are sustained-tri-state lines,
and must be driven high for one cycle prior to tri-stating them. This is done in order to charge
the line, which will hold it at a high level even after it is tri stated.

5. At clock 4, all the sustained tri state lines driven high before (TRDY#, IRDY#, DEVSEL#,
FRAME#) are now tri-stated.
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Figure 31 - PCI Configuration Read cycle
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5.5.4 PCI Configuration Write Cycle
The following timing diagram demonstrates a typical PCI configuration write transaction. Since no
address increment is defined for configuration cycles, burst behavior is undefined for configuration
space, and therefore not used. Usually, the target will disconnect after the 1st word.

Configuration type 1 cycles do not use IDSEL, and are identical to ordinary write cycles, but do not
support bursts, like type 0 configuration cycles.

1. At Clock 0 the Master begins the transaction by driving FRAME# low, IDSEL high, the
requested address on AD[10:0], and the requested command on C/BE#[3:0] (Configuration
Write).

2. At Clock 1 the Target responds by asserting DEVSEL# low. IRDY# is driven low because the
master is ready, but TRDY# is high, because the target is not ready yet. FRAME# is driven high
since this is the last word for this burst.

3. At clock 2 both IRDY# and TRDY# are low, so the 1st data word is written (D0). Since
FRAME# was high during this last cycle, both the Master and the Target end the cycle.

4. At clock 3 the Target tri-states AD[31:0] (turnaround), and drives TRDY# high. The Master
also drives IRDY# high. This is done since IRDY# and TRDY# are sustained-tri-state lines,
and must be driven high for one cycle prior to tri-stating them. This is done in order to charge
the line, which will hold it at a high level even after it is tri stated.

5. At clock 4, all the sustained tri state lines driven high before (TRDY#, IRDY#, DEVSEL#,
FRAME#) are now tri-stated.

0ns 50ns 100ns 150ns 200ns

CLK

IDSEL

FRAME

AD[31:0]

C/BE[3:0]

DEVSEL

IRDY

TRDY

Adr

CMD

0 1 2 3 4 5

D0

BE0

 

 Figure 32 - PCI Configuration Write cycle

5.6 Abnormal cycle termination
The sample cycles we have shown so far were always terminated by the master by driving FRAME#
high during the last data word transfer. In this section, we will show how PCI cycles can end in
different ways.

All the figures in this section apply equally to all data transactions types. i.e. memory, I/O or
configuration, as well as for read or write transactions. The data bus, on the other hand was drawn
from the perspective of a read transaction (a new data word is valid after TRDY# is asserted, not
when IRDY# is asserted), but all the information should equally apply to write transaction as well.

5.6.1 Target termination (Disconnect with data)
When a target can no longer sustain a burst, it can assert STOP# during the same cycle it asserts
TRDY#. It must keep STOP# asserted until FRAME# is deasserted. TRDY# is deasserted after
IRDY# is asserted, to prevent transferring another word. FRAME# will be deasserted in the same
cycle IRDY# is asserted.

Target termination is used for a graceful transaction termination without any errors. The master may
(or may not) continue the same burst by starting a new transaction at the subsequent address after the
last one which was transferred.
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Figure 33 - Target Disconnect with data

5.6.2 Disconnect without data
When a target cannot supply the next word in a burst, it can assert STOP# and deasserts TRDY#. It
keeps STOP# asserted until FRAME# is deasserted. TRDY# is kept deasserted until the end of the
cycle, and can be tri-stated when FRAME# is high. If FRAME# was low, IRDY# is must be asserted
at the same cycle FRAME# is deasserted.
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Figure 34 -Target disconnect without data

5.6.3 Target Retry (Disconnect without data)
Target retry is a special case of Disconnect without data occurring at the first word.

Target retry is used to signal the master that the target is not ready yet, but will be ready later. The
master must retry the same transaction over and over until it succeeds. The master also must release
the bus (by deasserting its REQ#) for at least two clock cycles between retry attempts to let other bus
masters share the bus.

5.6.4 Target abort
When a serious error condition has occurred, the target can assert STOP# and deasserts DEVSEL#
and TRDY#. It keeps STOP# asserted until FRAME# is deasserted. TRDY# and DEVSEL# are
kept deasserted until the end of the cycle, and can be tri-stated when FRAME# is high. If FRAME#
was low, IRDY# is must be asserted at the same cycle FRAME# is deasserted.

Target abort is used to stop a transaction only when the transaction has failed and will never succeed
(for example, trying to write a read only memory). The master will not retry the transaction again.
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Figure 35 - target abort

5.6.5 Master abort
Another serious error condition occurs when the master begins a cycle, but none of the targets
acknowledges it within 4 cycles. When this happens, the master will abort the cycle by deasserting
FRAME# and ending the transaction.

5.7 The PCI to PCI Bridge
As we already noted, the PCI bus standard is limited to a small number of PCI slots. The main PCI
mechanism to expand a PCI system beyond the limited number of slots is the PCI to PCI Bridge. A
PCI bridge has two busses, a primary bus and a secondary bus. The two busses can be completely
independent, as much as running on two different clock rates.

The PCI to PCI bridge appears as both a master and a target to both busses. When accessed as a target
from the primary bus, any access falling within the bridge address space would be regenerated on the
secondary bus. When accessed as a target on the secondary bus, any address falling outside the
secondary bus address range would be regenerated on the primary bus. Notice that the secondary bus
will not respond to configuration type 0 commands.

Very large PCI systems may have up to 255 busses arranged this way.

The PCI to PCI bridge has a slightly different configuration header, called header type 1. The header
structure, as well as the register description is listed below.

PCI to PCI bridge are complex devices and we cannot cover all their functions. For a complete
specifications of the PCI to PCI bridge devices, please refer to [(PCISIG, 1994)].
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31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Revision ID 08h

BIST Header Type Latency Timer Cache Line Size 0Ch

Base Address Register 0 10h

Base Address Register 1 14h

Secondary Latency Timer Subordinate Bus Number Secondary Bus Number Primary Bus Number 18h

Secondary Status I/O Limit I/O base 1Ch

Memory Limit Memory Base 20h

Prefetchable Memory Limit Prefetchable Memory Base 24h

Prefetchable Base Upper 32 Bits 28h

Prefetchable Limit Upper 32 Bits 2Ch

I/O Limit Upper 16 Bits I/O Base Upper 16 Bits 30h

Reserved 34h

Expansion ROM Base Address 38h

Bridge Control Interrupt Pin Interrupt Line 3ch

Figure 36 - PCI configuration header 1

Here is a short list of some of the fields in this header. We mention only the fields which are different
from a normal PCI device.

Primary Bus Number

This read/write field contains the bus number to which the primary PCI interface is connected. It is
filled by the BIOS when the system boots.

Secondary Bus Number

This read/write field contains the bus number which is linked by the secondary PCI interface. It is
filled by the BIOS when the system boots.

Subordinate Bus Number

This read/write field contains the highest bus number that is behind this bridge. If no more bridge
chips are located on the secondary bus, this field will be initialized to the same value as the secondary
bus number. It is filled by the BIOS when the system boots.

Secondary Latency Timer

This read/write field contains the latency timer value for the secondary PCI bus.

I/O Base register

This read/write field contains the lowest I/O address that must be forwarded by this bridge, if
encountered on the primary PCI bus. The upper 4 bits of this register corresponds to AD[15:12],
while AD[11:0] are assumed to be 0. The lower 4 bits of this field are interpreted according to Table
15. If I/O cycles are not forwarded by the bridge, this register must be hardwired to 0. When set to 32
bit I/O addressing, the value of AD[31:16] is contained in the I/O Base Upper 16 bits register.
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IO_BASE[3:0] I/O Addressing Capability
0h 16 bit I/O addressing
1h 32 bit I/O addressing
2h-0fh Reserved

Table 15 - PCI bridge IO_BASE decoding

I/O Limit Register

This read/write field contains the upper I/O address that is forwarded by this bridge downstream. This
register is formatted in the same way was the I/O base register. When set to 32 bit I/O addressing, the
value of AD[31:16] is contained in the I/O Limit Upper 16 bits register.

Secondary Status Register

This is the PCI status register for the secondary bus. It is identical to the standard status register
except for bit 14, which has been redefined as “Received System Error”. SERR# events are never
generated by a bridge on the secondary bus, but are forwarded to the primary bus, if generated on the
secondary bus.

Memory Base Register

This read/write field contains the base address of a memory mapped I/O range that is forwarded by
this bridge downstream. The upper 12 bits correspond to AD[31:20]. The memory window must be
1MB aligned, and the lower 4 bits of this register must return 0 when read.

Memory Limit Register

This read/write field contains the upper address of a memory mapped I/O range that is forwarded by
this bridge downstream. The upper 12 bits correspond to AD[31:20]. The memory window must be
1MB aligned, and the lower 4 bits of this register must return 0 when read.

Prefetchable Memory Base Register

This read/write field contains the base address of a prefetchable memory range that is forwarded by
this bridge downstream. The upper 12 bits correspond to AD[31:20]. The memory window must be
1MB aligned, and the lower 4 bits of this register are read only. If they are 0, this base register
supports only a 32 bit address range. If the lower 4 bits are 1, this base registers supports a 64 bit
memory range, and the upper 32 bits are stored in the Prefetchable Base Upper 32 bits register.

Prefetchable Memory Limit Register

This read/write field contains the upper limit of a prefetchable memory range that is forwarded by this
bridge downstream. The upper 12 bits correspond to AD[31:20]. The memory window must be 1MB
aligned, and the lower 4 bits of this register are read only. If they are 0, this limit register supports
only a 32 bit address range. If the lower 4 bits are 1, this limit registers supports a 64 bit memory
range, and the upper 32 bits are stored in the Prefetchable Limit Upper 32 bits register.

Prefetchable Base Upper 32 bits Register

This read/write field contains the upper 32 bits of the base address of the prefetchable memory area
when in 64 bit mode. See the Prefetchable Memory Base register.

Prefetchable Limit Upper 32 bits Register

This read/write field contains the upper 32 bits of the limit address of the prefetchable memory area
when in 64 bit mode. See the Prefetchable Memory Limit register.

I/O Base Upper 16 bits Register

This read/write field contains the upper 16 bits of the base address of the I/O area when in 32 bit
mode. See the I/O Base register.

I/O Limit Upper 16 bits Register

This read/write field contains the upper 16 bits of the limit address of the I/O area when in 32 bit
mode. See the I/O Limit register.
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Expansion ROM Base Address Register

This register is identical to the normal PCI register with the same name, but is located in a different
offset.

Bridge Control Register

This register provides extensions to the command register that are specific to PCI to PCI bridges. The
bridge control register provides many of the same controls for the secondary interface that are
provided by the command register for the primary interface. There are also some bits that affect the
operations of both interfaces of the PCI to PCI bridge. Here is a description of the bits in this register:

Bit Location Description

0 Parity Error Response Enable. Same as the Parity Error enable bit in the command
register, but for the secondary interface.

1 SERR# Enable. When set to 1, allows forwarding of SERR# events on the secondary
bus to the primary bus.

2 ISA Enable. When 1, disable forwarding of I/O addresses when AD[9:8] are 0. These
addresses are I/O addresses used by on board ISA devices.

3 VGA Enable. When 1, forward all the memory and I/O addresses of VGA compatible
devices, regardless of the memory and I/O address ranges and the ISA Enable bit.

VGA addresses are:

Memory: 0A0000h to 0BFFFFh

I/O: 3B0h to 3BBh, and 3D0h to 3DFh.

4 Reserved. Return 0 when read.

5 Master Abort Mode. When 0, do not report master aborts (return FFFFFFFFh on read,
and discard data on write). When 1, report master aborts by signaling target abort on
the requesting bus if possible, and SERR# if enabled.

6 Secondary Bus Reset. When 1, forces RST# on the secondary bus. When 0, releases
RST# on the secondary bus. If primary bus RST# is asserted, secondary bus RST# is
asserted as well.

7 Fast Back to Back Enable. Same as the Fast Back to Back enable bit in the PCI
control register, but for the secondary bus.

15:8 Reserved. Return 0 when read.

Table 16 - PCI bridge control register
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6. Implementation of PCI devices

6.1 PCI Implementation using CPLDs and FPGAs
PCI cards are usually implemented by one of three approaches:

1. Using an ASIC which includes a PCI interface core as well as other functionality.

 This approach is used for high volume applications where cost is the driving factor, and where a
large gate count is needed to implement the design. In these applications, the PCI interface core
is usually small compared with the custom logic.

2. Using a standard PCI interface chip.

 This approach is less cost effective than using an ASIC (for high volume applications), but it is
practical when there is a need to interface existing chips to the PCI bus (for example, a DSP
board for PCI), with small amounts of custom logic. These chips are available from a few
companies with many models, some offering full master/target capabilities, and some offering
target only. Due to their general-purpose nature, however, they may not offer the best
performance for all applications.

3. Implementing a PCI interface using a CPLD or an FPGA.

 This approach is used when prototyping ASIC designs, or when there are special requirements
from the PCI interface precluding the use of a standard PCI interface chip, or when low
quantities are desired, precluding the use of an ASIC. for example, a design requiring a very low
latency response may use a CPLD instead of a standard PCI interface chip.

Although the standard does not demands this explicitly, a PCI interface on an add-on card can only be
implemented using a single chip. There are two main reasons for this:

• PCI signals can not drive more than electrical load on every PCI interface. This means that if
multiple chips are used, the PCI signals must be divided among the chips.

• Some PCI signals such as TRDY and IRDY require the PCI interface to react to changes within
one clock cycle. A TRDY/IRDY signal sampled at t-7ns must affect the output signals at t+11ns.
Since the PCI clock is not necessarily running in a fixed frequency, IRDY and TRDY can only be
sampled on the clock rising edge (so the guaranteed 7ns setup time can be used only for that).
This leaves barely 11ns for the signal to be processed by two chips. This requirement is still
impractical with the current generation of CPLDs and FPGAs.

These rules of thumb does not apply in the case of a PCI device on the motherboard, for a few reasons:

• Onboard PCI devices may use more than one device load (all Intel’s PCI chipsets do) because the
motherboard designer can take into account the extra load used by the onboard logic, and reduce
the number of available PCI slots if required. For example, if 2 PCI loads are used by the onboard
PCI logic, 8 loads are still available, which means that 4 PCI slots can be added to the
motherboard.

• Onboard devices may assume a fixed frequency PCI clock, allowing 18ns for TRDY/IRDY
processing instead of 11ns.

Implementing a custom PCI interface chip can be done with a CPLD or an FPGA. The following is a
summary of the major differences between CPLDs and FPGAs and how these differences affect their
use for implementing a PCI interface. Also, [(Brown & Rose, 1996)] is a good survey of popular
CPLD and FPGA architectures.
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6.1.1 General structure of a CPLD
A CPLD (which stands for Complex Programmable Logic Device) can be generally described as an
architecture containing multiple PLD blocks (usually 2 to 16) which are fed from a central routing
matrix. All the feedbacks from the PLD blocks are fed directly to the switch matrix instead of being
fed directly to the PLD blocks. I/O pads are connected to some or all of the Macrocells on the PLD
blocks. Macrocells which are not connected to I/O pads are called buried nodes. Buried nodes are
distributed evenly among all the PLD blocks. Small CPLDs can be used to replace a few PLDs, while
large CPLDs are suitable for very complex state machines that has to run at high frequencies.

A CPLD may have N PLD blocks, with M feedbacks (from I/O pins and buried nodes) going into the
global routing matrix. In a 100% routable CPLD, every PLD block would have M*N inputs from the
global routing matrix, making the CPLD effectively a single giant PLD with M*N nodes. This is
impractical due to the size of the global routing matrix. Instead, only a subset of K < M*N signals are
routed into each PLD block. Different CPLD architectures usually have different characteristics:

1. Different number of macrocells in each PLD block, different number of feedbacks, different
number of input terms.

2. Different product term allocation methods between macrocells in the same PLD block. Every
architecture has a basic number of product terms allocated to each macrocell, but it can use more
product terms by borrowing them from neighboring macrocells or from another global resource
(at the PLD block level).

3. Different macrocell structure features such as TFF/DFF/latch mode, input registers, dedicated
XOR product term, asynchronous set/reset inputs, clock arrangement, etc.

Different members of the same CPLD family are usually differentiated by the number of PLD blocks
in each chip (usually from 2 or 4 in the small chips to 8 or 16 in the large chips). The rest of the
architecture usually stays the same.
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Figure 37 - A general CPLD model
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Figure 38 - PLD Block structure

One of the major drawbacks in most of the CPLD architectures is I/O pinout locking. When I/O pins
are assigned for a specific CPLD design (when the design is sent for PCB layout or when the design is
wire wrapped), successive place and route runs may not be able to fit the design using the same I/O
pinout, and some I/O pins may need to be unlocked from their current I/O pin, and re-assigned new
I/O pins. There are a few possible reasons for that phenomenon:

1. Modifying an equation which previously required L unique input terms from the global routing
matrix may now require L+1 input terms. If the PLD block already used the maximum number
of K input terms, some of the equations inside the block must be moved to a different PLD block,
changing the CPLD I/O pin assignment.

2. CPLD macrocells do not use a fixed number of product terms per macrocell like PLDs. Instead,
CPLD macrocells have a relatively low number of product terms (4 to 5), but they can “borrow”
extra product terms from neighboring macrocells or from another common pool of product
terms. If an equation is modified in such a way that it requires more product terms than before, it
may no longer fit in the same PLD block, requiring I/O pinout changes.

6.1.2 General structure of an FPGA
FPGA, which is a acronym for Field Programmable Gate Arrays can be best described as a square
array containing a large number of small logic blocks, each containing 2 to 12 inputs and 1 to 4 flip-
flops. These logic blocks are usually locally connected in 4 directions, but some global routing
resources are available in most of the FPGA architectures. I/O pads are usually connected to the logic
blocks on the four edges of the array. FPGAs are suitable for register rich designs that are not required
to run at very high speeds.

Due to the long delays caused by the FPGA routing resources, it is very common to use fanout control
techniques, and duplicate a register driving a large number of inputs. Some tools offers automatic
control over this feature, by specifying the maximum number of inputs to be driven by a single
register output.

The timing constraints caused by FPGA routing makes it very hard to meet the PCI timing
requirements. A careful analysis must be performed to choose the correct way to implement the
synchronous logic depending on the specific timing characteristics of the specific FPGA family,
considering the routing resources, the circuit floorplan design, and the macrocells timing parameters.
In most cases, manual floor planning might be needed to lock critical registers in optimal positions.

A closer look at the general FPGA architecture shows that one of the big FPGA drawbacks, caused by
it’s lack of predictable route has a good side. Since each possible net can be routed through many
different routes, it means that pins can still be connected to the same register, regardless of it’s
location in the FPGA.
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Figure 39 - A general FPGA model

6.1.3 Comparing FPGAs with CPLDs
The following table contains a summary of the main differences between CPLDs and FPGAs. The
numbers represent typical architectures available at this time, and should only be used to show the
relative difference between competing CPLD and FPGA architectures.

Feature CPLDs FPGAs

Registers (typical) 32 to 512 256 to 6144

Timing Fixed, predictable Unpredictable

I/O pin locking Hard to maintain Easier to maintain

Routing time up to 30 minutes 5 minutes to 15 hours

Macrocell fan-in 4-16 product terms, 20-36 inputs 2-6 inputs

Price/Register Higher Lower

Table 17 - CPLD vs. FPGA features

6.1.4 PCI Bus considerations
When designing a PCI Interface, there are a few considerations that must be taken into account:
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Working at high clock rates (33MHz).
Working at high frequencies with an FPGA usually requires manual place and route techniques, since
the automatic tools does not seem to product results good enough. The new generation of place and
route tools with timing constrains may change this in the future. Another option is to use architectures
that are tuned for high clock rates, such as anti-fuse based FPGAs from QuickLogic and Actel.

Working at high frequencies using CPLDs is much simpler. The different timing parameters that are
associated with the specific CPLD can be analyzed, and a flow graph can be drawn showing all the
possible paths in the chip which do not violate the PCI 33MHz timing requirement. Once these paths
are established, The PCI timing requirements will be kept as long as these paths are followed.

Some of the PCI features deserves special consideration. We will address these features in the
following sections.

Generating and checking for parity
PAR is the parity I/O pin. During data transfer it contains the parity of the data bus AD[31..0] and
the byte enable lines C/BE#[3..0]. It is transmitted one cycle later. The simplest way to generate a
parity function requires a XOR tree of 36 inputs. The parity has to be generated during a data write in
less than 30ns, and has to be checked during data read in less than 60ns. CPLDs can make a 36 input
XOR tree in 2 or 3 levels of logic. FPGAs has a smaller number of inputs for every logic block, and
may require up to 5 or 6 levels of logic to compute the same 36 input XOR tree. Here are a few tips
than can make parity generation easier:

1. If the data written by the PCI device is pipelined, parity generation can be done during the
pipeline, generating partial results using smaller XOR gates and combining them in later
pipeline stages.6
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 Figure 40 - Pipelined read parity implementation

2. The above method applies only to parity generation but not to parity checking, when parity must
be generated to be compared with the incoming PAR line. In this case the PERR line which is
used to inform the system of a parity error must act on data latched 2 cycles earlier, so no
pipeline tricks can be done. If the parity checking logic cannot be made to fit, parity error
checking may be ignored altogether. This means that the PAR line will always report no parity
errors, regardless of the true state of the bus. Care must be taken to drive PERR correctly,
enabling it only when required, pre-charging it at the end of the cycle, and tri-stating it
immediately afterwards. This type of solution does not imply PCI incompatibility, but
recommended only as a last resort.

                                                       
6 In Figure 40, an N input XOR gate is defined as N-1, 2 input XOR gates connected in series. This is effectively

an N bit parity function. An N input, M output XOR array is defined as M parallel blocks of N/M input XOR
gates.
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3. When using deeper XOR trees and deep pipeline stages to generate PCI parity during data read,
it is still required to generate parity cycles for configuration data read, which is usually not
passed through the input data pipeline. Since most of the configuration information is constant,
read only data, parity can be pre-calculated in these configuration words, so when a word is read
from configuration space only the R/W bits must be XOR-ed with the pre-calculated parity bit
for this word.

 For example:

 If the only writable bits in configuration space are bit 1 at the command register, and bits 24 to
31 at the BAR0 register, The parity function can be built from a 10 input XOR gate connected to
9 R/W bits and one fixed bit representing the parity of all data bits except bits 1 and 24 to 31.
This fixed bit depends only on AD[5:2], selecting which configuration register (0 to 15) is read
now, and have a maximum of 8 product terms. This is much smaller than a 32 input XOR gate.

4. In the worst case, configuration data can be delayed until the parity calculation is ready,
allowing bit serial implementation of parity calculation for configuration data.

Handling the IRDY/TRDY signals
IRDY and TRDY signals have critical timing characteristics. When IRDY is sampled by a target (or
TRDY by a Master), it directly affects the contents of the data bus one cycle later. In order to provide
optimal timing for IRDY, it should control the data path as close to the output as possible. FPGA
implementations should give this part of the data path the highest priority in order to make the
33MHz timing requirement. Placing a register on the output, we can design the PCI bus output stage
like this:

AD[31:0]
Input

Clock
IRDY

32 bit
Input
Register

32 bit
Output
Register

Figure 41 - IRDY signal path in PCI target designs

This is a D flip-flop with a synchronous enable. If the basic FPGA cell has a dedicated synchronous
enable input, it should be used instead of the DFF + mux combination shown here. By using retiming
techniques and dropping a redundant register, we can modify the previous drawing and design the
PCI bus output stage like this:
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Figure 42 - Alternate IRDY signal path design

Some FPGA families may make better use of this version. The N-Bit register shown is IRDY driving
multiple registers for optimal fanout control.
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Static Timing Analysis for PCI applications using CPLDs
As we mentioned earlier, the PCI bus runs at a maximum frequency of 33MHz or 66Mhz, depending
on the implementation. All the existing implementations are currently 33Mhz, since the 66MHz
standard was added only in PCI 2.1, and supports only a single PCI slot. The AGP bus is a super set
of the 66MHz PCI implementation. Assuming a 33MHz bus, we can summarize the PCI timing
characteristics in the following table:

Name Min (ns) Max (ns) Description

T_cyc 30 Minimum clock cycle time

T_high 11 Minimum clock high time

T_low 11 Minimum clock low time

T_skew 2 Maximum clock skew allowed

T_su 7 A PCI input signal is guaranteed to be valid 7ns before the
rising edge of the clock.

T_h 0 A PCI input signal is guaranteed to be valid 0ns after the
rising edge of the clock.

T_val 2 11 The time delay from the rising edge of the clock to the point
where the new signals are reaching their new state.

Table 18 - PCI timing parameters

If we sum up T_skew + T_su + T_val we get 20ns, which means that PCI signals must propagate
from any point on the bus, to the unterminated bus edge, and reflect backwards to all the PCI devices
on the bus, at 10ns max.

PCI timing budget example
The following example demonstrates the calculation of the permitted data paths inside a CPLD when
faced with the timing restrictions dictated by the PCI bus. As an example, the Mach 465 CPLD
[(AMD, 1995)] was chosen. The following timing diagram includes all the relevant timing
parameters:
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Figure 43 - PCI compliant static timing analysis for Mach 465-12

The diagram describes all the possible combinations of registers (T or D, clocked by the positive or
negative clock edge), their setup/hold requirements, and their clock to output timing. It also describes
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the timing of combinatorial nodes (without registers), which are driven by registers. It is assumed that
the cycle time is 30ns, which corresponds to the maximum PCI clock, i.e. 33MHz. The diagram
includes the following signals:

Signal Description
PCI_In PCI input signals setup/hold requirements
CPLD_PREGD_IN CPLD positive edge D Register setup/hold requirements
CPLD_PREGT_IN CPLD positive edge T Register setup/hold requirements
CPLD_PREG_OUT CPLD positive edge register clock to output timing
CPLD_PCOMB CPLD combinatorial node timing when driven by a positive edge register
CPLD_NREGD_IN CPLD negative edge D register setup/hold requirements
CPLD_NREGT_IN CPLD negative edge T register setup/hold requirements
CPLD_NREG_OUT CPLD negative edge register clock to output timing
PCI_Out PCI output signals clock to output requirements

Table 19 - Mach465-12 PCI static timing analysis parameters

The following timing parameters were taken from the Mach 465 data sheet:

Name Description Min Value Max Value

tSS_D Setup for D flip flop 7ns

tSS_T Setup for D flip flop 8ns

tCOS Clock to output for D or T flip flops 8ns

tPD propagation delay for combinatorial nodes 12ns

Table 20 - Mach465-12 timing characteristic parameters

Notes:
1.  PCI signals cannot be sampled using T registers, since they require a 8ns setup time, while the

PCI standard guarantees only 7ns.
2.  A positive edge D or T register output cannot be sampled by a negative D register input.
3.  A negative edge D or T register output cannot be sampled by a positive D register input.
4.  A positive edge D or T register output can be driven through a combinatorial node, and be

sampled by a positive edge D or T register.
The above timing diagram can be translated to the following block diagram, which contains all the
legal paths for moving data inside a Mach 465 while not violating the PCI timing requirements. The
muxes in this diagram represents and AND-OR PLD structure with up to 20 product terms, and up to
34 input terms.
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D Reg D Reg
PCI Output
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T Reg

Figure 44 - PCI compliant data flow in a Mach 465 CPLD
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PCI clock distribution
A PCI peripheral is usually implemented as a fully synchronous design. When designing a fully
synchronous design, multiple chips may require copies of the main PCI clock. The problem lies in the
fact that the PCI clock, like any other PCI signals, is allowed to drive only one bus load. If multiple
components require the PCI clock, a clock regeneration circuit is needed. To make things harder, the
PCI standard places almost no restrictions for motherboard designers when implementing the PCI
system clock.

1.  PCI clocks can run from 0Hz (DC) to 33MHz.

 PCI cards are expected to behave correctly under any legal condition of the PCI clock allowed by
the PCI specifications. Cards are not expected to function correctly below a certain frequency
threshold (for example, Ethernet cards are NOT expected to communicate with other Ethernet
cards while the PCI bus runs at 1Hz), but are expected not to block the bus for other cards, and
to respond to configuration access cycles.

2.  The PCI clock frequency can change dynamically

 Notebooks are allowed to slow down the clock, or even to stop it completely, in order to save
battery life. Desktop machines can use spread spectrum clocks (Each PCI cycle has a random
cycle duration, but not below 30ns). Spread spectrum clocks are used in some designs to limit
the amount of RFI energy emitted from the computer at the PCI bus frequency (and integer
multiples of this frequency). By varying the clock duration, the energy dissipation is spread
around the average frequency so there is no sharp peak at this frequency. This simplifies FCC
certification, saving money for PC manufacturers.

There are a few ways to implement these clock regeneration circuits:

1.  PLL and other circuits

 PLL based clock regeneration circuits take the PCI clock and regenerate an independent clock
which is synchronized to the original PCI clock by having one of the clock outputs to act as a
feedback for an internal phase comparator. By using the feedback, the PLL circuit can
compensate for any phase difference between the original PCI clock and the new regenerated
clocks. PLL circuits usually work in a limited frequency range, and do not respond well to
frequency changes. PLL based designs are not PCI compliant for add-on boards because they
will NOT work with PCI motherboards which change the bus speed dynamically, since a PLL
may takes a few clock cycles to re-synchronize. Also, PLL circuits which can adapt to all the
frequencies in the 0Hz to 33Mhz do not exist. Most PLL circuits will tend to oscillate even when
the input frequency is DC, producing spurious clock cycles.

 Some Digital clock regeneration chips have solved some of the problems associated with analog
PLLs such as a guarantee to adapt to a different clock after two clock cycles, and a guaranteed
DC output given a DC input. Designs using these chips are still not PCI compliant for add-on
cards, but are less likely to cause incompatibility problems compared with PLL based designs.
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 Figure 45 - A PLL based clock regenerator circuit

2.  Clock buffers

 Circuits can based on a high speed clock buffer. Clock buffers can have propagation delays as
low as 1.5ns. Still, this propagation delay must be compensated for. The net effect of a delayed
clock is that the guaranteed signal setup time (T_su) goes from 7ns to 8.5ns, but the guaranteed
hold time goes down from 0ns to -1.5ns! This means that the data may become invalid 1.5ns
before the clock edge. The only way to compensate for a clock delay is to delay the data path as
well, and to rebalance the T_su vs. T_h relationship. By delaying all signals by 3ns, the
parameters are changed to T_su = 5.5ns, and T_h = 1.5ns. When driving output signals, the
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opposite calculation must be performed. Since the clock is 1.5ns late, the T_val maximum value
is reduced from 11ns to 9.5ns. This solution is fully PCI compliant, but it is hard to implement,
since it requires adding an delay to bi-directional signals when in input mode, but no delay in
output mode, yet having only a single electrical load.
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 Figure 46 - Using a clock buffer

3.  Clock buffers for the design back end

 Another possibility is to drive only one component, (the PCI interface itself chip) with the
original clock, and to regenerate the clock from that component. The pipeline can then be
constructed from multiple sections, as described above (see section 4.3.4). The clock must have a
fairly long delay, larger than tSU + tCO, because each pipeline stage is sampled while the other
pipeline is stable.

 Even with a 30ns cycle time (derived from the PCI 33MHz maximum clock rate), it is easy to
achieve the timing requirements by delaying the clock by 15ns. This ensures that each pipeline
stage is sampling it’s inputs from stable output from the other pipeline stage. This is perhaps the
easiest solution which is also fully PCI compliant, since no external clock buffers are needed (use
the PCI interface chip itself as a clock regenerator), and no delay has to be added to all the PCI
signals.
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 Figure 47 - A synchronous multi phase based PCI system

Optimizing PCI designs for CPLD
In this section the specific characteristics of CPLD devices are discussed, as well as their limitations.
Some techniques to make optimum use of CPLDs in terms of density will also be discussed.

1.  Use multiple levels of logic and common nodes as much as possible.

 Most synthesizers, if not all, cannot automatically generate nodes for common logic sub-
expressions. For example, if 10 nodes are using the sub expression A*B+C*D, assigning it to a
temporary node may not only save product terms, but may also save input terms to one or more
PLD blocks. Nodes can be added as long as the path delays are not too long, as demonstrated in
section 0.

2.  Use grey code state machines.

 CPLD devices are not register rich. Using one-hot encoding as common in FPGA based state
machines may waste more macrocells than needed. In order to make sure that the minimum
number of product terms are assigned for the state machine variables, every pair of states which
are linked by a state transition, should be assigned state values with a minimal hamming
distance, preferably 1. A practical way it to follow all the possible state transitions and assign
consecutive states in the state machine using grey code. This tends to minimize the number of
flip flop changes in each state, and to reduce the state machine equations. This is a heuristic
method, but it’s producing excellent results.
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3.  Use T registers where appropriate.

 Most CPLD architectures support T registers which can greatly reduce the number of product
terms required for registers which are enabled by a complex event (and unchanged otherwise). T
registers are also very useful for counters, in which they can help building counters with a fixed
number of product terms per register, regardless of the counter length. Some synthesis tools will
automatically take advantage of these registers, but if not, it is important to assign T registers
where appropriate. T registers are not very useful in data path registers which change every
clock, and may cause even larger expressions than D registers.

4.  Configuration cycles are least important. Optimize them for space, not speed.

 Configuration cycles are usually performed only when the system boots, and are not important
for high performance. Configuration cycles must be made to work, but no more. Any extra gate
invested in making configuration cycles work faster is a waste. It is not uncommon to find some
designs using bit serial methods shifting in configuration data from an external slower memory,
causing configuration cycles to take dozens of clock cycles.

5.  Design large data paths considering product term limitations of the CPLD architecture.

 Most CPLD architectures allocate product terms for registers in small groups. This means that as
long as a group is allocated, it does not matter how many product terms are used. For example,
the Mach devices use 5 product terms for every register, and allocate more product terms in
groups of 4. A 6 product term node takes the same amount of resources as a 9 product term node.

6.  Use medium or slow decode if possible.

 Responding to PCI cycles using fast decode requires more logic than responding to PCI cycles
using medium or slow decoding, because fast decode requires a single level of logic. Decoding N
BAR bits requires 2*N product terms. Splitting these product terms across multiple nodes may
help fitting those nodes. A CPLD architecture such as the MACH 4 has a limit of 34 input terms
to the PLD block. This means that BAR decoding is limited to an absolute maximum number of
17 bits in a single node. Breaking BAR decoding into smaller sections can help fitting them into
multiple PLD blocks, but slows the decoding speed, and may require the use of medium decode.

7.  BAR registers should be merged when possible.

 Having more than one BAR register potentially frees system memory space, but wastes CPLD
registers. A 16MB Memory BAR and a 256 byte memory BAR takes 32 registers bits.
Combining these two BARs together into a single 32MB BAR requires only 7 register bits.

8.  I/O BARs should be avoided as much as possible.

 I/O BARs are used for x86 backward compatibility only. Decoding I/O address space requires
much more BAR bits because available I/O space is much smaller. I/O space should not be
allocated unless it is absolutely necessary for backward compatibility.

9.  Save BAR bits if unavoidable.

 It is always desirable not to “waste” address space by requesting more memory space than what
is required for a device, but requesting 16 bytes vs. 64K bytes on a 4GB address space doesn’t
save much of the address space. On the other hand, this saves 12 BAR bits and the associated
decode logic. Even decoding 16MB as a minimum area isn’t that of a problem, considering that
it takes just 1/256 of the address space. These BAR bits can make the difference between a
design that can fit in a CPLD vs. a design that can’t be fit in a CPLD.

10.  Pay attention to s/t/s signals.

 Most CPLD architectures offers registers where the clock-to-output (tCO) response is quicker than
the tri-state enable/disable control (tEA). This means that when sustained tri state signals are
turned off, it is important to keep them high even during the cycle they are turned off, otherwise,
a small negative pulse is sent on the bus. This pulse will not appear in simple unit-delay
simulators, and is very hard to detect without full timing simulation models.
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 Figure 48 - Typical register output stage
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Figure 49 - Potential s/t/s spikes caused by simultaneous ENABLE and Q switching

It’s easy to see in Figure 49 how the Q flip flop output, and the OUT pin may become 0 after tCO at
clock 3, while it takes tCO+tEA for the output enable control pin to tri-state the OUT pin. This causes
a short negative spike.
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Figure 50 - Solving s/t/s spikes by keeping Q high for one extra cycle

In Figure 50 Q is held high for one extra clock, and so out is held high until tri-stated at tCO+tEA. Q
will be 0 only one clock later, but by then OUT is already tri-stated, and Q wouldn’t effect it.

6.2 The HDL design flow
The HDL design flow is a diagram showing the relation between all the tools used during the
development, and the various files used to create the final design files. Our current design flow
combines a CPLD synthesizer (MachXL, AMD’s OEM version of Minc’s PLDesigner-XL tool), an
equation to verilog converter (written in Perl), a Verilog simulator (SILOS III), and a set of custom
programs which allows the integration of test vectors gathered by running a PC based Logic analyzer
into the simulation test bench. The next phase includes integrating a verilog synthesizer and Altera’s
Max2Plus software for designing 10Kxx devices, in order to prototype mode complex PCI devices
(Masters, and Bridge chips). The diagram below shows the direct flow of information during the
design process. It can be seen how:
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1.  Verilog source code can be simulated directly (running test bench code, and preliminary
synthesizable design).

2.  Verilog source code can be simulated after synthesis (during a synthesizable module design).
3.  Verilog source code can be simulated with accurate timing information after synthesis,

placement and routing (timing verification of a synthesizable design).
4.  Other design sources (such as MachXL) can be simulated using XXX to verilog translators,

where XXX is the desired input language.
5.  Real world data (sampled by a logic analyzer) can be used to simulate real world loads by

analyzing captured data and extracting simulation parameters.

An important part of the design flow is the feedback from the simulator back to the module source
code. This is not a direct link since no source code files are generated by the simulator, but it is the
simulator which gives the circuit designer the feedback information required to debug his source code
model.
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Figure 51 - Typical HDL design flow

6.2.1 A DSL to Verilog model translator
In order to simulate the design, a translator converting the final DSL (MachXL language) equations
into Verilog was written in Perl. This translator takes the compiler documentation file and generates a
verilog model from the equations. While writing the translator, a few decisions were taken:

1.  Since building an accurate timing model requires having the fitter result file and having a
successful fit, it was decided not to try building an accurate timing model which would have
forced running a place and route run for every change to be simulated, which is
counterproductive. Since CPLDs have fixed timings, accurate timing models are less important.
The implications are mostly in the registered nodes, which have separate output equations for
their tri-state buffer. The reason for requiring the fitter output is that it is impossible to
distinguish a hidden node connected to a combinatorial output from a registered output node,
since both have the same equations. Only the fitter table shows whether these two resources are
mapped to the same macrocell or not. In order to make sure that the model will not fail where
the real circuit doesn’t, the simulated delay values were taken to be 4ns for each stage, which is
just above twice the normal speed, compensating for any redundant node in the equations.
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 Figure 52 - Alternative methods for implementing registered outputs on AMD MACH devices

2.  The Mach devices have selectable D/T type registers. It can be shown that T registers with
synchronous reset will not be cleared during simulation, even though they are cleared fine in
reality, if they were initialized with an “unknown” value. The solution was to produce output
equations containing D type registers only, even though the real circuit may use T type registers.

 For example, the following equation is generated when a register is synthesized as a T type
register:

 TF = CL*TF + !CL*A*TF + !CL*B*!TF

 TF is a T type register, CL is the synchronous clear input, and A, B are arbitrary terms. The T
type equation will toggle the node value when the right side of the equation is true. When CL is
set, the equation is reduced to TF=TF, which resets the T register. This can be translated into a
D type node equation in the following form:

 DF = (CL*DF + !CL*A*DF + !CL*B*!DF)^DF

 or,

 DF = (CL*DF + !CL*A*DF + !CL*B*!DF)*!DF +
      !(CL*DF + !CL*A*DF + !CL*B*!DF)*DF

 The right hand side has been XOR-ed with the previous value, generating the true value to be
latched into the D type register. When the simulation starts, the A, B, CL inputs are known, but
the DF value is unknown. According to the verilog operator truth tables, unknowns can be
reduced by these rules:

 0*X = 0
 1+X = 1

 If CL is asserted (CL =1), the DF equation above reduces to:

 DF = (DF)*!DF + !(DF)*DF

 This equation cannot be reduced further, even though assigning either 1 or 0 to DF will produce
the same result, which is 0.

6.3 A PCI Bus simulation environment (test bench)

6.3.1 A PCI Verilog test bench
Here is a typical Verilog test bench for PCI, drawn as a structured diagram. This can be applied to
VHDL as well.
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The test bench contains a common, simulated bus into which all other modules are connected. The
model must have at least one master and one target in order to do any meaningful bus traffic
simulation. These models (there can be more than one Master or Target) are either synthesizable or
non-synthesizable. In the case of a PCI Master model it is possible to write a simplified model which
does not do any arbitration. This model is not good for anything other than testing bus targets, since it
cannot coexist with other bus masters. A more sophisticated model will arbitrate the bus with other
bus Master models. A Bus Arbiter model is used to arbitrate between multiple master models, if there
are any. The clock generator module generates the PCI clock. It can be anything from a simple square
wave generator to a complex model capable of generating a spread spectrum clock, or a variable
frequency clock for power management simulation. A PCI to PCI bridge model may optionally be
used to link more that one PCI bus during simulation.
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Figure 53 - A typical PCI test bench

6.3.2 Synthesizable vs. Non-Synthesizable models
Hardware models are usually divided into two groups: Synthesizable vs. Non-Synthesizable. Here is a
short list of differences between the two groups:

Synthesizable models
Synthesizable models are written in a subset of Verilog called RTL, or Register Transfer Level. This
subset is tool dependent, since every synthesizer supports different parts of the language constructs.
As its name implies, a synthesizable model can be converted by a synthesizer into a netlist of gates.
To be more precise, a synthesis result is a netlist of library components, selected from the chip
vendor’s library. This applies to both FPGA vendors and ASIC vendors. The netlist is then processed
by the vendor’s layout tools, producing ASIC masks, or a CPLD/FPGA configuration bit-stream.

Synthesizable models are usually simulated at three levels: Pre synthesis, Post synthesis, and post
layout (back annotation). The top level is the original RTL code which is run under the test bench to
verify its correctness. After synthesis, the resulting netlist is simulated again to make sure the
synthesized output matches the original design. The lowest level is run after a placing and routing the
model into an ASIC or FPGA. The list of net delays is fed back into the gate level netlist, and it is
simulated again to make sure the additional delays are not affecting the design correctness.
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Non-Synthesizable models
Non-synthesizable models are written using the full power of Verilog. These models cannot be
synthesized into a netlist, for a few reasons:

1.  The model uses a verilog construct not supported by the synthesis tool. For example, verilog
tasks, functions and event control constructs are not supported by all synthesis tools.

2.  The model relies on constructs that have no meaning in hardware. For example, checking a wire
for a tri-state value can be used as part of a simulation test, but has no meaning in a chip, where
all values are either 0 or 1.

3.  The model relies on specific timing delays embedded in the design. While in theory a future
synthesis tool/vendor library combination could support this, hard coding delay values in silicon
is so hard, that this is not practical. Usually, synthesis tools simply ignore delay values.

4.  The model relies on language construct combination that cannot be emulated by the vendor
library. For example, it is impossible to code a register with an asynchronous reset if the vendor
library does not support an asynchronous reset in any of its library components. Another good
example is a register sensitive on both clock edges, which is a construct not widely supported by
libraries.

Non-synthesizable models are used during simulation for two reasons:

Non-synthesizable models can sometimes be written more easily and quickly than synthesizable
models. This allows prototyping an idea, and checking its correctness before committing time and
effort into writing a synthesizable model.

Non-synthesizable models are also used for test benches, where they are used to generate stimulus for
other, synthesizable models. The test bench is also used to verify output signal correctness, including:

1.  Making sure output signals are what they should.
2.  Making sure signals obey Setup, Hold, and Width specifications.
3.  Making sure signals are actually tri-stated when they should be.
4.  Making sure signals never carry unknown values, when they shouldn’t.

Output checks allow designers to run very long test benches without having to manually look at the
output waveforms, looking for anomalies.

6.4 Real world test vector integration
In order to perform real world data analysis, a PC based logic analyzer was used to gather information
from a working PCI based system. The logic analyzer can record up to 128K clock cycles, covering all
the PCI protocol lines. The data files produced by the logic analyzer were saved to a disk, and were
analyzed by a separate program written in C. Many statistical parameters can be extracted from these
samples, including:

1.  Average data latencies (time for first data item in a burst), sorted by mode (read or write) and
device (determined by the base address).

2.  Average data throughput (number of wait states in a data transfer), sorted by mode (read or
write) and device (determined by the base address).

3.  Bus utilization (percentage of idle bus cycles).
4.  Wasted retry time (number of cycles wasted by bus retries, after the first retry). We will mention

this data later.
The essential parameters of each PCI transaction including base address, burst length, and wait state
behavior can also be logged and fed back to the simulation environment.

6.5 Hardware-Software Co-simulation
Even when a behavioral software model of the PCI bus is written and is driving a synthesizable
hardware module, a link to the software drivers must be provided. Without an interface to the driver
software, another layer of simulation software must be written on top of the behavioral PCI bus model,
to simulate the bus cycles generated by the driver software.
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Verilog has a feature called PLI, which allows Verilog programs to call C subroutines when certain
events occur (either a time event, or a signal change). We can use this feature to link the driver
software with the Verilog simulator. We want all the PCI calls from the C software to be intercepted
by the Verilog simulator, and the result to be returned back to the driver software. Unfortunately, once
a Verilog program calls a PLI routine, Verilog execution is suspended until the C subroutine is
terminated. This makes calling the software driver from within a PLI impossible, since the software
driver generates multiple PCI bus access cycles, and each of them has to be handled by the Verilog
bus model. Turning the software driver into a subroutine which returns a single PCI request at a time
is a major design change.

The solution chosen was to run the software driver and the verilog simulation as two separate
processes, communicating through a socket library. A PLI C subroutine is still needed, but this
subroutine is called by the Verilog simulator every time the simulated PCI bus is free to accept
another request. In this way, two separate execution threads are kept, the Verilog thread, and the
software driver thread.

The PCI bus cycles requested by the program are trapped, and a short request is sent through the
socket to the Verilog simulator indicating the PCI command, the address and the data (if write). In
case of a read command, values are also returned from the Verilog simulator. The use of a socket
library allows running the two programs on separate machines using TCP/IP.

Trapping of PCI requests in the driver code can be done either by wrapping the hardware PCI requests
by a subroutines (or class member functions if C++ is used), using a one set of subroutines when
compiling the driver for the actual hardware, and a different set of subroutines when compiling the
driver for co-simulation. If a protected mode operating system is used, another possible approach is to
write a device driver which traps the physical PCI requests performed by the driver and turns them
into the socket library calls required. The drawback of the first method is that wrapping the PCI bus
calls in subroutines reduces the driver performance, but this can be solved by a careful use of macros.

6.6 An actual PCI Target Implementation
An actual PCI target was developed as part of a PCI DRAM board by the author, as part of his work at
FourFold Technologies Ltd. The board was sold to an OEM, and is being mass produced.

The interface was targeted for AMD Mach chips (the Mach 465/466 to be exact), and developed using
the MachXL 5.3 software. This is a restricted version of Minc’s PLDesigner-XL software, targeting
AMD’s PLD and CPLD chips only. Overall, the complete system (1 short PCI card and 3 memory
modules) contains 18 CPLD chips, 128 DRAM chips, and clock generation circuits.

The raw equations files (after synthesis) of all the CPLD’s were converted to Verilog by an internally-
developed translator, as described in section 6.2.1.

A PCI test bench was written in Verilog, as well as behavioral models for non-logic components
(DRAM chips and 2 clock oscillators). A complete system simulation was run, including all the logic
chips on the card, and the entire DRAM array. In order to save simulation memory, each DRAM chip
had only 4K bytes of RAM simulated, covering only a limited number of rows in each DRAM. The
simulation was run using SILOS-III 97.100, under Windows NT 4.0 using a Pentium 133MHz
machine w/64MB of system RAM. The simulation took roughly 20 minutes to run a 1.6ms simulation
period (representing about 53,000 cycles), yielding a ratio of about 1:1,000,000 between simulation
time and real time.

The PCI test bench was designed to send PCI transaction to the card only to addresses which are
mapped to DRAM memory locations covered by the 4K memory area on each DRAM model instance.
Since the card is 4 way interleaved, the 8 bit DRAM chips are 16-way interleaved, which means that
even with only the first 4K of each DRAM model active, we had a 64K memory range in which we
could freely burst.

In order to test the board design at all possible states, all the PCI master parameters were derived from
a pseudo random sequence, including the staring address, the actual write data, the burst length, and
the number of wait states for each word transferred. That insures that even rare bugs occurring only at
very rare conditions, would eventually turn up. The use of a pseudo random sequence derived from a
predetermined seed (as opposed to a true random sequence) allows the results of a simulation to be re-
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createable if needed. We even went as far as implementing our own random function as a verilog
function (taken from a C compiler library source code), to guarantee that we will get the same
simulation results no matter what simulator we would run our test bench on.

PCI Timing compliance was guaranteed using static timing analysis methods, and not by using timing
simulation. This was done by counting the number of gate levels.

Mach 466 CPLD used as a PCI target

Figure 54 - GM256, FourFold's CPLD based PCI DRAM card
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7. Improving the PCI bus

7.1 The Latency problem
As PCI systems grow to multiple bus masters, PCI to PCI bridge chips are used to link multiple PCI
bus segments. As a result, the latency of memory and I/O read operations is getting longer, especially
when a bus transaction has to go through one or more PCI to PCI bridge chips.

PCI 2.0 compliant target devices had to hold the bus until they could deliver read data, no matter how
long it took. No means were available to make use of the bus during this latency time, nor was the
target latency time limited. In theory, the target could retry the master, but since the master was not
required to retry the transaction, the only way to guarantee data delivery from a long latency target
devices was to hold the bus as long as necessary.

In order to solve the problem, the PCI 2.1 standard was modified in a few subtle ways:

1.  Target latency was limited to 16 cycles on the first word, and 8 cycles on any subsequent word in
a burst. Any target requiring a longer latency, was required to retry the master, by terminating
the current cycle without data (STOP# active, TRDY# inactive).

2.  A PCI 2.1 Master is now required to re-issue a request if a target is disconnected without
delivering data. The master must retry the request until the target is ready.

3.  After disconnecting, the target is required to refuse (also by disconnecting without data) any
other request other than the previous word. This ensures that the read order is preserved.

This solution allows other masters to compete for the bus between the original request and the target
reply, but it has two problems:

1.  The Master has to poll the target until it receives the data, wasting bus bandwidth which can be
used by other bus masters.

2.  The master will always poll the target, and since the polling may happen every N cycles, it will
never get the data from the target as soon as the data is ready, but as soon as the master retries
after the data has been ready. This implies an average waste of N/2 cycles on every delayed
transaction.

7.2 The Latency Hint Solution
A possible solution involves transferring a hint about the expected latency on the data bus while
STOP# is asserted. The latency hint which is measured in cycles, will be used to hint the master on
the expected latency of the current transfer. The master will need to retry the transfer only after a
cycle counter initialized by the latency hint will expire.

Targets supporting this extension can be identified by a few methods:

1.  Add a new read command that only targets supporting the extension would recognize. This has
the drawback of requiring the master to know in advance whether the target supports the latency
hint extension. This can be done by checking a new configuration register status bit in advance.

2.  Use some of the data bits not used for the hint as magic number. For example:

 31 10

Latency hint

09

Magic number

 Figure 55 - A possible arrangement of a Latency hint word

 If we choose a random number as a Magic number there are very low chances that any old target
will return this value on the data bus by a chance. Even if it does, the master will wait a
maximum number of 210 cycles since the longest latency hint has been defined to be 10 bits. In
this rare case, performance will be hurt, but system integrity would not be compromised.
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 We must never allow a latency hint which is more than 15 bits, since not only would the magic
number be smaller, raising the chance of a random magic number generation by an old target,
but also any target retry longer than 215 cycles, is considered an error by the PCI standard, and
can be dropped entirely, risking the system integrity!

7.3 The Early Read Solution
Another possible solution involves sending an advanced request to the target by using a PCI Special
Cycle command. After a predetermined number of cycles, a normal data read request would be sent,
which would receive the requested data immediately. The master can check if the target supports this
mode by examining its configuration registers, and checking for this special mode which would be
defined by a new configuration space flag. It would also indicate how many cycles after the advanced
request the data itself can be received. The advantage of this approach is:

1.  New targets can work with old masters. When a memory read request is received with no
advanced request, the data would be fetched according to the normal PCI rules (either wait
states, or target retry).

2.  New masters can be programmed not to issue advanced requests to old targets. This would be
done by software probing the PCI bus during system startup, examining configuration space,
looking for the required flags on every target in the system. Even if an advanced request is sent
by mistake, it is simply ignored (but time is lost since the target would start fetching the data
only when the real memory read command is sent).

3.  When both the target and the master supports the method, the time saved is the target decoding
time, plus the bus turnaround time.

The drawbacks of this solution are:

1.  The number of cycles between an advanced request and a memory read must be fixed since it is
determined by reading the configuration space only once, during system startup.

2.  PCI Special cycle commands use the low 16 bits to signal the special cycle message type. If a
new special cycle message type is used for advanced read request, only the upper 16 bits are left
for user data. This implies that PCI targets that use this service must allocate at least 64K of the
PCI space.

7.4 The Split Transaction Solution
We are proposing an extension to the PCI protocol which solves the above problems by adding a new
read command that allows queuing a read command, specifying not only the base address but also the
length, and an ID tag. The ID tag is used by the target to identify the resulting data when it is ready.
The master sending the request will tag the reply by an ID code. For example, we may assign the
following new C/BE# commands:

C/BE#3 C/BE#2 C/BE#1 C/BE#0 Command Type
1 0 0 0 Split Transaction Request
1 0 0 1 Split Transaction Reply

Table 21 - Proposed encoding for new Split transaction PCI commands

A possible arrangement for the split transaction request might look like this:

Starting Address

LengthBus Number
Device
Number

Function
Number

015182331 1624 19

 Figure 56 - Split Transaction request - method 1
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The starting address is sent together with the Split Transaction Request command, while the length
and ID tag word is sent on the next cycle, with C/BE# is 0 (all byte lanes on). The device number, bus
number and function number of the requesting device are used as an ID tag.

The split transaction reply might look like this:

Starting Address

Length (opt.)Bus Number
Device
Number

First data word

Last data word

Function
Number

015182331 1624 19

 Figure 57 - Split Transaction reply - method 1

The Length field in the reply is optional since the reply is also terminated using the basic PCI protocol
using the STOP# line. On the other hand, sending the length in advance might allow the master to
optimize its internal buffer management, knowing in advance how many words are going to be
returned. The reply length must be equal or less than the request length. In case it is less than the
request length, more data will follow.

A slightly different organization for the split transaction request and reply might be:

Starting Address

Destination Address

Length

031

 Figure 58 - Split Transaction request - method 2

The starting address is sent together with the Split Transaction Request command, while the
destination address and length are sent on the next cycle, with C/BE# is 0 (all byte lanes on). The
destination address of the requesting device are used as an ID tag.

Destination Address

First data word

Last data word

031

Figure 59 - Split Transaction reply - method 2
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This method has two advantages over the previous method:

• By giving a Bus / Device / Function code, the original requester is identified. By giving the
destination address instead, not only the original requester is identified, but also the original
request is identified, since the same requester can send multiple request, each with a different
destination address. Therefore the reply does not need to contain the starting address from the
split transaction request.

• If we look at Figure 59, we can see that the reply uses exactly the same fields as a regular memory
write transaction. Therefore, the reply can use normal memory write commands. This means that
this method can be used by device #1 to request device #2 to transfer data to device #3, and not
necessarily back to device #1. Not only that, device #3 doesn’t need to support any protocol
extensions. It is possible to look at this method as a way to standardize a bus mastering protocol.
Current bus masters use a unique method to operate its bus mastering capabilities. It is not
possible today to access a bus master device in a standard way.

It is possible to enhance this protocol even further:

Starting Address

Destination Address #1

Length #1

Destination Address #N

Length #N

031

 Figure 60 - Split Transaction request - method 3

This form specifies multiple requests in one transaction, and allows full use of scatter-gather Bus
masters in a standard way. This is very important in systems using virtual memory, where a
continuous memory buffer located in the logical address space might be discontinuous in the physical
memory map due to virtual memory paging.

The master can try queuing as many request as it needs, but the target is allowed to terminate this
cycle when its internal request queue is full. The cycle can be terminated using the STOP# signal and
the standard PCI handshaking protocol.

The reply would come as multiple, standard, memory write transactions. There is no need to invent a
new split transaction format for this request form, because multiple standard PCI write requests using
fast back to back transactions can be as fast as possible (one clock for each data word, and one clock
for each destination address).

7.4.1 The AGP protocol extensions
These protocol enhancements are inspired by similar enhancements made for the AGP bus. AGP is
not replacing the PCI bus, but rather complements it. It trades the PCI generality for better system
throughput. Both standards are used concurrently in the same machines, and it is expected that both
standard would develop further. We have tried to use a different approach than AGP for three reasons:

1.  AGP is a point-to-point bus (only one master and one target). This means there is no need to
identify either side when sending requests and receiving reply. The PCI bus supports multiple
masters and multiple targets, therefore each request and each reply must be identified.



Design and Implementation of PCI Bus based systems

89

2.  AGP is using a different connector with more signals. We want to use the existing PCI slots, and
therefore cannot assume that a new connector with more signals will be used. Even if we wanted
to use unassigned PCI pins, it seems that the only unassigned pin on the PCI connector was
recently assigned by the PCI SIG to be used for waking up devices in low power mode.

3.  Since PCI transactions can be used over AGP, the AGP standard specifically avoids consuming
any reserved PCI protocol resources (such as PCI reserved command codes) which may be used
by a future PCI revision, making AGP incompatible with PCI. Since we consider our proposal a
possible PCI bus extension, we can use the PCI reserved commands.

7.5 Performance analysis
After suggesting alternatives to the standard PCI protocol for long latency devices, it still left to prove
that the new protocol modifications actually improve the bus utilization. The analysis is broken into a
few tasks:

1.  Collecting statistical information about the PCI traffic to be simulated.

2.  Generating PCI traffic using the standard PCI protocols as well as the modified PCI protocols.

3.  Analyzing the results.

7.5.1 Collecting PCI traffic information
In order to run a simulation of the PCI bus, we need information about the typical cycles on a PCI
system. The best way to collect this type of information is to get it from a real system. As we noted,
the latency problem is more apparent on systems with large busses and multiple bus masters, which
may compete for the PCI bus. A typical system is a server with one of more SCSI cards, and one or
more Fast Ethernet adapters.

There is more than one method for collecting this type of information:

Connecting a logic analyzer to a PCI bus
By connecting a logic analyzer to the PCI bus, it is possible to collect detailed cycle information.
When this raw information is transferred to a PC, further analysis can be done to reveal higher level
information such as typical latency of specific cards, target retry behavior, master retry behavior, total
latency (from the first retry until a request is completed).

The drawback of this method is the limited buffer depth of most logic analyzer and the large volume
of PCI information when sampled in its raw form. Even a logic analyzer with a 128K sample depth
will store 10K-20K PCI transactions at most, which may not be enough to model a real system
behavior.

Using a PCI bus monitor.
A PCI bus monitor can passively analyze PCI transaction information and save only the higher level
information. For example, a single PCI clock cycle requires storing approximately 48 bits of
information. A typical 10 cycle PCI transaction requires 60 bytes to be stored in its raw form. Since
we only care about the base address, and the timing information, this information may take 6 to 8
bytes at most. A 10:1 reduction in the data rate allows a monitor card to output data directly to a mass
storage device such as a fast SCSI disk. A 2GB SCSI disk may be enough to store the equivalent of
20GB raw PCI data. At 33MHz clock rate, with 6 bytes/clock, this amounts to 100 seconds of PCI
activity, which is well beyond the capability of any logic analyzer.

Of course this solution requires designing an intelligent PCI monitor card with a separate output for a
mass storage device or another PC for data collection.
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Collecting statistical PCI information
A different approach would be to totally give up on any effort to collect real PCI transaction. Instead,
a more intelligent PCI monitor card would listen to the bus and extract statistical information about
the various cards plugged on the system. The card would be loaded with the PCI configuration header
information of all the cards in the system, allowing it to distinguish between different PCI targets on
the system just by looking at the destination address of every transaction. The card would collect
statistical information about the PCI traffic in the system:

1.  Average, minimum and maximum initial latency cycles, measured from asserting FRAME# until
the first data word.

2.  Average, minimum and maximum burst latency cycles, measured between consecutive words in a
burst transfer.

3.  Average, minimum and maximum transfer burst length.

4.  Average, minimum and maximum wait states before retry cycle generation.

5.  Average, minimum and maximum burst length before retry cycle generation.

6.  The relative frequency of each base address access and the cycle type (read or write).

Since this type of information requires a fixed amount of memory on the monitor card, it can run
indefinitely, collecting statistical information for as long as needed. As a result, we would have a
statistical profile of the access patterns of every PCI card in the system.

7.5.2 Generating PCI bus traffic simulation
After we have collected the PCI cycle information, we can simulate the bus behavior, either by
running the same PCI cycles sampled by the first two methods, or by generating random PCI cycles
based on the statistical patterns calculated according to the third method.

Since simulating the PCI bus behavior using the modified protocol will necessarily generate different
vectors on a cycle by cycle basis, we need to define a way to model the same PCI transactions using
the modified protocol. The way we choose to use is to calculate for every PCI transaction the total
latency for that transaction. For transaction requiring the use of target retries we would use the
following formula:

0.5*(Ni + Ni-1) - N0

Where: N0 The cycle number of the initial target access cycle.

Ni The cycle number when the target request was completed.

N i-1 The cycle number of the last target retry before the request was completed.

We assume that the target latency is the average between the last known latency (when the request
was still retried) and the known time it took the transaction to complete - when the request was finally
completed.

When simulating PCI transactions using both the standard PCI protocol and the modified PCI
protocols we evaluate, we have to modify the raw transactions sampled on the bus in a few ways:

1.  We assume that when using the modified PCI protocols, we may begin simulating a new PCI
cycle while the previous cycle is still retried, as long as both requests are not for the same target.
Without this modification, no performance could be gained from utilizing the idle time on target
retries. We cannot do this for multiple requests from the same target since we must keep all the
PCI data ordering rules which forbids changing the read order.

2.  We remove all the idle bus cycles, when simulating the standard PCI protocol, and the modified
PCI protocols. This is necessary because we want to test the efficiency of the protocol, and not the
efficiency of the PCI chipset that generated the original PCI requests, which may be lower.

3.  We optimize all the transactions captured according to the PCI optimization rules (byte merging,
consecutive word merging), again, this is necessary in order to test the bus efficiency and not the
chipset efficiency.
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7.5.3 Implementing the simulation framework
In order to simulate the PCI protocol and the proposed extensions, a simulation framework was
written in C++. We have decided not to write the simulation in verilog for a few reasons:

• The complied, cycle based approach taken by the C++ class library yielded simulation times that
are quicker by orders of magnitude compared with interpreted Verilog simulator (which we have
access to).

• The clever use of classes and inheritance in C++ allows us to take a generic model and customize
it very easily, without duplicating the identical functionality. If we would have written the models
in Verilog, which has no language support for object oriented design, the result would have been
less clear and much more complex.

• We did not want to be limited by the availability of a verilog software license for running the
simulation.

This simulation framework can be divided into three parts:

• A generic cycle based simulation library, supporting synchronous modules, which can be
instanciated in a hierarchy using wires. Each synchronous module can have one or more register
objects, each storing a single bit using a 6 logic level system (low, high, high-Z, unknown, pull-
high and pull-low). Module registers are connected by wire objects, also supporting the 6 logic
level system.

• A complete set of generic, parametrized, PCI models including a PCI arbiter, PCI target, PCI
master, a PCI backplane, and a PCI monitor/cycle checker. The modules support fine control over
the behavior of all the modules including burst length (both master and target), wait states (with
finer control over initial latency and burst latency), and retry generation by a target. The class
hierarchy allows a user to create a derived class from one of the basic PCI models, and override
only the necessary functions. Multiple types of arbiters are also available (fixed priority, round
robin with optional multi-transaction-timer), and new ones can be created by the user.

• Modified versions of the generic PCI models supporting the new extensions we have defined
above. These models include a target that can specify a retry hint, a PCI master that recognizes
the target hint and uses it to request the bus only when the estimated latency expires, and more.

The class library makes heavy use of virtual functions. Virtual functions are defined in a base C++
class, but may be dynamically overloaded by a derived class. The PCI master and target classes uses
virtual functions to supply a basic working model, which can be modified by overloading its functions,
controlling the basic model parameters.

7.5.4 The simulation library classes
What follows here is a more in-depth review of the simulation framework C++ classes and their
options.

The simulation library classes
The simulation library is made of 5 basic classes that are used to build general purpose models of
synchronous logic devices.

instance

This base class contains a pointer to an instance name, and an owner pointer. The operations which
can be performed on this class are:

fullname Traverses the owner link upwards and concatenates the instance names, building
a global instance name, in the form :instance1.instance2.instance..instanceN
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signal

This base class contains a single synchronous logic value. logic_state is an enumeration type
containing 6 logic states: Low, High, High-Z, Unknown, Pull-up and Pull-Down. A synchronous logic
value is stored in an array of two elements, one representing the current cell value, and the other one
representing the new cell value currently being calculated.

When a cell is read, its value is taken from the current cell value, and when a cell is being written, the
value is stored in the new cell value. The two element array is indexed by a variable which is toggled
every clock cycle, thereby turning all the new cell values into current cell values, and freeing the
previous current cell values for the calculation of the new cell values. The operations which can be
performed on this class are:

read Return current signal value

write Write new value to signal

readnew Return the new signal value currently being calculated

ascii Return ASCII representation of signal value

reset Writes a High-Z value to the signal

ishigh Returns true if current signal value is High or Pull-Up

islow Returns true if current signal value is Low or Pull-Down

resolve Returns the resolution of the current signal value with a given logic state,
according to Table 22.

Logic states Low High High-Z Unknown Pull-Down Pull-Up

Low Low Unknown Low Unknown Low Low

High Unknown High High Unknown High High

High-Z Low High High-Z Unknown Pull-Down Pull-Up

Unknown Unknown Unknown Unknown Unknown Unknown Unknown

Pull-Down Low High Pull-Down Unknown Pull-Down Unknown

Pull-Up Low High Pull-Up Unknown Unknown Pull-Up

Table 22 - logic state resolution table

reg

This class is derived from the signal class and the instance class. It stores one bit, and can be
located inside a design hierarchy by using the instance base class. The reg class contains a link to
a wire class. Registers are connected together by hooking them up to the same wire object. The
reg class has also linked list pointers, which are used to link up all the registers in the system in a
single list. This is used when all the reg objects are scanned at the end of a cycle, and any reg
which was not modified in that cycle keeps its last value. The operations which can be performed on
this class are:

read Return own value if no wire attached, or return wire value if attached to a wire

write Write value to reg, updating a wire if attached

print Print the full register name with its value

reset Writes a High-Z value to the register

operator= An overloaded assignment operator (same as write).

Operator<< An overloaded ostream operator, printing the register’s value.
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wire

This class is derived from the signal class and the instance class. It stores one bit, and can be
located inside a design hierarchy by using the instance base class. The wire class is not written
directly. Instead, it reflects the resolution value of all the registers attached to it. The operations which
can be performed on this class are:

add_signal Links a new register or signal to this wire.

write Write value to a wire, (called automatically by reg::write).

print Print the full wire name with its value

reset Writes a High-Z value to the wire

Operator<< An overloaded ostream operator, printing the wire’s value.

sync_logic

This class is derived from the instance class. The sync_logic object represents a synchronous
module, and almost always contains one or more aggregate reg members. The sync_logic class is
actually an abstract class, defining a few global operations, and two functions that must be
implemented by concrete classes derived from it. The sync_logic class has also linked list
pointers, which are used to link up all the logic modules in the system in a single list. This list is used
by the global_clock and global_reset functions to call all the clock and reset functions
of all the modules in the system. The operations which can be performed on this class are:

clock This pure virtual function must be defined by any concrete class derived from
sync_logic. It is called by the simulator every clock cycle, and is supposed to
update the object state.

reset This pure virtual function must be defined by any concrete class derived from
sync_logic. It is called by the simulator when the entire simulation is reset.

global_clock This function is called by the user to advance the simulator state by one clock. It
calls the clock functions of all the individual modules.

global_reset This function is called by the user to reset the simulator state. It calls the reset
functions of all the individual modules.

The PCI model classes
The PCI model library is made of a few basic classes that are used to build a complete PCI simulation.

PCI_reg

This class is derived from the sync_logic class. It is mostly a set of registers representing all the
basic PCI signals. All the PCI models are derived from this class. The operations which can be
performed on this class are:

do_par Calculate the value of the PAR# signal based on the current AD# and C/BE#
values.

do_perr Calculate the value of the PERR# signal based on the current PAR# value and
the previous cycle AD# and C/BE# values.

reset Reset all the PCI registers.
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PCI_bus

This class is derived from the instance class. It is mostly an aggregate collection of wire objects,
mapped to all the basic PCI signals, representing a single PCI backplane. The operations which can
be performed on this class are:

print Print the entire state of all the PCI signals in a single line.

add_pci_device Link a PCI model (derived from PCI_reg) to the bus.

PCI_config_space

This class is simply a data structure containing the standard PCI header. No operations can be
performed on this class.

PCI_arbiter

This class is derived from the PCI_reg class. It is a PCI model of a central arbitration unit. This is
an abstract class and cannot be used directly. It defines the extra registers for the REQ# and GNT#
pairs. The operations which can be performed on this class are:

reset Reset all the PCI arbiter registers, including all the REQ# and GNT# pairs.
It is called automatically by the sync_logic::global_reset  function.

link_master Links a PCI_master object to this arbiter.

PCI_arbiter_fixed

This class is derived from the PCI_arbiter class. It is a PCI model of a central arbitration unit,
implementing a fixed priority scheme (not really useful). The operations which can be performed on
this class are:

clock Implement the arbiter algorithm. It is called automatically by the
sync_logic::global_clock  function.

PCI_arbiter_round_robin

This class is derived from the PCI_arbiter class. It is a PCI model of a central arbitration unit,
implementing a round robin scheduling algorithm, with an optional Multi-transaction-Timer register
(Modeled after the Intel Triton VX, HX, TX arbiter). The operations which can be performed on this
class are:

clock Implement the arbiter algorithm. It is called automatically by the
sync_logic::global_clock  function.

reset Reset all the PCI arbiter registers, including all the extra state required by the
round robin scheduling algorithm. It is called automatically by the
sync_logic::global_reset  function.

set_MTT Set the Multi-Transaction-Timer value. See page 99 for a description of this
value.

PCI_monitor

This class is derived from the PCI_reg class. It is a PCI bus monitor, capable of monitoring a
PCI_bus object, analyzing the traffic on it, extracting statistical parameters, and checking the traffic
for PCI protocol violations. The operations which can be performed on this class are:
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reset Reset all the PCI monitor registers, including all the specific class
information. It is called automatically by the
sync_logic::global_reset  function.

clock perform the bus monitoring function. It is called automatically by the
sync_logic::global_clock  function.

add_card Add a specific address range as a separate entity, for which the monitor
will individually track statistical information.

print_statistics Print the statistical results collected during the simulation. This function
should be called when the simulation is terminated.

PCI_profile

This base class encapsulates a few common variables used by both PCI targets and PCI masters. The
operations which can be performed on this class are:

is_config Return true if the current bus transaction is configuration read or
configuration write.

is_IO Return true if the current bus transaction is I/O read or I/O write.

is_mem Return true if the current bus transaction is one of the 5 memory read/write
transactions.

is_read Return true if the current bus transaction is a read transaction (memory,
I/O, or configuration).

is_write Return true if the current bus transaction is a write transaction (memory,
I/O, or configuration).

The following operations are declared as virtual, and may be overloaded by derived classes:

read_next_data Return the next data item to be driven on the bus (used by the PCI
master on writes and by the PCI target on reads).

read_next_cbe Return the next byte enable value to be driven on the bus (used by the
PCI master during reads and writes).

write_next_data Write the data value obtained from the PCI bus using the byte enable
value also obtained from the PCI bus (used by the PCI master on
reads and by the PCI target on writes).

undo_read_next_data Undo the effect of read_next_data, guaranteeing that a
subsequent call to will return the last value. This is used by a PCI
master in the case of a target disconnect without data during a write
cycle.

PCI_target

This class is derived from the PCI_reg and PCI_profile classes. It implements a fully
configurable PCI target device. The operations which can be performed on this class are:

reset Reset all the PCI target registers. It is called automatically by
the sync_logic::global_reset  function.

clock perform the PCI target function. It is called automatically by the
sync_logic::global_clock  function.

set_decode_speed Set the decode speed for all the PCI commands the target
responds to. Decode speed may be fast, medium, slow, or sub.

set_command_decode_speed Set the decode speed for a specific PCI command. A PCI target
may respond differently to different PCI commands.
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set_config_reg Write a specific value to a PCI target configuration register.
This could optionally be done by using a PCI master and
sending a configuration write command, but it is much too
complex to be convenient.

set_init_retry_threshold Set the maximum number of wait states the target may generate
during the first word transfer. Any number of wait states above
this number would result in a target retry condition instead. Any
value over 16 is ignored, since the maximum number of legal
wait states is 16.

set_burst_retry_threshold Set the maximum number of wait states the target may generate
during a burst word transfer. Any number of wait states above
this number would result in a target retry condition instead. Any
value over 8 is ignored, since the maximum number of legal
wait states is 8.

get_words_transferred Returns the total number of words transferred by the target so
far.

The following operations are declared as virtual, and may be overloaded by derived classes:

read_next_config This function reads the next word during configuration
space read operation. It can be overloaded in order to
implement target specific extended configuration space.

write_next_config This function writes the next word to configuration space
during configuration write operation. It can be overloaded
in order to implement target specific extended configuration
space.

target_burst_length Called at the beginning of a transaction, this function must
return the maximum number of words the target may burst.
The default function allows an unlimited burst length.

target_is_last Return true if the current word should end the current burst.
This function should be overloaded only if the level of
control offered by target_burst_length  is not
enough.

target_initial_wait_states Called at the beginning of a transaction, this function must
return the number of wait states for the current word, which
is the first word in the transaction. The default value is zero
wait states. The class automatically keeps at least one wait
state for the turnaround cycle on fast decode targets during
read.

target_burst_wait_states This function must return the number of wait states for the
current word in a burst (not the first word in the
transaction). The default value is zero wait states.

target_wait_states This function must return the number of wait states for the
current word (This function is called for all words). This
function must be overloaded only if the wait state
calculation is identical for all words transferred. The default
function calls target_initial_wait_states  or
target_burst_wait_states  when appropriate.

is_new_retry This function returns true if the current cycle must be terminated now with a
target retry. This function must be overloaded only if the control level offered by
set_init_retry_threshold  and set_burst_retry_threshold  is
not enough.
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is_retry This function returns true if the current cycle must be terminated now with a
target retry. This function must check for previously retried cycles and retry if
they were not completed. This is done automatically for is_new_retry, and
must be overloaded only if absolutely necessary.

retry_data This function should return the value to be driven on the AD# lines on a target
retry during a read operation. Current PCI masters ignore this value, but we use it
as part of our PCI protocol extensions.

PCI_master

This abstract class is derived from the PCI_reg and PCI_profile classes. It implements a fully
configurable PCI master device. A PCI master includes an integral, but totally separate PCI target,
which must be used to hold configuration space registers for the PCI master. The PCI_master class
cannot be instantiated directly, because control logic defining the master operation must be added.
The operations which can be performed on this class are:

reset Reset all the PCI master registers. It is called automatically by
the sync_logic::global_reset  function.

clock perform the PCI master function. It is called automatically by
the sync_logic::global_clock  function.

The following operations are declared as virtual, and may be overloaded by derived classes:

master_initial_wait_states Called once at the beginning of a transaction, this function
must return the number of wait states for the current word,
which is the first word in the transaction. The default value
is zero wait states.

master_burst_wait_states Called once for every word transferred (except for the first
word), This function must return the number of wait states
for the current word in a burst (not the first word in the
transaction). The default value is zero wait states.

master_wait_states Called once for every word transferred, this function must
return the number of wait states for the current word. This
function must be overloaded only if the wait state
calculation is identical for all words transferred. The default
function calls target_initial_wait_states  or
target_burst_wait_states  when appropriate.

master_burst_length Called once per transaction, this function must return the
maximum number of words the master may burst. The
default function allows an unlimited burst length.

master_is_last Called every clock cycle, this function returns true if the
current word should end the current burst. This function
should be overloaded only if the level of control offered by
master_burst_length  is not enough.

get_address Called once per transaction, this function must return the
base address for a new transaction. There is no default
function, and a derived class must be declared with this
function.

get_command Called once per transaction, this function must return the 4
bit PCI command code required for a new transaction.
There is no default function, and a derived class must be
declared with this function.
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request_bus Called every clock cycle when the PCI master is in idle
state, this function should return true if the bus needs to be
requested. The default function always requests the bus to
begin a new transaction.

The modified PCI model classes
These classes are derived from the basic PCI model library, and add the new protocol extensions, as
described in sections 7.3 and 7.4. The basic PCI functions are modified by overloading the virtual
functions defined by the PCI_master and PCI_target classes.

PCI_hinting_target

This class is derived from the PCI_target class. It implements the retry hint extension as described
in section 7.3. This class behaves identically to PCI_target. The added functionality was achieved
by overloading the default retry_data virtual function.

PCI_hinted_master

This class is derived from the PCI_master class. It honors the retry hint extension as described in
section 7.3. This class behaves identically to PCI_master. The added functionality was achieved by
overloading the default request_bus virtual function. The new operations which can be performed
on this class are:

set_retry_overhead This function sets the retry overhead factor, OV. If a target
returns a retry hint of N cycles, PCI_hinted_master  will
request the bus after N-OV cycles, to compensate for the initial
overhead. Default value is 0.

7.5.5 The simulation environment
We have gathered some statistical information from PCI cycle snapshots sampled by a logic analyzer
on a running system, but the results were disappointing. It seems that the lack of bus masters on the
PC system we had to use produced samples that contained only single threaded CPU activity. This
means that the PCI sample snapshots contained almost exclusively one type of requests and not
interleaved traffic generated by multiple masters on the bus.

More “interesting” bus traffic may be observed on systems with more than one bus masters, such as
systems with a high performance PCI Ultra-wide SCSI controller, and a good Fast-Ethernet PCI based
controller. An Ultra-wide SCSI card may peak at a transfer rate 40MB/s, and sustain this rate when
used in a RAID configuration with multiple fast Ultra-wide SCSI disks. A Fast Ethernet card may
sustain a transfer rate of up to 10MB/s. A heavy duty file server with more than one SCSI card and
more than one Fast Ethernet controller, can have a very high bus utilization ratio, especially if a high
performance operating system and application is keeping all the bus master cards busy.

Instead of using the exact traces of the PCI traffic we have sampled, we have extracted statistical
information from some of the traffic, and complemented this information with information gathered
from data sheets:

• The PC system memory is accessible as a target from the PCI bus through the Host PCI bridge
chip. The PC market is dominated today by Intel’s Triton 430HX/VX/TX Pentium chipsets, and
the following data applies to these chipsets:

 The PC system memory is accessible from the PCI bus with average initial latency of 8-12 cycles
for read, and 3-4 cycles for write. The burst latency is very low, with no wait states inside cache
lines (cache lines fall on a 32 byte boundary), and sometime a small delay between cache lines.
The PC system memory can sustain long bursts (up to a 4K page boundary) if requested by the
PCI master.
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 The Triton 440FX Pentium-Pro chipset will disconnect a PCI memory on a cache line boundary,
but will almost always allow a PCI memory-read-line or memory-read-multiple command to
continue up to a 4K page boundary.

• CPU writes to the PCI bus have a very low initial latency, 1-3 cycles, and burst length up to 7
words. Burst latency is also low, at about 0.5 cycles on the average.

• CPU reads from the PCI bus don’t have a master initial latency (but the target will probably add
its initial latency), but don’t burst at all.

We have decided to simulate a hypothetical system with the following PCI devices:

• A round robin arbiter modeled after the PCI scheduler in the Intel Triton VX, HX and TX
chipsets. This arbiter grants the bus to PCI master in a round robin fashion after the current
master releases its REQ# line, or when the MTT (Multi-transaction-Timer) expires. This timer is
reset each time a new master is granted the bus. Setting a high value for the MTT compensates a
master performing many short bursts from losing the bus after every short transaction. Each
master is still limited by its Latency-Timer, which releases a masters REQ# line when a single
transaction is too long.

• A fast target representing system memory. The performance characteristics of this target appears
on Table 24.

• A slow target representing a low quality VGA card, or an ISA VGA card behind an PCI-ISA
bridge. The performance characteristics of this target is much worse than the system memory
target. The performance characteristics of this target also appears on Table 24.

• Two masters representing bus masters (SCSI controller and an Ethernet card). These bus masters
are high performance and only drive the system memory PCI target. The performance
characteristics of these master appears on Table 23.

• A bus master representing CPU access to the VGA card. This bus master has lower performance,
and supports no read bursts. This bus master does not need to access the system memory, because
CPU to system memory access is handled by the PCI host bridge, and this traffic does not appear
on the PCI bus. In fact, a PCI master and a PCI target may communicate concurrently with CPU
traffic to/from the system memory. This is called Peer Concurrency in Intel’s terminology.

Also, the following assumptions were made:

• Each bus master has a predetermined amount of traffic to transfer. Once this traffic is done, the
master is idle until the end of the simulation, freeing the bus for other bus masters.

• Every PCI device has its own pseudo random number generator. This ensures that the exact
transaction sequence of every master, and the exact behavior of every target is repeatable, even
when the transaction order changes between masters due to protocol optimizations. Every random
number generator is initialized with a unique seed, allowing simulation results to be regenerated
by using the same seed values.

• The ratio between read and write has been determined to be the classical 80/20 for program
read/write. Since disk read from programs causes SCSI or Ethernet write to system memory, these
masters use the opposite ratio, 20/80.

7.5.6 Simulation results and conclusions

Latency Hint simulation base parameters
We have ran the system described above, with the parameters in Table 23 and Table 24. We have then
ran additional runs, each time varying one or more parameters.
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CPU Host bridge PCI bus master (Fast
Ethernet)

PCI bus master
(SCSI)

Name PM1 PM2 PM3

Read/Write ratio 80/20 Random probability 20/80 Random probability 20/80 Random
probability

Initial wait states 0 0 0

Burst wait states 0 0 0

Burst length Read: 1

Write: Random (1 to 8)

Random: 8 to 384 128

Master Latency
Timer

48 48 48

Retry overhead 0 N.A. N.A.

Transaction count 200 100 100

Table 23 - Latency hint simulation master parameters

PM1 is the Host PCI bridge master, capable of write bursts but not read bursts. Most transactions are
read.

PM2 is a Fast Ethernet PCI master. Burst length is random, representing an Ethernet frame size, up to
1536 bytes. Most transactions are PCI write, because most of the time the data is read by the CPU.

PM3 is an Ultra Wide SCSI PCI master. Burst length is fixed at 128, representing a 512 byte disk
sector size. Most transactions are PCI write, because most of the time the data is read by the CPU.

Here is a brief description of all the master performance parameters:

Read/Write ratio

This number describes the percentage ratio between PCI read commands and write commands for this
master.

Initial wait states

The number of wait states before the master is ready to send or receive the first word.

Burst wait states

The number of wait states before the master is ready to send or receive burst words, after the first
word.

Burst length

The number of words the master is intending to send or accept.

Master Latency Timer

When a master is bursting and its GNT# line is deasserted during the burst, it has to release the bus
when his MLT expires. MLT counts down cycles, beginning on each burst cycle.

Retry overhead (for latency hint aware masters only)

When a hinting target sends a latency hint, it can estimate when it will be ready, but it cannot
estimate the master retry overhead. The master retry overhead is measured from REQ# going active
until FRAME# goes active. When a master receives a latency hint, it subtracts the retry overhead
parameter from the delay received by the target, to compensate for this extra time.

Transaction count

The total number of transaction the master runs before stopping. We can disable a master by setting
its transaction count to 0.
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Type VGA target System memory target

Name PT1 PT2

Decode speed Medium Fast

Initial wait states Random (0 to 40) Read: Random (8 to 12)

Write: Random (3 to 4)

Burst wait states 0 32 byte boundary: 1

Otherwise: 0

Burst length Random (0 to 10) Stop at 4K boundary

Initial retry threshold 16 16

Burst retry threshold 8 8

 Table 24 - Latency hint simulation target parameters

Here is a brief description of all the target performance parameters:

Decode speed

A target has four possible speeds for asserting DEVSEL# after FRAME#. Fast, Medium, Slow, and
Sub. Sub is used by subtractive decoders, which only decodes cycles ignored by other targets.

Initial wait states

The number of wait states before the target is ready to send or receive the first word.

Burst wait states

The number of wait states before the target is ready to send or receive burst words, after the first word.

Burst length

The maximum number of words the target is able to send or accept.

Initial retry threshold

A target that has to wait N wait states may do one of: Wait N cycles with TRDY# deasserted and then
assert TRDY#, or retry the cycle (with or without a latency hint). If N is greater than the initial retry
threshold, a retry will be generated. otherwise, wait states will be added. This parameter only applies
to the first word in a burst, and is limited to 16 due to PCI 2.1 restrictions.

Burst retry threshold

This parameter is the same as the Initial retry threshold, but only applies to subsequent words in a
burst (not the first word in a burst), and is limited to 8 due to PCI 2.1 restrictions.

Single master results
We have run a simulation of a single master device, as a function of two parameters, the target initial
retry threshold, and the master retry overhead parameter.

As we have explained before, the target initial retry threshold parameter determines when will a target
retry a cycle, and when it will insert wait states instead. To use this parameter, we must assume the
target can estimate how many clock cycles it will take for a requested data word to be available. If the
estimated delay is more than or equal the initial retry threshold, the target will retry. If the delay is
less than the initial retry threshold, the target would insert wait states until the requested data will be
available.
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The master retry overhead parameter is used for the latency hint extension. When a master is retried
with a target latency hint of N cycles, it should actually request the bus a few cycles before these N
clock cycles would pass. The reason for that is that the retry hint measures the estimated retry time
from the target’s point of view, which is when the next request should be received. The master,
however, has additional overhead involving requesting the bus and waiting for bus grant. Therefore,
the master should request the bus a few cycles ahead.

The following graph shows the simulation results. 100 bus transactions, totaling 163 words, were run.
The Y graph axis measures the number of clock cycles the simulation had to run. The lower the
number, the less overhead, and the performance is better. The measurements are normalized and
presented as percentage of the highest results (the slowest simulation).
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Figure 61 - Single Master performance as a function of the initial retry threshold and master retry overhead

The conclusions from this simulation are simple:

• Any initial retry threshold value below 4 is sub optimal, because it takes more time to retry the
cycle, than to actually wait the requested number of wait states! with a single master simulation it
takes 4 cycles to release the bus and request it again, therefore the performance flattens at any
value above or equal to 4, because with 4 expected wait states the master can retry the cycle and
get the data in time without causing additional delay.

• The optimum retry overhead is also 4 cycles. Any values above 4 means the bus would be
requested too early, which would hurt performance with multiple masters.

Varying the arbiter Multi Transaction Timer
Now we want to test the system performance of multiple bus masters, using the standard PCI protocol.
We try different combinations of two parameters, the target initial retry threshold (which we have
discussed before), and the arbiter MTT (Multi Transaction Timer). The MTT determines the
minimum time slice a master is guaranteed to be granted, even if it is split to more than one bus
transaction. It is important to realize the difference between this parameter and the master latency
timer, which determines the minimum time slice of a single burst transaction.
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The following graph shows the simulation results. This time we have defined 3 masters, with 100 bus
transactions for the host bridge, and 10 transactions each for the SCSI and Ethernet bus masters,
which have much longer bursts. The host bridge has transferred 163 words to the VGA target, the
SCSI master has transferred 1280 words to the system memory, and the Ethernet masters has
transferred 1840 words to the system memory. We have varied the target initial retry threshold, with
values of 1, 2, 3 4, 5, 6, 8, 12, and 16. The measurements in percent are normalized to the highest
results (the slowest simulation). The Y graph axis measures the number of clock cycles the simulation
had to run. The lower the number, the less overhead, and the performance is better.

The MLT (Master latency Timer) values for all the masters were taken to be 48 at this stage. Later,
we will try different values of MLT when we cut down the number of combinations on other
parameters.

Surprisingly enough, we find two points where the performance peaks, at MTT values of 20, and 40 to
44. We also find the best retry threshold value to be 2, with 3, 1, 6, and 5 all before 4, which was the
best value for a single master. We also find that for threshold values over 4, there is usually only one
performance peak, at around MTT = 20.
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Figure 62 - Multiple Master performance as a function of the arbiter MTT and the Target initial retry threshold

Varying the Master Latency Timer
The next parameter we are testing is the Master Latency Timer, or MLT. The MLT determines the
minimum time slice a master is guaranteed for a single burst. It is important to realize the difference
between this parameter and the MTT, which guarantees a minimum time slice even for multiple
bursts.

We have ran the same simulation conditions as before, but this time we are varying the MLT between
8, 16, 24, 32, 40 for the initial retry threshold of 2.
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Figure 63 - Multiple Master performance as a function of the arbiter MTT and the MLT

One observation we can make, is that for all the simulations for which MLT>MTT, we get the same
results for MTT regardless of MLT (the graphs merge at the MLT=MTT).

Simulating the retry hint extension
After measuring the system performance by varying the various PCI parameters, we now want to test
the retry hint extension we have defined. We have picked up the best set of parameters, which are
MLT=24 and MLT=32, and ran them with master retry overhead values of 1 through 16, as well as
with no retry hint extensions (for reference). The best results are summarized in these graphs:
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Figure 65 - Multiple Master performance with target retry hint, MLT=32

The performance improvement is obvious for both MLT=24 and MLT=32, even though it seems that
we can get better results with MLT=24. We also see that the best results are for master retry overhead
values of 6 or 8.

Latency Hint simulation explanations
Before running the simulation, we would have expected larger MTT and MLT values to give better
results (at the cost of the individual latency of each master), but the results shows that making MTT
and MLT larger does not necessarily increase system throughput.

After closely examining the bus cycle dumps of the simulations above, we have came up with a few
explanations for the lack of positive correlation between MTT and any performance increase of the
simulations:

1.  By changing the MTT, we change the transaction order between different masters. Since our
simulation stops only after all masters have done their work, there is always one master which
finishes last, and whose bursts are never broken by other masters requesting the bus, since they
already finished their work.

 Now, if MTT is made longer, a master which may have finished earlier before might now finish
later, and cause the last master’s transaction to be broken, adding extra latency.

2.  A special condition occurs when masters are retried on write cycles. The masters release REQ#
on the same cycle they release the bus, and immediately retry the transaction on the same cycle
GNT# is deasserted. This is perfectly legal, since arbitration rules are that a master may begin a
cycle on the same clock it loses GNT. (It has no way of knowing it has lost GNT# in the same
cycle, only a clock later). The result is that with MTT or MLT long enough to hold GNT# low
during all the retry, we actually end with two consecutive write retries, without other bus masters
being able to access the bus between, which is inefficient. If MTT or MLT is short enough to
remove GNT before the master is even retried for the first time, the master would not be able to
run two consecutive retries, which may improve the bus utilization.

Latency Hint simulation conclusions
We have ran several simulations, comparing multiple master performance of the standard PCI
protocol at various values.
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Before running the simulation, we would have expected larger MTT and MLT values to give better
results (at the cost of the individual latency of each master), but the results shows that increasing
MTT and MLT does not necessarily increase system throughput.

We have then compared the best results achieved using the standard PCI protocol, and compared
them with results achieved with an improved PCI protocol including a target retry hint extension, and
for the same simulation setup we have found performance increase of up to 4% over the standard
protocol.

Further work
The simulations we have run here had been running for an average of 6000 clock cycles each. With
hundreds of simulations run, we could not run significantly longer simulations, due to time
constraints. More accurate results could be achieved by running longer simulations, as well as with
multiple data sets. We could test more combinations of the retry hint, target threshold, MLT and MTT
parameters.

Also, the our simulation model assumed the VGA target had a relatively long latency, because this
was the main problem the latency hint extension was designed to solve (reducing the impact of long
latency devices on the whole system). We could run these simulations for more realistic scenarios
where the VGA card has a lower latency and see if we still get any improvements.

Instead, we could also write simulation models for the other extensions we have suggested earlier,
namely the split transaction enhancements. These extensions may achieve better speed improvements,
but their effect on the PCI bus is more complex in terms of transaction ordering. The PCI standard
specifies very specific transaction ordering rules, and we must inspect their implications on the split
transaction enhancements.
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Appendix A - ISA Protocol summary
The ISA bus was the workhorse of the PC industry for the last 15 years, and is found in every PC
today, so it is worth a close examination.

The ISA bus was originally an 8 bit wide bus designed for the original IBM-PC, and later extended to
16 bit for the IBM-AT. As a result, the ISA bus has an 8 bit mode, using one connector, and a 16 bit
mode with more signals on an extra connector which is in-line with the 8 bit connector.

XT Bus signal summary
These signals are on the 62 pin edge connector that appeared in the original IBM PC.

SD7..0 This is the 8 bit system data bus. During 8 bit cycles, these lines are used to hold 8
bit data for both odd and even addresses. During 16 bit cycles, these lines are used
to hold data for even addresses.

SA19..0 This is the latched system address bus. It is driven by the platform, and contains the
low 20 address bits. The SA bus is always updated at the positive edge of BALE,
and latched at the negative edge of BALE.

BALE This is the Buffered Address Latch Enable line. The system address bus is updated
while BALE is high, and latched on the falling edge of BALE.

AEN AEN is asserted when one of the onboard DMA controllers has been granted the
bus, and instructs non-DMA I/O Resources to ignore the current cycle.

SMEMR* System Memory Read Command. This line is asserted to begin a memory read bus
cycle. Since this signal originates on the 8 bit PC bus, it is active only while
accessing the low 1MB memory area. Any memory read operation above 1M will
not trigger this line to prevent 8 bit cards, which decode only 20 address bits, from
responding to this operation.

SMEMW* System Memory Write Command. This line is asserted to begin a memory write bus
cycle. Since this signal originates on the 8 bit PC bus, it is active only while
accessing the low 1MB memory area. Any memory read operation above 1M will
not trigger this line to prevent 8 bit cards, which decode only 20 address bits, from
responding to this operation.

IOR* I/O Read Command. This line is asserted during an I/O read bus cycle.

IOW* I/O Write Command. This line is asserted during an I/O write bus cycle.

NOWS* No Wait States. This signals is asserted by a memory target when it wants to reduce
the number of wait states in a cycle.

IOCHRDY I/O Channel Ready. This signal is asserted by a memory target when is need to
extend a normal cycle with one or more wait states.

IOCHCHK I/O Channel Check. This signal generates a Non Maskable Interrupt, which unlike
what its name implies, can be masked by either the channel check enable/disable
gate (port 61 bit 3), or the NMI enable/disable gate (port 70 bit 7).

RESET This signal resets all the peripherals on the bus. It is usually generated only when
the computer is reset.

BCLK This line is the system bus clock. All the bus signals are generated relative to this
clock. On the original XT, it ran at 4.77Mhz. On modern PCs, it is usually running
at 8MHz or 8.33MHz, but some system have the option to overclock this up to
16Mhz. Not all cards can work at this faster rate.

OSC A 14.31818MHz clock signal that is not synchronized to any bus signal. This signal
is a multiple of the color burst frequency (3.57MHz) and was used by video adapter
display cards in the past.
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REFRESH* This signal is asserted when the system board refresh logic is executing a refresh
cycle.

IRQ3-7,9 These 6 lines allow edge triggered interrupts to be generated by the interface cards.

DRQ1-3 These 3 lines are data request lines, used during DMA cycles. They form 3 pairs of
lines (together with DACK1-3). When using a DMA channel, a card should request
service by driving the DRQ line, and receive an acknowledge by the DACK line.

DACK1-3* See DACK1-3 above.

TC Transfer Complete. This signal, generated by the internal DMA controllers,
indicates the end of the DMA block transfer.

AT Bus Signal summary
These signals are on the 36 pin edge connector that was added for the IBM-AT.

SD8..15 System Data Bus. These are extra 8 bits which expand the system data bus to 16
bits. During 16 bit cycles, these lines are used to hold data for odd addresses.

LA17..23 These lines, driven by the platform, contain the upper 7 address bits. Unlike
SA19..0, these signals are unlatched, and appear at least one BCLK cycle before
SA19..0, which means LA23..17 can be used for address decoding a cycle earlier. If
these line are needed during the whole memory cycle, they must be latched by
BALE, because they advance to the next address before the end of the current cycle.

SBHE* This signal, driven by the bus master during 16 bit cycles, indicates that the 8 upper
data lines (SD8..15) contain valid data.

MEMCS16* This signal, driven by a memory target, indicates the card’s ability to handle 16 bit
memory transfers. This also makes ISA cycles shorter. This signal is ignored during
I/O cycles.

IOCS16* This signal, driven by an I/O target, indicating the ability to handle 16 bit I/O
transfers. This also makes ISA cycles shorter. This signal is ignored during memory
cycles.

MASTER* This signal can be used by bus master cards to gain access to the system bus. In
order to gain bus access, a bus master should assert DRQ* and wait for a DACK*
signal from the DMA controller. The bus master can then drive MASTER*,
relinquishes the system bus from the DMA controller. This allows the bus master to
drive the ISA bus directly. It also allows the bus master to drive more than one word
before releasing the bus, yielding a higher transfer rate than what possible using the
internal DMA controller, which requires a DRQ* / DACK* handshake for every
word. As a side effect, AEN* is not asserted if MASTER* is asserted, allowing the
bus master card full access to any other I/O card in the system.

MEMR* Memory Read Command. This line is asserted to begin a memory read bus cycle.
This signal is used by targets wishing to decode any address in the 16 Mbyte range.

MEMW* Memory Write Command. This line is asserted to begin a memory write bus cycle.
This signal is used by targets wishing to decode any address in the 16 Mbyte range.

IRQ10-12,14,15 These 5 additional lines allow more edge triggered interrupts to be generated by the
interface cards.
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Simple Memory and I/O write access cycles
ISA bus cycles are always synchronized to the BCLK signal, and the length of every bus cycle is
measured by the number of BCLK cycles it takes to complete. It must be noted though, that the BCLK
signal is regenerated from the local CPU bus control signals at the beginning of every ISA bus cycle,
which means that the BCLK signal may show some jitter when viewed on an oscilloscope.

The length of ISA bus cycle is summarized in the following table:

Cycle type 8 bit 16 bit
Standard 4 wait states 1 wait state
Shortened (Zero wait state) 1, 2, or 3 wait states 0 wait states (memory only)
Ready more than 4 wait states more than 1 wait state

Table 25 - ISA wait states

Since each cycle requires at least 2 BCLK cycles, the shortest ISA bus cycle takes 2 BCLK cycles, and
standard 16 bit memory ISA bus cycles takes 3 BCLK cycles.

Here is a typical memory or I/O transfer:

1. System drives the LA[23:17] bus.

2. A 16 bit memory card may perform chip select on LA[23:17] and drive MEMCS16* if the
address is in the card’s range. If no MEMCS16* is detected within the correct time window, this
will be an 8 bit cycle.

3. System drives BALE high, enabling SA[19:0] and SBHE* on the ISA bus.

4. A 16 bit I/O card may perform chip select on SA[19:0] and drive IOCS16* if the address is in
the card’s range. If no IOCS16* is detected within the correct time window, this will be an 8 bit
cycle.

5. System drives one of the command lines (IOR*, IOW*, MEMR*, MEMW*, SMEMR*,
SMEMW*). In case of an address below 1Mbyte, both the MEMx* lines are driven, and
SMEMx* lines are driven ( about 60 ns later).

6. If this is a write operation, the card may latch the data now.

7. The card can extend the cycle by one or more wait states if it asserts the IOCHRDY* line. It can
also shorten the cycle by one or more wait states if it drives the NOWS* line.

8. The cycle ends after a predetermined number of clock cycles (depending on the cycle type). If
IOCHRDY* was asserted before, the cycle will end only when IOCHRDY* is deasserted.

9. If this is a read cycle, the system will latch the read data when the command line is deasserted.

The data bus content and the cycle type can be determined according to the following table:

SBHE* SA0 Data driven on
write

Data returned on
16 bit read

Data returned on
8 bit read

0 0 SD[7:0] Even

SD[15:8] Odd

SD[7:0] Even

SD[15:8] Odd

SD[7:0] Even

0 1 SD[7:0] Odd

SD[15:8] Odd

SD[15:8] Odd SD[7:0] Odd

1 0 SD[7:0] Even SD[7:0] Even

1 1 SD[7:0] Odd SD[7:0] Odd

Table 26 - ISA cycle width encoding
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Notes:

1. “Odd” means data byte on odd byte address, while “Even” means data byte on an even byte
address.

2. If SBHE* was asserted but no MEMCS16* or IOCS16* was driven, the cycle become an 8 bit
cycle, as if SBHE* was not driven. This will split a 16 bit cycle into two 8 bit cycles.

3. When SBHE* = 0, SA0 = 1, The same write data is driven on both SD[7:0] and SD[15:8]. 8 bit
devices will use SD[7:0], while 16 bit devices will use SD[15:8].

4. It can also be observed that 16 bit memory targets requires no byte lane steering (a data path
connecting SD[7:0] to the board’s internal data bus D[15:8]), as long as they are plugged only in
a 16 bit system. In this case Odd data is always on SD[15:8] and even data on SD[7:0]. If the
card needs to be backward compatible with 8 bit systems, it must handle the case of SBHE* =
SA0 = 1, where Odd data is on SD[7:0], and requires byte steering logic to get it to/from D[15:8]
on the card’s internal memory bus.

The following sections will illustrates the exact timing relationships between the bus signals during
different types of memory or I/O cycles.

ISA 8 bit memory and I/O standard cycles
As it can be seen, the standard 8 bit cycle takes 6 clock cycles to complete. The diagram shows the
timing for both read and write. The write data indicates when the data written is valid, while the read
data indicates when the data is latched by the system.
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Figure 66 - ISA 8 bit standard memory and I/O cycle

ISA 8 bit memory and I/O no wait states cycles
As it can be seen, the 8 bit no wait states cycle takes 3 to 5 clock cycles to complete, depending how
early NOWS* is asserted. The diagram below shows the timing for a 1 wait state, 3 clock cycles,
memory or I/O cycle.
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Figure 67 - ISA 8 bit no wait states memory and I/O cycle
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ISA 8 bit memory and I/O “ready cycles”
The “ready cycle” is a cycle that is delayed by one or more wait states using the I/O channel ready
signal, or IOCHRDY*. (Hence the name “ready cycle” ). The 8 bit ready cycle, takes 7 or more clock
cycles to complete, depending on when IOCHRDY* is released. The diagram below shows the
timing for a 5 wait state, 7 clock cycles, memory or I/O cycle. The shaded area in the IOCHRDY*
timing indicates that since a minimum of 4 wait states is mandatory on 8 bit cycles (unless NOWS* is
asserted before), it doesn’t matter when IOCHRDY* is asserted, as long as its done before the end of
the cycle.
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Figure 68 - ISA 8 bit, memory and I/O “ready cycle”

ISA 16 bit memory and I/O standard cycles
As it can be seen, the standard 16 bit cycle is significantly faster than the 8 bit cycle, and takes only 3
clock cycles to complete. The signals for I/O and memory cycles are slightly different in the 16 bit
mode, as it can be seen in the two different diagrams. The main difference comes from the fact that
while memory cycles can use LA[23:17] to generate MEMCS16* early enough, 16 bit I/O cycles
must decode SA[15:0], which are available only after BALE is high. Therefore, IOCS16* is sampled
one clock later than when MEMCS16* would have been sampled.
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Figure 69 - ISA 16 bit standard memory cycle
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Figure 70 - ISA 16 bit standard I/O cycle

ISA 16 bit memory no wait states cycles
The 16 bit no wait states cycles are only available for memory operations. A 16 bit no wait states cycle
can be as short as 2 cycles (true zero wait states).

ISA 16 bit memory and I/O “ready cycles”
The 16 bit “ready cycles” are available for both memory and I/O. Their internal timing is slightly
different, but the overall cycle length is the same. The reason for that was explained before when we
discussed the 16 bit standard cycles.
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Figure 71 - ISA 16 bit no wait states memory cycle
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Figure 72 - ISA 16 bit memory “ready cycle”
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Figure 73 - ISA 16 bit I/O “ready cycle”

DMA cycles

The PC has two internal DMA controllers, each supporting 4 channels. One DMA controller supports
8 bit memory cycles, and the other supports 16 bit memory cycles. Since one channel is used to
cascade both DMA controllers, we are left with 4 channels supporting 8 bit transfers, and 3 channels
supporting 16 bit transfers.

The original DMA controller used in a PC was the Intel 8237 which was originally a 8080/8085
peripheral chip. This CPU had a 16 bit address bus and an 8 bit data bus. The 8237 was designed for
a maximum DMA block length of 64K words. When a single 8237 was used in the PC design, an
external 4 bit page register was added for every DMA channel to set its upper address bits. This
feature has allowed the DMA channels to access the full 1MB address map, but still at a maximum
block length of 64K. Since the page register bits are not incremented during DMA, a DMA transfer
cannot cross a 64K boundary. When the AT was designed, 4 more bits were added to the page
registers, and an extra 8237 chip was added. This chip is configured for handling 16 bit words, by
shifting its address bus by one bit. As a result, its DMA block size can be twice as big, a whole
128KB, but a DMA transfer still cannot cross a 128KB boundary.
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Interrupts

The PC has two internal Interrupt controllers, each supporting 8 channels. Since one channel is used
to cascade both Interrupt controllers, we are left with 15 interrupt lines.

The original DMA controller used in a PC was the Intel 8251 which was originally a 8080/8085
peripheral chip. The task of this chip is to accept 8 discrete interrupt inputs, and generate an interrupt
bus sequence which includes CPU handshaking and driving an 8 bit interrupt vector on the CPU data
bus. The 8251 can prioritize the interrupts, mask them, set the interrupt vector base address, and
select level or edge triggering.

The original PC peripherals were designed to use edge triggered interrupts. The main problem with
this arrangement is that it is close to impossible to share an interrupt line by more than one device on
the ISA bus. The reason for that is that an edge triggered interrupt that is received while a higher
priority interrupt is being served will be lost. A level triggered interrupt could keep the interrupt line
active until the interrupt was handled.

Bus Master cycles

The DMA controllers used the PC are limited in several ways:

• They cannot transfer a block longer than 64K.

• They are limited to consecutive blocks, and do not support advanced scatter/gather DMA
operations.

• They are relatively slow, due to the requirement of a DRQ* / DACK* handshake before every
word.

Bus master cards solve all these problems. The main difference between a bus master card and a card
using DMA, is that when using DMA, the control signals and the bus address are generated by the
internal DMA controller. The card is only driving (or reading) the data bus. A bus master however,
has complete control over the bus, once it is granted access.

Bus master cards still requires one of the 16 bit DMA channel. The software must program this DMA
channel as slave DMA. This tells the DMA controller to grant the bus to when this DMA channel is
active. The system DMA controller assumes that a slave DMA controller will drive the bus. In fact,
the bus is driven by the bus master card.
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Appendix B - NuBUS Protocol summary

The NuBUS is a synchronous bus with burst capabilities, which makes it very similar to the PCI bus.
We will show how NuBUS works, which allows us to compare it to the PCI bus.

Signal Summary
CLK* This is the NuBUS 10MHz clock signal. All signals are synchronized to this clock.

The clock is asymmetrical, and is high for 75ns, and low for 25ns. Signals are
updated on the rising edge of the clock, and sampled on the falling edge of the
clock. The asymmetrical waveform allows 75ns for driver enable, setup time, and
decoding, and 25ns for hold time and clock skew.

RESET* An active low reset signal.
PFW* Power Fail Warning
ID0*-ID3* Card Slot ID. These 4 bits form a unique ID for each NuBUS slot.
AD0*-AD31* These are 32 multiplexed address/data signals.
TM0*-TM1* These are the Transfer Mode bits. When the NuBUS cycle begins, these 2 bits,

together with AD0* and AD1* specify one of 16 possible memory read/write
commands. When the cycle ends, these signals carry the cycle status code.

SP* Parity.
SPV* Parity Valid.
START* This signal will be active during the first clock of a new transfer cycle.
ACK* This is the Transfer Acknowledge signal. It is driven by the target, and will be

active when the cycle ends.
REQ* Bus Request
ARB0*-ARB3* Arbitration Level

NuBUS data types
NuBUS, like PCI, has a 32 bit data bus. NuBUS data transfers, like PCI, are unaligned. This means
that a byte is transferred on the same signal lines on which it appears in a 32 bit word. NuBUS allows
transmission of word, halfwords, and bytes according to the following figure:

AD0*AD31*

Byte 3 Byte 2 Byte 1 Byte 0

Halfword 1 Halfword 0

Word

Figure 74 - NuBUS data types

Simple Memory read/write access cycles
The NuBUS read cycle begins when the master drives the START* signal low, and drives the address
on the AD0*-AD31* lines and an operation code on the TM0*-TM1* lines. The transfer type is
derived from the TM0*-TM1* lines and the AD0*-AD1* lines according to Table 27. As we can see,
TM1* effectively determines whether the cycle is a read cycle or a write cycle. The rest of the lines
determine which part of the word is being transferred (as we can see in Figure 74). The only special
data type is the Block, which we will discuss later.
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Read/Write Data Type TM1* TM0* AD1* AD0*
Write Byte 3 L L L L
Write Byte 2 L L L H
Write Byte 1 L L H L
Write Byte 0 L L H H
Write Halfword 1 L H L L
Write Block L H L H
Write Halfword 0 L H H L
Write Word L H H H
Read Byte 3 H L L L
Read Byte 2 H L L H
Read Byte 1 H L H L
Read Byte 0 H L H H
Read Halfword 1 H H L L
Read Block H H L H
Read Halfword 0 H H H L
Read Word H H H H

Table 27 - NuBUS transfer type encoding

In the case of a read cycle, the master stops driving the AD* and TM* lines. The NuBUS cycle ends
one or more cycle later, when the target responds with the data on the AD* lines, a status code on the
TM* lines, and an active low signal on the ACK* line.

In the case of a write cycle, the master drives the data on the AD* lines during the next cycle, and
stops driving the TM* lines. When the target is ready to accept the data, one or more cycle later, it
drives the status code on the TM* lines, and an active low signal on the ACK* line.

 The status code is interpreted according to the following table:

Response Status TM1* TM0*
Transfer Complete (OK) L L
Error L H
Bus Timeout Error H L
Try Again Later H H

Table 28 - NuBUS status codes

The Transfer complete code is returned when the transfer was finished successfully. The Error status
is returned when the data returned may not be valid (for example, parity error was detected). Bus
Timeout Error is generated when the target did not answer within 255 clock cycles, and the central
logic had to terminate the cycle. The Try Again Later status is returned when no data is available
now, but may be available later (for example, accessing a dual port memory which is currently busy).

The following figures show all the basic NuBUS read and write cycles.
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Figure 75 - NuBUS zero wait state read and write cycles
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Figure 76 - NuBUS one wait state write cycle
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Figure 77 - NuBUS one wait state read cycle

Burst Memory read/write access cycles
The NuBUS burst transfers block length can be either 2, 4, 8, or 16 words. The block address must be
naturally aligned, i.e. a 2N word block must begin on a 2N word boundary, with AD[(N-1)..0] = 0.

Block Size (Words) Block Starting Address AD5* AD4* AD3* AD2*
2 (A31..A3)000 AD5* AD4* AD3* H
4 (A31..A4)0000 AD5* AD4* H L
8 (A31..A5)00000 AD5* H L L
16 (A31..A6)000000 H L L L

Table 29 - NuBUS block transfer

NuBUS burst transfers begin like single word transfers. The master selects the “Burst read” or “Burst
Write” transfer type, drives the address and block size on the AD* bus, and asserts START*.

For write bursts, the master then drives each word on the bus, and the target acknowledges them by
asserting TM0*. The last word is acknowledged using ACK*, with a status code on TM*.

For read bursts, the master then tri-states the AD* and the TM* bus. Each word transferred by the
target on AD* is qualified by having TM0* asserted. The last word is acknowledged using ACK*,
with a status code on TM*.

The following figures illustrate the burst mode:
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Figure 78 - NuBUS read burst cycle
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Figure 79 - NuBUS write burst cycle

NuBUS Interrupts
Unlike other busses, NuBUS does not support true interrupt signals. Instead, NuBUS systems use
Virtual Interrupts. Virtual Interrupts are special memory locations that are watched by the system
central logic. When any device writes a value to these addresses, the central logic generates an
interrupt for the system CPU. Using this method interrupts can still be generated, but no special
signals have to be dedicated for interrupts. Also, the number of unique interrupts is only limited by
the system implementation, and not by the bus architecture.

Multiple Bus Masters
NuBUS supports multiple bus masters, allowing any expansion card to request the bus, perform one or
more transactions, and release it. The NuBUS arbitration mechanism is distributed, very similar to
MicroChannel (unlike the central arbitration logic used by PCI). Each card has four lines, ID0*-ID3*,
that are driven by the motherboard with a unique slot number. The slot number also represents the
priority of this card relative to other cards in the system. An ID value of 0000 has the highest priority,
and a value of 1111 has the lowest priority. A card may request the bus by driving REQ* (an open
collector output) low, with the slot ID number on the ARB0*-ARB3* lines. The ARB0*-ARB3*
buffers must be open collector, because multiple cards may request the bus at the same clock cycle. As
a result, ARB0*-ARB3* will contain a value which is a bitwise AND of all the ID codes driven by all
cards requesting the bus. Any card whose ID is higher than the ARB0*-ARB3* as resolved on the
bus, is required to release its ARB0*-ARB3* lines by driving them with 1111. Since the arbitration
logic is purely combinatorial, any device removing its ID code from the bus immediately affects other
cards. This causes ARB0*-ARB3* to eventually settle down at the only stable state, which is the
lowest ID code. NuBUS has allocated two bus clock cycles for this process.

Fairness is achieved by a requiring each card, releasing its REQ* line, not to assert it again as long as
REQ* is still low (driven by another bus master). As a result, even when multiple cards request the
bus simultaneously, all cards will eventually gain access to the bus because once a card has won the
arbitration and performed its data transfer, it cannot request the bus again until all other cards has
released their REQ* line. This is the same fairness algorithm as used by MicroChannel.

A card may stop driving REQ* as soon as it starts a cycle, and a new arbitration cycle may begin
while the current transfer is still taking place. This way no cycles are wasted on arbitration, as it is
pipelined with the data transfer. If a card requires multiple transactions, it has to drive REQ* low on
all transactions, until the beginning of the last transaction. (This is very much like PCI).
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A sample NuBUS arbitration logic may look like this:

BUS WON

ARB0*

ARB1*

ARB2*

ARB3*
REQ*

ID3*

ID2*

ID1*

ID0*

Figure 80 - NuBUS arbitration logic

Bus Locking
NuBUS supports two types of locks: bus locking and resource locking.

Bus locking is used by a master to ensure that two or more bus transactions are atomic. Bus locking is
done by keeping REQ* active after the master has won the arbitration competition. It is not
recommended to perform bus locking for long periods of time. Bus locking should be done only for
the minimal amount of time required.

Resource locking is used to inform a slave card to lock out all local access routes on the card to a
resource being addressed by NuBus. For example, a co-processor card might communicate with other
processors over NuBus using a dual ported RAM addressed as a NuBus slave. A NuBus master might
need to perform an atomic operation on this dual ported RAM, while making sure the local co-
processor cannot access this RAM through the other RAM port on the card. If the NuBus master does
a resource lock on the dual ported RAM, the co-processor is prevented from accessing this RAM
while the lock is in place.

Resource locking is done by issuing an Attention-Bus-Lock cycle. A master can issue this cycle by
asserting both START* and ACK* at the beginning of a bus transaction, while driving the Attention-
Resource-Lock on the TM* lines (see Table 30). To end the locked transaction, the master issues an
Attention-Null cycle (START* and ACK* asserted together with the appropriate code on the TM*
lines). During this period, any card accessed by the master will lock its local resources.

Response Status TM1* TM0*
Attention-Null L L
Reserved L H
Attention-Resource-Lock H L
Reserved H H

Table 30 - NuBUS attention cycle codes
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Appendix C - PCI Class Codes

Base Class Sub Class Interface Meaning

00h 00h 00h All old devices implemented before base Classes were
defined, except for VGA compatible devices.

01h 00h All VGA compatible devices implemented before base
Classes were defined.

01h 00h 00h SCSI Bus controller

01h IDE controller

02h 00h Floppy Disk controller

03h 00h IPI Bus controller

03h 00h RAID Bus controller

03h 00h Other mass storage controller

02h 00h 00h Ethernet controller

01h 00h Token Ring controller

02h 00h FDDI controller

03h 00h ATM controller

80h 00h Other network controller

03h 00h 00h VGA compatible controller

00h 01h 8514 compatible controller

01h 00h XGA compatible controller

80h 00h Other display controller

04h 00h 00h Video device

01h 00h Audio device

80h 00h Other multimedia device

05h 00h 00h RAM

01h 00h FLASH

80h 00h Other memory controller

06h 00h 00h Host bridge

01h 00h ISA bridge

02h 00h EISA bridge

03h 00h MCA bridge

04h 00h PCI-to-PCI bridge

05h 00h PCMCIA bridge

06h 00h NuBUS bridge

07h 00h CardBus bridge

80h 00h Other bridge device
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Base Class Sub Class Interface Meaning

07h 00h 00h Generic XT-compatible serial controller

01h 16450-compatible serial controller

02h 16550-compatible serial controller

01h 00h Parallel port

01h Bidirectional parallel port

02h ECP 1.X compliant parallel port

80h 00h Other communication device

08h 00h 00h Generic 8259 PIC

01h ISA PIC

02h EISA PIC

01h 00h Generic 8237 DMA controller

01h ISA DMA controller

02h EISA DMA controller

02h 00h Generic 8254 system timer

01h ISA system timer

02h EISA system timers (two timers)

03h 00h Generic RTC controller

01h ISA RTC controller

80h 00h Other system peripheral

09h 00h 00h Keyboard controller

01h 00h Digitizer (pen)

02h 00h Mouse controller

80h 00h Other input controller

0Ah 00h 00h Generic docking station

80h 00h Other type of docking station

0Bh 00h 00h 386

01h 00h 486

02h 00h Pentium

10h 00h Alpha

20h 00h PowerPC

40h 00h Co-processor

0Ch 00h 00h FireWire (IEEE 1394)

01h 00h ACCESS.bus

02h 00h SSA

03h 00h Universal Serial Bus (USB)

04h 00h Fibre Channel
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Appendix D - Glossary
ASIC Application Specific IC. An IC manufactured for a company based on a unique

design given by the company, but done in a standard chip process.

AGP Accelerated Graphics Port. Standard that specifies a high bandwidth connection
between the graphics controller and the main memory.

CardBus Laptop version of the PCI bus.

CompactPCI Passive backplane bus that attempts to replace VME. Cards have the same size as
VME cards.

CMOS Complementary MOS. A chip manufacturing technology widely used by almost all
chip manufacturers today.

CPLD Complex PLDs. A programmable logic chip based on linking multiple PLD blocks
on the same chip.

DMA Direct Memory Access. A method for transferring data from one bus agent to
another without CPU intervention.

EISA Enhanced ISA. An industry standard invented by Compaq to replace the aging ISA
standard.

FPGA Field Programmable gate Arrays. A programmable logic chip based on a matrix of
basic logic cells.

GPIB A standard interface for test and measurement equipment. Intended by HP, and
adopted by IEEE as IEEE 488.

HDL Hardware Description Language. A generic name for a computer language used to
describe digital circuits for CPLD, FPGA and ASIC design.

HiRelPCI Standard currently developed by IEEE. It supports SCI.

IDE Integrated Drive Electronics. A mass storage interface standard, roughly based on
integrating the original IBM PC hard disk controller into the drive itself.

ISA Industry Standard Architecture. The original bus designed for the IBM PC and IBM
AT.

JTAG Joint Test Action Group. A group dedicated to setting industry standards related to
electronic testing. Also a name of a computer interface for in-system testing of chips.

MESI Modified/Exclusive/Shared/invalid. A bus coherency protocol used to guarantee
cache coherency in multiprocessing systems.

MOS Metal Oxide Semiconductor. A type of transistor used on almost all the chips
manufactured today.

NuBUS A computer bus widely in use by the Macintosh II series of computers.

PAL Programmable Array Logic. A synonym for PLD.

PC/104 The embedded system version of the ISA bus. Also the name of  the consortium that
serves as a custodian of the PC/104 standard.

PC/104-Plus Standard that specifies PC/104 size cards with both ISA and PCI bus.

PC Card New name for the 1994 release of the PCMCIA standard.

PCI Peripheral Component Interconnect. A local bus standard.

PCI-SIG PCI Special Interest Group. An association of members of the microcomputer
industry established to monitor and enhance the development of the PCI bus.
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PCI-ISA A passive backplane standard based on a full length CPU card containing both an
ISA and a PCI connector.

PCMCIA Personal Computer Memory Card International Association. Organization that
developed the PCMCIA standard, a laptop oriented expansion bus.

PICMG PCI Industrial Computer Manufacturers Group. A consortium of computer product
vendors established to extend the PCI specification for use in industrial computing
applications. Developed the PCI-ISA Passive Backplane  and CompactPCI
standards.

PISA A passive backplane standard based on a half length CPU card containing an EISA
like connector with ISA signals on the top row and PCI signals on the bottom row.

PLD Programmable Logic Device. A logic chip based on a programmable AND-OR array
linking a number of input and output pins.

PLI Procedural Language Interface. A standard API for linking C modules with Verilog
programs.

PMC PCI Mezzanine Card. Defined  as IEEE standard P1386.1, PMC cards use PCI chips
and may be  mounted on VME cards.

PXI PCI eXtentions for Instrumentation. A VXI like bus based on CompactPCI.

RTL Register Transfer Level. A logical abstraction level of a digital integrated circuit
description, which can be easily translated to a real circuit.

SCI Scalable Coherent Interface. IEEE standard 1596-1992. Specifies a method of
interconnecting multiple processing nodes.

SCSI Small Computer System Interface. A popular standard for linking several mass
storage devices to a computer.

SmallPCI Expansion card with form factor identical to PC Card and CardBus. Primarily
intended for OEM products.

VESA Video Electronics Standards Association. A technical forum setting PC computer
graphics related standards.

VHDL VHSIC Hardware Description Language. A popular HDL inspired by Ada, and
designed to be a Military standard. It is now IEEE-1076

Verilog A popular HDL inspired by C, and designed by Gateway corporation (now owned by
Cadence). It is now IEEE-1364.

VGA Video Gate Array. A graphics card designed by IBM, later adopted as a baseline
standard. All modern graphic cards have a basic VGA compatible mode.

VITA VME International Trade Association. The organization of VME manufacturers.

VME Versa Module Eurocard. Passive backplane bus.

VXI VME eXtension for Instrumentation. A test and measurement bus based on 9U VME
cards.

X86 A generic name for the Intel 16/32 bit architecture implemented by the 8088 through
Pentium II series of micro processors. X86 compatible microprocessors are also
implemented by other companies such as IDT, Cyrix, IBM, AMD and SGS-
Thomson.


