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Abstract

Computed Tomography (CT) is nowadays a mature medical imaging technique
which has met a huge success since its introduction in the 70s by Nobel prize
Hounsfield. While the principles underlying tomography are exactly the same
described by Hounsfield in his patent, during the years CT scanners have been
constantly evolving by adopting faster volume scanning schemes, improved
beam shaping and more efficient X-ray detectors. The end of this quest, a sort
of holy grail of computed tomography, is three-dimensional Cone-Beam CT
which promises the real-time volumetric reconstructions needed to fulfil the
increasing demand of accurate on-line diagnostic examinations.

The tentative state of cone-beam computed tomography requires a new
generation of advanced software tools to lead the research and development of
proprietary reconstruction algorithms. This issue is addressed in this thesis by
Strange Engine, our object-oriented visual toolkit dedicated to the housing,
evaluation and simulation of cone-beam CT reconstruction tasks. By offering
everything necessary for the testing of user-written reconstruction code within a
modern, user-friendly environment exploiting state-of-the-art ActiveX software
technologies, Strange Engine allows algorithm developers to focus on their
real job, leaving all the other duties to the toolkit. The discussion includes
an introduction to cone-beam tomography, the detailed specification of our
software toolkit and the analysis of four different reconstruction algorithms for
both simulated and real-world data.
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Notation

Symbols

bolds (e.g. r) denote vectors
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sinc(x)
the hat”
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denotes the dot product (za’ + yy' + 22')
is the integral [7°° f(z) dx

= sin(z)/x

denotes Fourier transformed functions
denotes filtered functions

Operators and Functions
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denotes the Radon transform

denotes the Fourier transform

is the Dirac delta

is a map of the attenuation coeflicient
are parallel-beam projections

are fan-beam projections

are cone-beam projections

are oblique-parallel beam projections
is a reconstruction filter



Abbreviations (Physics)
1D/2D/3D  One/Two/Three-Dimensional

ART Algebraic Reconstruction Technique
BGO Bismuth Germanate

CBCT Cone-Beam Computed Tomography
CCD Charge Coupled Device

CT Computed Tomography

DFM Direct Fourier Methods

EPID Electronic Portal Imaging Device
EM Expectation Maximization

FBP Filtered Back Projection

FDK Feldkamp—Davis—Kress

FFBP Fast Filtered Back Projection

FFT Fourier Fast Transform

FPI Flat-Panel Imager

FST Fourier Slice Theorem

MCT Micro Computed Tomography
NDT Non Destructive Testing

RT Radiation Therapy

SCT Spiral Computed Tomography

SNR Signal to Noise Ratio

SVD Singular Value Decomposition
TRML TRansmission Maximum Likelihood

Abbreviations (Computing)

API Application Programming Interface

ATL Active Template Library

BMP Window Bitmap

COM Component Object Model

DCF Device Configuration File

DICOM Digital Imaging and Communications in Medicine

FFTW Fastest Fourier in The West
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Abbreviations (Computing) ... continued

GDI
GUI
HDF
IDL
LUT
MAC
MDI
MFC
MKL
MIL
00
OpenGL
OLE

Graphics Device Independent
Graphical User Interface
Hierarchical Data Format
Interface Definition Language
Look Up Table

Multiply And aCcumulate
Multi Document Interface
Microsoft Foundation Classes
Math Kernel Library

Matrox Imaging Library
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Introduction

Computed Tomography (CT) is nowadays a mature medical imaging technique
which has met a huge success since its introduction in the 70s by Nobel prize
Hounsfield. While the principles underlying tomography are exactly the same
described by Hounsfield in his patent, during the years CT scanners have been
constantly evolving by adopting faster volume scanning schemes, improved
beam shaping and more efficient X-ray detectors. The end of this quest, a sort
of holy grail of computed tomography, is three-dimensional (3D) Cone-Beam
CT (CBCT) which promises the real-time volumetric reconstructions needed
to fulfil the increasing demand of accurate on-line diagnostic examinations.
In this thesis we describe our Object-Oriented (OO) visual toolkit, named
Strange Engine, dedicated to evaluation, simulation and ActiveX housing of
3D CBCT reconstruction algorithms. ActiveX implementations of four CBCT
reconstruction algorithms are presented and analysed by comparison of restored
images and speed benchmarks for both simulated and real-world data.

1.1 Cone-beam CT revealed

Computed tomography is a digital technique which allows the reconstruction
of an object using a series of projections taken from different angles around it.
As pointed out by Webb in [85], tomography is really like guessing an object’s
shape from the shadows it casts when it is lit from some light source.

Unlike conventional tomography, which makes use of one-dimensional (1D)
X-ray projections to reconstruct a slice of the exposed object, cone-beam CT
provides a fully volumetric reconstruction by processing two-dimensional (2D)
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CONVENTIONAL CT CONE-BEAM CT

Row of X-ray 2D X-ray
Detectors Detector

|
< 2D Reconstruction i <— |Cone-Beam Reconstruction
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Figure 1.1. Cone-beam computed tomography makes use of X-rays efficiently by
exploiting the full 3D exposure. In order to reduce the problem to planar geometry,
conventional CT introduces considerable collimation to form X-ray fan-beams.

cone-beam projections. These projections can for instance be transmission
type radiographs generated by a X-ray point source as shown in Figure 1.1.
We can list a number of advantages of cone-beam CT versus conventional CT:

e more efficient use of radiation, which means less X-ray source stress and
complete and more productive exposure usage;

e much shorter examination times because, in a single rotational scan, it
is possible to obtain tens of slices not just one;

e less motion artefacts and better axial resolution;
as well as a number of disadvantages:

e more complex scanning set-up;
e reconstruction algorithms more difficult to write and implement;

e somewhat greater radiation dose given to the patient per examination and
lower Signal to Noise Ratio (SNR), due to increased scatter components.

Let us briefly have a quick look at each of these points to have an overall idea
about cone-beam CT features and capabilities.
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CONVENTIONAL (SINGLE-ROW) DETECTOR MULTI-ROW DETECTOR
X-ray X-ray
Source Pt Source B

Figure 1.2. The new generation CT multi-row detectors, for each source position, are
able to record up to five (four in this figure) tilted X-ray fans. This allows speed-up
of data acquisition, better axial resolution and reduction of motion artefacts.

1.1.1 Scanning techniques

The first CT scanner was fabricated and tested in 1972 by Hounsfield [33]. An
up-to-date summary of CT history is given by Carlsson in [15]. In modern
computed tomography scanners, X-ray radiation is shaped by collimators in
fan-beams encompassing the whole transversal section of the object being ex-
amined. In Spiral CT (SCT) scanners the patient is slowly translated in the
axial direction while the X-ray source gantry is rotated around it; this allows
the acquisition of many transmission profiles in a continuous manner, shorten-
ing examination times by a factor 10 in comparison to previous step-and-shoot
scanners. Reconstruction, which is based on two-dimensional analysis, requires
some sort of axial interpolation and a compromise between scanning speed,
axial resolution, noise and motion artefacts has to be found.

To improve axial resolution, alleviate motion artefacts and cut even further
(3% speed-up) examination times while scoring high SNR, manufacturers have
been introducing in the recent years spiral CT scanners taking advantage of
multi-row detectors. 3-rows, 4-rows and 5-rows scanners are currently on the
market; see Wang [80] and [54, 35] for some theoretical and practical details.
In Figure 1.2 a conventional detector is compared to a new generation 4-rows
detector. The detector rows record at the same time slightly tilted transmis-
sion profiles and this allows better axial resolution and/or larger spiral pitch
(higher scanning speed). While the reconstruction problem is in theory 3D,
the industry seems oriented to use modified 2D algorithms to take into account
the small divergence (angular aperture of about 1°) of X-ray fans.
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CIRCULAR PATH HELICAL PATH

Wide-Angle Flat “Many-rows”
2D Detector 2D Detector

X-rays‘ TTe=>
Source Source

Figure 1.3. In cone-beam computed tomography two-dimensional X-ray detectors
are used to collect transmission data. In the “circular path” set-up a single 27 scan is
sufficient to acquire a set of cone-beam projections. A wide-angle flat detector is used.
The “helical path” set-up combines cone-beam and spiral scanning. Detector can be
flat or curved as in conventional SCT.

In conventional and multi-row SCT scanners X-rays are detected by high
pressure Xenon gas chambers or solid state devices (photodiodes) which are op-
tically coupled to phosphors or scintillators such as bismuth germanate (BGO),
caesium iodide (CsI) and most commonly cadmium tungstate (Cd WO4). The
detector elements (channels) are positioned along a curved circular arc lying
on the X-ray source path.

Cone-beam computed tomography is strictly three-dimensional because the
examined locus is scanned by the beam in its fully 3D extension. The di-
vergence of the cone-beam is used to collect spatial information on a two-
dimensional detector. Usage of a two-dimensional detector allows to retrieve
concurrently much more object information in comparison to conventional com-
puted tomography. We can imagine for example to expose a full human thorax
as depicted in Figure 1.3 (left) to reconstruct the entire thorax morphology
with a single gantry scan. The X-ray source moves along a circular path and
the detector is wide-angle and flat. In the alternative CBCT set-up shown
in Figure 1.3 (right), the X-ray source moves along a helical (spiral) path. A
curved or flat “many-rows”! detector is adequate to gather all the data, but
the problem, given the large cone aperture, is still 3D and the reconstruction
cannot be brought back to 2D as done in conventional SCT.

'We speak of “many-rows” detectors when the number of rows is far less than the number
of channels. In the other cases, i.e. when the number of rows is just a few or it is comparable
to the number of channels, we speak respectively of “multi-row” and wide-angle detectors.
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Cone-beam computed tomography needs two-dimensional detectors. In
general 2D detectors provide fast and efficient 3D scanning, but we should
be aware of a couple of practical aspects:

a) 2D detectors may be heavy and bulky, mechanical problems can arise
and gantry rotational speed may be severely limited;

b) data throughput may be high, so computational power should be
enough to handle it;

¢) 2D detectors technology is expensive and rapidly progressing: what is
high-priced and new today may be cheap and obsolete tomorrow.

That said, let us have a look to the detector arrangements which have been pro-
posed for cone-beam CT. Systems based on phosphors or scintillators plates
optically coupled to Charge Coupled Device (CCD) or other types of video
cameras are very common for industrial Non Destructive Testing (NDT) and
Micro CT (MCT) [92, 42]. An Image Intensifier (II) is in some case added to
amplify the light signal. Experimental usage of camera based CBCT systems
for medical applications have also been discussed by Webb in [86] and repor-
ted in [16, 5]. Recent technology developments have led to the introduction of
Flat-Panel Imagers (FPI) based on phosphors or scintillators directly coupled
to amorphous silicon (a-Si:H) photodiodes array. This kind of detectors prom-
ises to be both large-area, up to 40 x 40 cm?, and with very good spatial
resolution, up to 3000 x 3000 pixels. Applications of FPI based cone-beam
computed tomography in the medical field include real-time X-ray diagnostic
examinations such as digital angiography and interventional procedures [87].
Usage of cone-beam CT is also under investigation in Radiation Therapy (RT)
to address treatment registration and treatment verification [38, 39]. This also
includes mega-voltage cone-beam CT [74, 75, 55, 67, 31] in which high en-
ergy (4-10 MeV) X-ray beams coming from RT linear accelerators are used to
produce cone-beam radiographs on Electronic Portal Imaging Devices (EPID).
While these devices are at present based on cameras or ionisation chambers,
flat-panel imagers are probably going to be the next generation EPIDs as well.

1.1.2 Reconstruction algorithms

Cone-beam computed tomography requires three-dimensional reconstruction
algorithms. Theoretical derivation and actual implementation of CBCT al-
gorithms are not easy. In fact, as lucidly stated by Defrise and Clack in [20],
tomographic reconstruction from cone-beam data is a fascinating problem for
which a fully satisfactory solution has not yet been given.
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Cone-Beam Inverse Cone-Beam
X-ray Transform 1 X-ray Transform -
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Reconstruction —‘
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Figure 1.4. High-level overview on CBCT reconstruction algorithms.

Complications in cone-beam tomographic reconstruction algorithms mainly
arise from the following aspects:

e the scanning geometry, the X-ray beam divergence and the reconstructed
object representation are 3D, this means that vector math has to be used;

e the available projection data may be incomplete, because the scan tech-
nique may not be adequate to describe fully the examined object;

e the computational load is in general very high, approximations and/or
fast reconstruction schemes are needed.

An analysis from an algorithmic point of view of CT imaging techniques is
given by Louis in [46]. Other remarkable summaries are given among others
by Kak and Slaney in [40], by Wang and Vannier in [83], by Schaller in [68]
and by Turbell in [78]. Figure 1.4 shows a high-level overview on 3D CBCT
reconstruction algorithms. Basically we can individuate two distinct families
of reconstruction algorithms: a) discretization of analytical inversion formulas
and b) iterative methods. By a mathematical point of view, CBCT reconstruc-
tion is a particular case of the inversion of the three-dimensional cone-beam
X-ray transform. Algorithms based on discretization of analytical inversion
formulas attack the inversion problem directly by computing a discretized in-
version formula which can be either exact or approximate. These algorithms
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suffer basically two problems: 1) an inversion formula must exist, i.e. the
problem should admit an unique and stable solution and this is not always the
case and 2) discretization of inversion formulas can be very painful. Iterative
methods, which achieve tomographic reconstruction by iterative convergence to
the solution, are on the other hand intrinsically discrete. The iterative nature
of these algorithms make them very flexible but convergence to a satisfactory
solution may be a very slow process.

1.1.3 Some considerations on scatter

As X-ray photons travel through the examined object, scattered photons are
generated as depicted in Figure 1.5. Scattered photons are bad because they
a) increase the patient radiation dose, b) introduce non-linearity in the X-
ray transform equation and c¢) deteriorate the power spectrum of the detected
signal. For low energy X-rays the SNR can be kept high by using anti-scatter
grids or air-gaps. These methods are unfortunately not effective for high energy
X-rays and more sophisticated techniques have been proposed [77].

X-ray Detector

Un-scattered
—— Photons
(Signal)

Increase of Local
Energy Deposition

Scattered Photons

X-ray (Noise)

Source

Figure 1.5. Scattered photons increase local energy deposition (radiation dose given
to the patient) and degrade detected signal.

The radiation dose due to scattered X-rays is evidently somewhat propor-
tional to the irradiated volume. Carlsson in his tomography survey [15] reports
a scatter-to-primary ratio of about 10% for conventional and spiral CT and as
high as 40-200% for cone-beam CT. This basically means that to obtain the
same image “quality” (same SNR) in CBCT as in SCT, we expect the dose
per examination to increase by some amount.
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1.2 Objectives and outline of this thesis

The objectives of this thesis were twofold. Our first task was to develop a
software toolkit dedicated to evaluation, simulation and computation hous-
ing of cone-beam computed tomography reconstruction algorithms. The final
product of this task is Strange Engine, a modern object-oriented visual soft-
ware platform in which CBCT reconstruction algorithms are encapsulated in
Microsoft ActiveX plug-ins. The mathematical framework for the toolkit is
presented in chapters 2 and 3. A schematic outline of Strange Engine features
is illustrated in Figure 1.6, a detailed description will be given in chapter 4.

Management of Management of
Analytical Phantoms Cone-Beam Projection Data
\ . /
\" Nd
) ®
. - -
6‘0 7
i ©
g/ . \
/
ActiveX Encapsulation of Simulation of
Reconstruction Algorithms Cone-Beam Projections

Figure 1.6. Schematic outline of the cone-beam reconstruction facilities available in
our object-oriented visual toolkit Strange Engine.

Our second task was to use Strange Engine to implement and test different
cone-beam reconstruction algorithms. Chapter 5 is devoted to the description
and benchmarking of our custom implementations of the Feldkamp, rebinned
Feldkamp and Louis reconstruction formulas. Simulated and real-world pro-
jection data acquired thanks to our collaboration with the National Cancer
Research Institute of Genova is used to validate reconstruction results.
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1.3 Author references

Certain results of this thesis have been discussed by Agostinelli in [2] and
published by Agostinelli and Foppiano in [4, 5], Agostinelli and Paoli in [7]
and by Agostinelli et al. in [6]. Strange Engine won the third prize for the
communication “3D Tomographic Reconstruction Active Style” [3] at the ACM
International Graduate Student Contest held in Austin, Texas, May 8-12 2000.






2D Reconstruction

In the following sections we introduce the mathematical principles of two-
dimensional tomographic reconstruction. This will serve as a background for
the next chapter 3D Cone-Beam Reconstruction. Crucial parts of this dis-
cussion will include the definition of the Radon transform, the Fourier Slice
Theorem (FST) and the Filtered Back Projection (FBP) reconstruction al-
gorithm for parallel-beam and fan-beam geometries. For the sake of simplicity
we will study the problem in the third-generation scanner set-up in which a
planar detector is used to measure the transmitted beam profile.

2.1 Projections and the Radon transform
2.1.1 Projections measurement

Let us consider the simple experiment presented in Figure 2.7: a monochro-
matic pencil beam of X-rays goes through a sample of homogeneous material.
A X-ray detector, put far away from the sample, measures the photons which
did interact with the sample matter. In these conditions the attenuation of
the beam is described by a simple macroscopic coefficient p called the linear
attenuation coefficient and defined according to the Beer’s equation

I = e A (2.1)

where I; and I; are respectively the transmitted and incident intensities of the
beam and Al is the length of the sample along the beam path. In the general

11
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Figure 2.7. Transmission experiment for monochromatic X-rays by which the linear
attenuation coefficient p can be defined.

case of a sample described by the function u(z,y) we can write the transmitted
intensity along the monochromatic | — ray as

L=Ie flf»,»ay w(z,y)dl )

Equation (2.2) is the first milestone of computed tomography. Basically it con-
nects ray integrals or projections of the object function pu(z,y) to measurable
quantities, i.e. photon intensities, through the relation

/ w(z,y)dl = —1n — (2.3)
l—ray -[7,

This equation in reality is just an approximation because a) it does not take
into account the energy spectrum and the hardening of the X-ray beam, b)
models X-ray beams as infinitely thin, c¢) assumes ideal X-ray detectors and
perfect scatter rejection. In fact deviations from the aforementioned relation
are quite common and produce image artefacts which will not be investigated
here and for which we refer to what said in [40, 83].

2.1.2 The 2D Radon transform

Let us consider the ideal projection system depicted in Figure 2.8 in which
X-rays travel along parallel lines. In this parallel-beam geometry each I — ray
is a line conveniently described by the angle 6 € [0, 7) and its signed distance
from origin ¢ such that

xcosh +ysinh =t (2.4)

which can also be expressed using polar coordinates as

r-£=t (2.5)



.1 ©rojections and vne rnadoin transiorin

A
0 A
y
w - t
Radon Space
0 7
t
Sinogram 0 >

X
A
SN o Radon Values

Xray A
Single-row NN
Detector

Figure 2.8. The parallel-beam projection geometry and the 2D Radon transform.

where r = (z,y) and £ = (cos#,sinf). Let us denote as d,(0,t) a parallel-
beam projection for a given 6 and t. Using the Dirac delta as a [ — ray selector,
d,(0,t) can be written as

d,(0,t) = // p(z,y)o(xcosf +ysinb —t) dedy (2.6)

The Cartesian representation of the parallel-beam projections d,(6,t) with
(0,t) in [0,7) x R is said to be the sinogram of the object.

Another way to look at the projections is the 2D Radon space associated
to the 2D Radon transform which we will denote as R. The two-dimensional
Radon transform of u(r) at some point P is defined as the line integral along
the | — ray passing through it with direction orthogonal to the distance from
origin vector (P — O). We can write the 2D Radon transform as

Ru(t,€) = [ nlr)é(c- &~ t)dr (2.7)

Radon transform values can be merely recovered by the knowledge of the
parallel-beam projections because

//u(r)é(r-f—t)dr://u(w,y)é(zcos@—i—ysin@—t)d:vdy:dp(ﬁ,t)



2 21) Reconstruction

2.1.3 The Fourier Slice Theorem

By a mathematical point of view, the two-dimensional reconstruction problem
is to recover the object function p(z,y) from its 2D Radon transform.

The Fourier Slice Theorem (FST) establishes a fundamental relation con-
necting the object space to the 2D Radon space. This connection is provided
by the Fourier transform F in the following way

FiRu(w, &) = Fap(wé) (2.8)

where F; denotes the 1D radial Fourier transform and F5 the 2D Fourier trans-
form. In terms of the sinogram this can also be written as

~

dy(0,w) = fi(wcosf,wsinh) (2.9)

where, with a slight abuse of notation, we have introduced hats () to denote
Fourier transformed functions.
Proof. By the definition of the Fourier transform we can write

FiRu(w, &) = / Ru(t, &) e 2t gt

Substituting the Radon transform definition formula (2.7) and using Dirac
delta properties we obtain

FiRu(w, &) = //,u(r)d(r € —t)dre 2 gt
= / p(r) dr / S(r-&—t)e 2t gt

= /,U«(I') e 2w dy = Fou(w)

2.1.4 The fan-beam projection geometry

Till this point we have considered parallel-beam projections. A much clever
and more realistic way of acquiring Radon data is to employ rays departing
from a X-ray source while this rotates on a circle around the object.

The geometry under consideration is illustrated in Figure 2.9: rays form a
so called fan-beam diverging from the source positioned at point

S(B) = R(sin 3, — cos )
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Figure 2.9. The fan-beam projection geometry.

where [ is the source angle and R is the source-origin distance. FEach ray
of a fan-beam projection dy is conveniently described by the coordinates pair
(B,p) € [0,27) x R, where the p axis is orthogonal to the source-origin vector.

To connect fan-beam projections to the two-dimensional Radon transform
we rewrite the parameterisation of fan-beam projections ds(3,p) in terms of
parallel-beam coordinates (6, t):

{0_5_7 (2.10)
t = pcosy

where we introduced the ray angular aperture v defined in Figure 2.13 and
such that v = arctan(p/R).

We have seen that a parallel-beam projection taken at € angle produces
Radon data along the same t axis direction. A fan-beam projection taken at (3
angle produces Radon data along the Radon circle passing through the source
and the origin. This can be easily demonstrated noting that, because of the
relationship (2.10), the following equality holds

1 1
t¢ —-SI2=- R
te—5SP =R



2 21) Reconstruction

Algorithm

/N

Discretization of vl

t Iterative
Analytical Methods

ART
Inversion Formulas N
ype
Gridding

2D Reconstruction —‘

Classical
Interpolation | €~ DFM type FBP type
/ Louis’s Approximate
Linogram Inverse
| Exact | | Approximate |—> Fast Backprojection

Besson’s Fan-Parallel

Classical FBP

Figure 2.10. Detailed overview of 2D tomographic reconstruction algorithms.

2.2 2D reconstruction algorithms overview

Figure 2.10 presents a schematic classification of 2D reconstruction algorithms.
A first distinction is made for algorithms derived from analytical inversion for-
mulas based on the Fourier slice theorem and algorithms in which an explicit
discrete version of the problem is solved by an iterative method. Algorithms
based on discretization of analytical inversion formulas are then split in al-
gorithms in which the reconstruction is performed through two-dimensional
Fourier inversion and algorithms based on filtered back projection in which the
reconstruction is done projection by projection. Several variants of algorithms
based on FBP differing in filtering, interpolation and approximation schemes
are also investigated. These include Louis’s approximate inverse reconstruc-
tion based on mollifiers and fast filtered back projection introduced by the
Link6ping group to reduce computational complexity of FBP.

In the following sections we will present the basic principles of each 2D re-
construction algorithm. Greater coverage will be provided for arguments func-
tional for the presentation of the cone-beam algorithms given in next chapter.



2.3 Direct Fourier VMethods

? Radon Space Fourier Space
x (web sampling) (web sampling)

Fourier Space

Reconstructed Object (Cartesian sampling)

Figure 2.11. Reconstruction steps for Direct Fourier Methods.

2.3 Direct Fourier Methods

Reconstruction algorithms which pursue the inversion of the Radon transform
by means of the straight application of the Fourier slice theorem are called
Direct Fourier Methods (DFM). As shown in Figure 2.11 for the parallel-beam
geometry, the steps followed in a DFM reconstruction are essentially three:

1. projections are Fourier transformed. By the FST this is equivalent to
sample the Fourier space on a not-Cartesian grid;

2. the Fourier space is re-sampled in a Cartesian grid by interpolation,
3. the object is reconstructed applying the 2D Fourier inversion formula.

The critical part of any DFM is the interpolation step: not trivial inter-
polation schemes have to be used to obtain good reconstruction results. For
example Magnusson in [50] reports success using an 8-point interpolation ker-
nel in the radial direction and linear interpolation along the angular direc-
tion. Other approaches include fast gridding [59, 68] and linogram sampling
[23, 24, 50]. Direct Fourier Methods computational complexity is of order
O(N? log N). This does not take into account real computer code complexity
which makes DFM not much faster than other 2D reconstruction algorithms.
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2.4 Filtered Back Projection

A problem with DFM is that the reconstruction is not done per projection but
on the whole set of projections. This can create memory consumption prob-
lems and make direct Fourier methods somewhat cumbersome numerically. A
per projection reconstruction algorithm is the Filtered Back Projection (FBP)
which is in fact the most commonly used reconstruction algorithm. While the
computational complexity of FBP is of order O(N?) it comprises some advant-
ages in comparison of DFM including that a) no special interpolation technique
is needed , b) reconstruction is per projection so it is possible to reconstruct
while continuing to acquire new projections and ¢) computer implementation
is easier and more efficient.

FBP reconstruction for the parallel-beam geometry is depicted in Fig-
ure 2.12. Basically two steps are necessary:

1. projections are filtered using a convolution kernel,
2. projections are back projected.

Filtering is usually performed in the Fourier space. Back projection is usually
pixel driven and involves ray tracing and simple interpolation of detector data.

2.4.1 FBP parallel-beam
Using equation (2.9) we can write
play) = Fy o) = [ [ w0 0 dudo

_ // Czp<9,w) 627riw(:(:c050+ysin9) ’w‘ dw db
0

. (2.11)
_ /0 d@/cip(e,w) || 2w cos+ysind) g,
= /07T dy(8,x cos 6 + ysin0) db
where we have defined the filtered projections
d(0,1) = / d(0,w) [w] €27 du (2.12)

and where the term (z cosf + ysin ) represent the actual backprojection.
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Figure 2.12. Reconstruction steps for Filtered Back Projection.

2.4.2 FBP fan-beam

Using the relationship (2.10) connecting the fan-beam geometry to the parallel-
beam geometry and the previous FBP formula (2.11), we can re-formulate
[40, 83] the FBP algorithm for the fan-beam geometry as follows

1 /27 R? R R
wen) =5 || Gmap |y O ke~ s o)
) |

27 RQ B R .
= 5/0 mdf(ﬂ, R_S(a:cosﬂ—kySmG))dﬂ

where s = —(ycos 3 — xsin 3) is the distance of the (z,y) pixel from a virtual
detector centred on the origin and where we have defined the filtered pre-
weighted projections

(B = [ F i@ ool ™as @14)

Note that in the FBP fan-beam formula a) the backprojection term includes the
magnification factor R/(R—s) and that b) each filtered pre-weighted projection
has to be multiplied by a pixel dependent 1/72 factor.
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2.4.3 Filtering

Let’s now briefly examine the filtering step involved in FBP reconstruction.
As showed above for both parallel-beam and fan-beam geometries, filtering
reduces to multiplication in Fourier space of transformed projections by the
ramp filter R

kB (W) = |wl

In the object space this is equivalent to convolution with the impulse response
or kernel function

kp () = / o () €27 duy — / ] €27 gy (2.15)

Unfortunately the ramp filter is not in L9 and the kernel kp__ (t) does not exist.
Moreover in computer code we have to take into account that projections are
sampled with 7 steps. The solution is to band limit the reconstruction filter to
some frequency w:

+w .
k(1) = / o] 27 (2.16)

Integrating by parts we obtain the Ram-Lak [61, 40] class filters

sin(2rwt) (sin(mut)

kg, (t) =2 )2] w? = [2sinc(2rwt) — sinc?(rwt)] w?

2mwt Twt

To this regard we should also mind the Shannon’s sampling theorem which
states that to avoid aliasing it’s necessary to band limit up to the Nyquist
frequency given by © = 1/(27). Band limiting the filter to Q we get

o) ,
kg () = / e et o

) . (2.17)
=53 sinc(27t/27) — 2 sinc? (7t /27)
which can conveniently be expressed in the discretized form
1/472 n=0
kBQ (nT) =40 neven (2.18)

n odd

(nmT)?

where n is the sampling index.
Nyquist band limited Ram-Lak filter is probably the most commonly used
reconstruction filter for FBP. However when projection data is noisy, the high
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frequency exaltation performed by pure ramp filters may lead to noise amp-
lification and hence poor reconstruction quality. In this situation it is better
to opt for a less aggressive filter in which reconstruction resolution is traded
for better noise suppression. To this end we can introduce the windowed or
apodized ramp filter R

b (@) = o] W (w) (2.19)

where W (w) is called the apodization window. If

1 if jw| <w

W(w) = By(w) = {

0 otherwise

the apodized ramp filter equates to the ];‘Bw Ram-Lak filter. Other apodization
windows include the well-known Hann and Hamming filters, used in digital
signal processing, and the popular Shepp-Logan window [73]

sin(wrT) . B
W(w) = Wa(@) = d wnr TWl<@=1/27 (2.20)

0 otherwise

which corresponds in discretized form to the kernel

1

e (2.21)

kVVsl (nT) =

Choosing an appropriate window is often not easy because one have to
balance the over-smoothing of fine details (i.e. resolution) with noise reduction.
To address this problem new tools based on multi-resolution wavelets [14, 89
and approximate inverse (see § 2.7) have been recently proposed.

2.4.4 Aliasing

In this section we will present some simple but crucial observation about ali-
asing and sampling conditions for filtered backprojection. The same results ap-
ply similarly for the other 2D reconstruction methods derived from the Fourier
slice theorem while iterative algorithms are much more robust to this regard.
The sampling conditions are defined specifying the following quantities:

N, x N, = number of pixels of the reconstructed image
N or N, = number of rays per projection in parallel or fan-beam geometry

Ny or Ng = number of projections in parallel or fan-beam geometry
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The reconstructed image can suffer two different kinds of artefacts due to
discretization and bad sampling: a) if the resolution of the reconstructed image
does not match the bandwidth of the filtered projections aliasing produces
Moiré patterns, b) if the number of projections does not match the number of
rays per projection dark/light streaks are produced.

Number of rays per projection. Let N = N, = N,. We have seen
in the preceding section that to avoid aliasing during the filtering stage we
have to band limit the reconstruction kernel up to Nyquist frequency €2 =
1/27. By Fourier slice theorem the filter bandwidth w is also the bandwidth
of the 2D Fourier transform of the object. This basically means that filter
bandwidth should match the bandwidth required to reconstruct the object on
N? pixels. In parallel-beam geometry the detector dimension is roughly equal
to the linear dimension of the reconstruction region. This implies that the best
reconstruction will be provided by Ny = N and w = Q. For the fan-beam
geometry the previous result is modified inserting a magnification factor.

Number of projections. If the number of projections is low the reconstruc-
tion of a point is a star-shaped object. In fact in the backprojection step a
projection value is smeared along the strip of pixels traversed by the back pro-
jected ray. Increasing the number of projections this effect vanishes but if Ny
does not match the number of rays, dark or light streaks may still show in
the reconstructed image. To see how to prevent these effects to appear, let us
look again to the Radon pattern in Fourier space for parallel-beam geometry in
Figure 2.11. Radon values are distributed more densely at low frequencies and
become sparser and sparser as frequency increases. A well balanced interpola-
tion to Cartesian coordinates is possible only if even at the Nyquist frequency,
i.e. the highest allowed frequency, the azimuthal resolution matches the radial
resolution. This means that:
1 7 1

1 ™
QA= —Af= — "~ ~ — L Ny= "N,
o 2N, TN, 0Tt

2.5 Rebinned FBP

Another way to look at the fan-beam FBP reconstruction is to use rebinning.
With this term we refer to the rearrangement of rays which produce parallel-
beam projections data from fan-beam projections data. Rebinning basically
involves the coordinates change described in the rebin equation (2.10) and some
sort of azimuthal and radial interpolation:

dy(0,t) = ds(0 +,t/ cosy) (2.22)
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Figure 2.13. Left: geometric sketch for the re-parameterisation of fan-beam coordin-
ates to parallel-beam coordinates. Right: the angular rearrangement of fan-beam rays
leads to Besson’s fan-parallel projections.

where the angular aperture can be conveniently computed as
~ = arcsin(t/R)

and where t is equispatially sampled. After rebinning the usual parallel-beam
filtered backprojection reconstruction formula can be used. This has a signific-
ant advantage in terms of reconstruction speed because of the removal of the
1/7? factor which slows down the backprojection step. Clearly the trade-off
is the additional computational cost of rebinning and also the resolution loss
introduced by interpolation.

2.5.1 Besson’s fan-parallel formula

In [9, 10] Besson’s describes a modified FBP algorithm using a one step rebin-
ning method in which only azimuthal interpolation is performed. The rebin-
ning step consists essentially of fan-beam data reorganization to form so called
fan-parallel projections as depicted in Figure 2.13. Contrary to parallel-beam
projections, in fan-parallel projections dg,(6,t) we do not force ¢ to be sampled
equispatially so no radial interpolation is necessary. This should enhance recon-
struction resolution because radial interpolation introduces some attenuation
of the higher frequencies.
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2.6 Fast Filtered Back Projection

Introduced by Brady in [13] and by Nilsson in [57], fast filtered back projection
has been investigated by Ingerhed in [36]. Fast FBP (FFBP) achieves recon-
struction with O(NN?log N) complexity compared to O(N?) for classical FBP.
The FFBP algorithm is not exact and works for parallel-beam geometry only,
so in the case of fan-beam projections a rebinning step is necessary.

Speed-up is accomplished in the backprojection stage by approximating the
sinusoidal backprojection path in the sinogram with a segmented curve whose
values can be computed with an efficient divide-and-conquer strategy. This is
also the reason why in fast filtered backprojection the number of projections
should be a power of 2.

2.7 Approximate Inverse

The concept of the approximate inverse was introduced by Louis in [47]. Ba-
sically the approximate inverse is a general scheme to obtain stable inversion
of ill-posed linear problems such as the inversion of the 2D Radon transform.

2.7.1 Definition

Let us consider a linear and continuous operator A : X — Y connecting the
Hilbert spaces X and Y. We want to find f such that

Af=g (2.23)

The key idea of the approximate inverse is to compute instead of f an approx-
imate version f, which is defined introducing the mollifier e, in the following
way

160 = (foey (o)) = [ ) ey (x,v)dy (224

where v is a scalar regularization parameter. Obviously the perfect mollifier
would be the Dirac delta

e(x,y) =4d(x—y)

but as our problem is ill-posed we are forced to introduce some sort of regu-
larization. In the approximate inverse scheme this regularization is expressed
in terms of the mollifier and of the mollified solution. Louis has shown in
[47, 48] this approach to be very general and that classical regularization tech-
niques such as Tickhnov-Phillips and even iterative methods such as conjugate
gradient and Landweber, can be written as approximate inverse instances.
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In the following we show how to calculate f, from g. Suppose there exists
a reconstruction kernel function k, such that

Ak (x) = ey(x) (2.25)

is solvable, then we can write the solution to (2.23) in the approximate inverse
sense as

Fr(x) = (fre4(x,2)) = (f, A"ky (%))
= (A [, ky(x)) = (g, k(%)) = 5y g(x)

where the operator A* is the adjoint of A and S, is the so called approximate

(2.26)

inverse operator.
If equation (2.25) is not solvable we can in any case use the kernel minim-
izing the defect in least squares sense, that is the k. such that

AAky(x) = Aey(x) (2.27)

and compute fy = Sy9(x) = (9,k,(x)), the approximate inverse solution in
least squares sense of (2.23) or

A*Af = Ay (2.28)

2.7.2 Application to 2D computer tomography

Let us now see how the 2D tomographic reconstruction problem can be solved
within the approximate inverse framework. First of all we will consider the
parallel-beam geometry and the associated 2D Radon transform definition (2.7)

Ap(6.) = Rpu(0.8) = [ p(x)(c- & ~ 1) dr

This equation is exactly of the kind A f = g with f = p, g =d, and A =R.
We now choose the mollifier e, to be space-invariant and such that

ey(x,y) =&y (x —y)

where €, is a sufficiently smooth and circular symmetric function. Under these
assumptions it can be shown [49] that the approximate inverse leads to the
filtered back projection formula:

Fle,y) = fo(z,y) = //dp(H,t) ko(zcos®+ysing —t)dtdd  (2.29)

The preceding equation means that by using approximate inverse formalism
we can try to master or at least improve the design of FBP filters.
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2.7.3 Filter design

We have discussed in § 2.4.3 the filtering operation in the FBP algorithm.
The approximate inverse scheme allows to look at filter design from a differ-
ent perspective. This is possible thanks to relations (2.27) and (2.29) which
connects shift-invariant circular symmetric mollifiers to FBP reconstruction
kernels. Before proceeding further let us introduce an additional simplification
of the problem by supposing the €, mollifier to be dilation invariant:

&y(x) = T e(x) = % e(7x)

It can be seen [49] that under these conditions the reconstruction kernel follows
the same rule, that is

ky(8) = 22 k(yt) (2.30)
where RR*k = Re. Two possible pathways can be followed to produce ap-
proximate inverse reconstruction kernels: a) a suitable Singular Value Decom-
position (SVD) of the Radon transform is used to compute the reconstruction
kernel as a truncated series. For example the SVD of the Radon transform in
parallel-beam geometry for objects defined in the unit ball leads [22] to

)
1

222171—1—1 Ugm Isz;z 2m+1 U2m()12m

m=0 m=0

T
where e(x) is a space, rotation and dilation invariant mollifier, U,, are Tscheby-
schew polynomials of second kind and

1
Lo, :/0 e(z) Ugm(x) dx

b) Usage of explicit filtered backprojection formula for fast decaying func-
tions. As discussed in [56, 22, 65] introducing the Riesz potential I~! such
that FI 1 f(w) = |w|f(w) it’s possible to write explicitly the Radon transform
inversion formula for fast decaying functions as

1
= —R'I'Re
27
From reconstruction kernel definition (2.27) it follows that
1
k=—I"R
2m ‘

which can be conveniently written in Fourier space

Hw) = 5 | Re(w)
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Example: Ram-Lak mollifier. Consider the mollifier

1 Ai(x))

2 x|

el (x) =

where Ji(x) is the Bessel function of first kind and first order. Using Riesz
potential the Fourier transform of the reconstruction kernel is

F(w) = (@n) ¥2lBa(w)

which corresponds exactly to the Ram-Lak filter band limited to Nyquist fre-
quency. Every other Ram-Lak filter is obtained by scaling the mollifier with
the parameter . Applying rule (2.30) we see that v is in fact correlated to the
filter effective bandwidth w

kL (t) = ¥°K (7t) = kp,, with w =~ (2.31)

Example: Gaussian mollifier. The Gaussian mollifier is defined as

e9I(x) = LG*IXIQ/2
27
Using Riesz potential we can write
1 o0
k(1) = —/ | é(w) cos wt dt
™ Jo

Integrating by parts we obtain

1 2
g o . . —t /2
kE9(t) = 5.3 {1 + it 7T/2€I"f(lts/1/2) e ]
where erf(t) = 1//7 [T} e=** dz is the error function.

2.7.4 Reconstruction formula for the fan-beam geometry

Derivation of an approximate inverse reconstruction formula for the fan-beam
geometry is more involved than the one for parallel-beam geometry. The prob-
lem is essentially that the Radon transform of a mollifier in fan-beam geometry
is space-variant because the magnification factor depends on the source-to-
mollifier distance. This would imply a space-variant reconstruction kernel.
Dietz have shown in [22] that for small fan aperture angles, the approximate
inverse reconstruction formula can still be written in the form of fan-beam
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filtered backprojection (2.13) with the pre-weighted filtered projections given
by
~ R
ds(B,p) = / Fl———
£(B.p) ( N
where ky(w) is the parallel-beam reconstruction kernel associated to a space,
rotation and dilation invariant e, mollifier.

dg) (0, w) by (w) 2™ duw (2.32)

2.8 Iterative Methods

Iterative methods are based on successive refinements of the reconstruction. In
general the reconstruction starts with an initial guess and enters an iteration
cycle which follows three steps:

1. the current estimation of the reconstructed object is used to compute
expected projections,

2. the comparison of measured projections with expected projections is used
to calculate update factors,

3. update factors are applied to get a new current estimation.

A plethora of iterative methods have been proposed. They differ mostly
by the update rule and by the model used to compute expected projections.
Among them we would like to mention Algebraic Reconstruction Techniques
(ART) introduced by Gordon and Herman in [27] and methods based on Ex-
pectation Maximization (EM) like the TRansmission Maximum Likelihood
(TRML) proposed by Lange and Carson in [44]. Most of the iterative methods
are not used to perform real tomographic reconstruction because they tend to
be much slower than algorithms based on discretization of analytic formulas
like FBP. However new optimised ordering techniques [51, 32] and special ap-
plications like metal artefacts removal [82], beam hardening correction [34] and
reconstruction from incomplete data have revamped interest in these methods.



3D Cone-Beam Reconstruction

We have motivated three-dimensional cone-beam reconstruction in the intro-
ductory chapter. Essentially we have showed that the cone-beam geometry
allows to improve the overall effectiveness of X-ray examinations both in terms
of speed and image quality. Omne big issue posed by cone-beam computed
tomography is the research and development of an adequate reconstruction
algorithm. In this chapter we review the principles of three-dimensional cone-
beam computed tomography and introduce the most widespread 3D CBCT
reconstruction algorithms that have been proposed in the literature. The dis-
cussion will focus on the circular path set-up with planar detectors and on
algorithms currently implemented in our Strange Engine software distribution.

3.1 Cone-beam projections and the 3D Radon transform
3.1.1 The cone-beam geometry

First of all let use analyse the cone-beam geometry that will be considered in
the remainder of this thesis. Figure 3.14 depicts a cone-beam X-ray source
which exposes a fully 3D object volume described by the function u(z,y, 2).
The cone-beam projections, which will be denoted as d.(3, p, ¢), are measured
by a flat-panel detector with central point D orthogonal to the SD segment.
The source and detector are assumed to rotate synchronously around the y-axis

29
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Figure 3.14. Geometry for three-dimensional cone-beam computed tomography.

of the object on circular paths. Let

S(8) = R (sin 3,0, cos )
:RD

D) = = S(9)

so that R is the radius of the source circular path and D is the length of the
SD segment. The source angle 3 has been taken between the positive z-axis
and the segment SO to conform to standard 3D computer graphics geometry
conventions. A Cartesian tern defined by the rotated axes p, ¢ and s has also
been introduced for convenience. A single pixel Qg, on the cone-beam detector
at angle (3, is selected by the coordinates pair (p,q) while its position is

Qﬁ(pv q) = D(ﬁ) + (pCOSﬁ, q, _pSIHﬁ)

In these terms a [ —7ray is therefore the line passing through some pixel Qs(p, q)
and the X-ray source S(f). That said in this particular geometry we can write
the cone-beam projections as:

de(B,p,q) —S(B)]) dl (3.33)

l
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Figure 3.15. The 3D Radon transform at point t£ is the plane integral of the object
function on the I-plane passing perpendicularly through it.

3.1.2 The 3D Radon Transform

Analogously to the two-dimensional case examined in § 2.1.2, we define the
three-dimensional Radon transform of p(z,y, z) as

Ru(t.€) = [[[ nx)ote &~ t)dr (3.34)

where in spherical coordinates & = (sin € cos ¢, sin 8 sin ¢, cos #). In other words
the Radon value at point P corresponds to the plane integral of the object
function along the [-plane passing through it and orthogonal to the distance
from origin vector (P — O). Figure 3.15 shows this situation.

Similarly to the 2D fan-beam geometry, Radon values for a cone-beam
projection are positioned on the surface of the Radon sphere or Radon shell.
The central section of the Radon shell lying on the source trajectory plane is of
course the Radon circle. Given the finite extension of the cone-beam detector,
Radon values do in fact cover a limited spherical cap. This particular Radon
values positioning forms so called Radon “umbrellas” (see Figure 3.16).

3.1.3 The 3D Fourier Slice Theorem

As in the two-dimensional case it is possible to connect the Radon space with
the object space through the Fourier transform. The 3D FST states that the
radial Fourier transform of the 3D Radon transform equals to the 3D Fourier
transform of the object along the same radial direction. Mathematically this
means that

FiRp(w, &) = Fapu(wé) (3.35)
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Figure 3.16. 3D Radon transform values for cone-beam projections are positioned
on a spherical cap known as a Radon “umbrella”. Each Radon value on the umbrella
is the plane integral calculated on the plane passing through it and the source point
and orthogonal to the Radon value vector.

Proof. It follows directly from Dirac delta properties and 3D Radon transform
and Fourier transform definitions:

FiRp(e,€) = [[ ue) 6(c- & — )72 ava
= /M(I') dr/é(r‘ﬁ —t)e 2Tt gt

= /,u(r) e 2mwrE Jp — Fsp(wé)

3.1.4 The Central Slice Theorem

The 3D Fourier slice theorem connects the 3D Radon transform with the 3D
Fourier transform of the projected object. A very noteworthy simplification
occurs in the case of 2D parallel-beam projections because in that geometry a
single projection is able to fill completely the corresponding Radon plane. In
this situation actually the 3D FST reduces to the Central slice theorem which
states that the 2D Fourier transform of a 2D parallel-beam projection equals
to the central slice of the 3D Fourier transform of the object orthogonal to the
beam direction. Unfortunately this is not valid for cone-beam projections.
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3.1.5 Plane integrals from cone-beam data

Two-dimensional projections are essentially collections of line integrals in the
sense of (2.3). Computation of a plane integral from 2D projections involves
basically an integration along the plane direction. This computation is straight-
forward for 2D parallel-beam projections. The same is not true for projections
obtained with divergent beams like cone-beams. Let us have a look at Fig-
ure 3.17 in which we have depicted the section of parallel and divergent beams
along the integration plane II. The 3D Radon transform for this plane is

Rn = /u(r) dsdt

In the case of the parallel-beam the plane integral is clearly the ray sum

Ri = /dp(e,t) dt

We could think that this trick works also for the divergent beam and that the
plane integral is given by the ray sum

Ru 2 / d;(8,p) dy

where v is the angular aperture of the rays. Unfortunately this is not true. In
fact rewriting the plane integral using polar coordinates we obtain

R = /,u,(r)ldld’y

which is not equal to the ray sum for the divergent beam because of the presence
of the Jacobian factor [. In essence this is the key problem which any cone-
beam reconstruction method has to take into account.

3.2 3D Radon transform inversion

Inversion of the 3D Radon transform is possible if the Radon space is ad-
equately sampled. The inversion formula [56] can be written as:

1 2 192 )
u(r) = = A WR/L(I‘ -€,€) sinfdf do (3.36)
Direct usage of this inversion relation is not possible in the cone-beam
geometry because, as showed in the preceding section, computation of the 3D
Radon transform (i.e. plane integrals) is not achievable for divergent beams.
We will see how some cone-beam reconstruction algorithms counteract for this

situation in the reconstruction part starting from § 3.3.
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Figure 3.17. Plane integrals for parallel and divergent beams.

3.2.1 Completeness conditions

Before examining reconstruction strategies, let us have a look to another im-
portant problem connected to 3D Radon transform inversion: Radon space
sampling. The inversion formula (3.36) tells us that if the 3D Radon trans-
form is known for all the planes passing through a neighbour of some point r
then reconstruction of the object function in that point is achievable. The 3D
Fourier slice theorem also points out that to perform an exact reconstruction
on the object support, say the unit ball, the 3D Radon transform should be
known for that space. This fact reverberates on the sampling scheme of the
Radon space and in particular on the X-ray source trajectory. A trajectory
which achieves complete sampling of the Radon space on the object support is
said to fulfil the completeness conditions for exact cone-beam reconstruction.

In the literature the completeness conditions for source trajectory have been
proposed in several ways. A good overview of these different formulations is
given by Eriksson in [24]. Here we report the condition of Grangeat stated in
his ground-breaking work [29]: every plane intersecting the object support must
intersect the source trajectory in at least one point.



3.2 3D Radon transiorm inversion
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Figure 3.18. For the circular path, Radon values are positioned on the internal
surface of the Radius torus, i.e. on the revolution volume generated by the rotation
of Radon “umbrellas” around the trajectory axis.

The circular path. The circular path does not fulfil Grangeat completeness
condition for source trajectory. Intuitively this is somewhat obvious because
at least every plane that intersects the object support but is parallel to the
trajectory plane does not intersect the source orbit for sure. Missing Radon
data lies in the inner part of a torus. To see this consider that, as showed before,
a singular cone-beam projection samples the Radon space on an “umbrella”.
As the source moves along the circular path, Radon shells accumulates and
form a Radon torus. The Radon space is then sampled inside the revolution
volume generated by the rotation of “umbrellas” around source trajectory axis.
Figure 3.18 represents this situation.

It is important to note that some volume on the inner part of the torus
is not sampled at all, so some Radon data is missing. This volume, whose
shape remembers a sort of sandglass, is called the shadow zone. The more we
move away from the trajectory plane the bigger this volume becomes. This
means that reconstruction of off-plane sections cannot be exact because exact
Radon inversion is not possible. Moreover we expect reconstruction errors to
be bigger for large cone angles as distance from the central section and size of
the shadow zone increase.



3 3D Cone-Beam Reconstruction

Other paths. To address circular path deficiency to cover completely Radon
space, other source paths have been proposed. Among these: two orthogonal
circular paths [42], the line + circle path [91] and the helix path [24, 71], the
latter being the most interesting. A general formulation for arbitrary discrete
sets of source positions is also available in [58].

3.3 3D reconstruction algorithms overview

Figure 3.19 illustrates a schematic classification of 3D cone-beam reconstruc-
tion algorithms. As in the 2D case a first distinction is made for algorithms
derived from analytical inversion formulas based on the 3D Radon inversion
formula and the 3D Fourier slice theorem and algorithms in which the problem
is modelled in discrete terms and solved by an iterative method. Algorithms
based on discretization of analytical inversion formulas are then split in al-
gorithms in which the reconstruction is performed through three-dimensional
Fourier inversion or Radon inversion (through Grangeat’s fundamental rela-
tion) and algorithms based on FBP. Regarding the latter methods we should
notice the distinction between “exact” and approximate algorithms. The first
ones are essentially derived from the 3D Radon inversion formula; this deriva-
tion is a lot more tricky in respect to 2D FBP though. These algorithms are
exact because do not introduce any approximation but just use a mathematical
inversion formula. Nonetheless we should mind that every cone-beam recon-
struction algorithm does not produce exact results if the completeness condi-
tions are not satisfied. Approximate filtered back projection algorithms are on
the other hand based on an explicit approximation and therefore contain an
intrinsic inexactness. Among approximate methods the Feldkamp-Davis-Kress
(FDK) method is without any doubt the most popular.

3.4 Grangeat’s method

Grangeat’s method pursue CBCT reconstruction through direct usage of 3D
Radon transform inversion formula. The big issue here is posed by the actual
computation of the 3D Radon transform values from cone-beam projections.
We have seen in fact that, in the cone-beam geometry, the calculation of plane
integrals is not a trivial task. To overcome this problem Radon inversion
can be performed not starting from the 3D Radon transform but from some
intermediate function [63] which can be connected to it. Let us examine how
this can be done presenting in some details Grangeat’s reconstruction method
and other sub-variant algorithms in which the intermediate function is the first
derivative of the 3D Radon transform.
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Figure 3.19. Detailed overview of 3D cone-beam reconstruction algorithms.

3.4.1 Grangeat’s fundamental relation

Grangeat established in his Ph.D. thesis [29] (see also [28]) an important rela-
tion between the cone-beam X-ray transform and the first derivative R’ of the
3D Radon transform. Let us observe Figure 3.20. Consider a certain Radon
“characteristic” point P = t& whose value R(t, €) is given by the plane integral
on plane II. Note that II passes through the source position S(3) because in
the cone-beam geometry information on plane integrals and hence Radon val-
ues is available only for the planes passing through the source. This also means
that ¢ depends on & and vice versa, in fact it’s easy to see that ¢t = S(3) - £.

Let L(7,u) be the line who represents the intersection of the IT integration
plane with the detector plane. This line is described by the angle 7 and by the
signed distance u from the detector’s central point D. Grangeat introduces the
function

S(B,T,u) = /g(ﬁ,u,v) dv (3.37)



3 3D Cone-Beam Reconstruction

11
Radon value

D(B)

s S®)

A
q
'v\ L(t,u)
\ u
T
D p v

Figure 3.20. Geometric representation for Grangeat’s fundamental relation. Top:
the Radon value at t€ is given by the plane integral on the II plane passing through
t€ and S and orthogonal to t£€. Bottom: II intersects the detector on line L(T,u).

with
D
VD% 4+ u? + v?

The g function represents cone-beam projections weighted by the distance |SQ|
from the source to individual pixels lying on line L(7,u). Therefore S(3, 7, u)
is essentially the integral of weighted cone-beam projections on line L(7,u).

9(B,u,v) =

de(B,ucosT —vsinT,usinT +vcost) (3.38)
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Grangeat’s fundamental relation is written as
2

v
,:U’(taé) = % R/‘L(tag) 2 n D2 19

S(B,1,u) (3.39)

where u and 7 depends on plane orientation €. For proof of this relation the
reader is referred to [28]. In conclusion Grangeat’s formula yields the values of
the first derivative of the 3D Radon transform corresponding to all the planes
passing through the source orbit. Let now examine how this information can
be utilised to perform reconstruction.

3.4.2 Radon inversion through the first derivative of the 3D Radon
transform

We can rewrite the 3D Radon inversion formula (3.36) in terms of the first
derivative R’ as:

2
pl) ==y [ [ SRt €.€) sinoavds

. (3.40)
_ 8W2/ /_R/ r-€ &) sinfdfdo

This formula is in essence a backprojection in which each reconstruction point
is given a value accumulated from the different planes passing through it. In
practice cone-beam reconstruction can then be carried out in three steps:

e computation of the first derivative R’ from cone-beam projections using
Grangeat’s fundamental relation,

e interpolation of R’ values to a spherical coordinates grid and
e backprojection as described by (3.40).

We call this reconstruction method the Grangeat’s method.

3.4.3 Computation of the first derivate of the 3D Radon transform

Grangeat’s fundamental relation allows to compute the first derivative of the
Radon transform from cone-beam projections. This is usually performed in
four steps:

e pre-weighting of cone-beam projections with pixel distance |SQ)|,

e integration of data along a set of L lines,
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e differentiation along the u axis,
e post-weighting with L?/(u? + L?) factor.

The complexity of this computation is O(N*) because for each of the N3 Radon
values required for inversion it is necessary to perform a O(N) line integration.
It is possible to bring down the theoretical complexity to O(N3 log N) using a
direct Fourier method or a linogram method as described in [19, §].

3.4.4 Interpolation.

As explained in § 3.2.1, for each projection, plane integral information and
hence R’ values do reside on a Radon “umbrella”. This means that the Radon
derivative data obtained using the four steps method sketched above is not
suitable for the inversion formula of Grangeat’s method which requires Radon
derivative data to be available in spherical coordinates. Therefore an interpol-
ation scheme is necessary. Interpolation is also important to provide proper
handling of the shadow zone in the case of source trajectories not satisfying
completeness conditions. For further details on how interpolation can be actu-
ally carried out we refer to [24] and to [28].

3.4.5 Radon inversion with the two-stage approach.

The last step of Grangeat’s method consists in 3D Radon transform backpro-
jection through inversion formula (3.40). For each reconstruction point it is
necessary to perform a radial differentiation and an integration over the surface
of the unit ball. Consequently the overall complexity of this formula appears
to be very high: O(N®).

Efficient implementations of the aforementioned inversion formula which
reduce the computational effort are available. A popular approach is based
on the so called two-stage approach proposed by Marr et al. in [52]. This
approach is based on the 3D Fourier slice theorem. First of all let us reconsider
the relation (3.36) by introducing the radial Fourier transform of the 3D Radon
transform Ru(w, £)

1 2r  pm 192 '
u(r) = —@/0 ; WRM(I' -&,€) sinfdfdo

1 27 T R .
= / / / WP Rp(w, €) ™8 dy sin 0 d dop
dm Jo Jo
In terms of the first derivative this can be written as

2r  pm R )
p(r) = —4i / / / iwR! u(w, €) 28 duy sin 0 df dp (3.41)
™ Jo 0
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The two-stage approach subdivides this calculation in two stages. Basically
the stage one performs the integration over the polar angle # on meridian
planes keeping ¢ constant, while stage two carries out the final azimuthal
summation. On the meridian plane II4 at angle ¢, let (Z,7) be a pair of
Cartesian coordinates corresponding to the rotated x and z axes. A point onto
this plane can be written as r = (Z cos ¢, g sin ¢, §). Stage one for this plane is

1 . o
po(Z,9) = —%/0 /inu(w,ﬁ) 2w (@sin0+5c0s0) g, 5in 0 de (3.42)

which corresponds to a modified 2D filtered backprojection formula. Physic-
ally the ;14 integral describes a 3D parallel-beam projection along the direction
perpendicular to plane Il4. By equation (3.41) reconstruction in point r is ac-
complished by summing 114(Z, §) contributions with § = z and & corresponding
to the orthogonal projection of r on Il plane. Hence stage two is

1

2w ™
u(r)=§/0 M¢($COS¢+ySiH¢,2)d¢=/O 15 ( cos 6 + ysin g, z) do

where we have used the symmetry of parallel-beam projections firy¢4 = .
The computational complexity of Grangeat’s inversion step with the two-
stage approach is O(N?). This is due essentially to stage one in which for each
of the N meridian planes a O(N?) filtered backprojection is necessary. 2D
direct Fourier methods or linogram methods can again be used to reduce the
theoretical computational complexity even further to O(N? log N) [37, 8, 24].

3.4.6 Radon inversion and 3D Direct Fourier Methods

The strategy followed by volumetric direct Fourier methods is essentially the
same followed by 2D DFM in which the reconstruction is achieved using the
Fourier slice theorem and Fourier inversion.

Relation (3.41) allows to compute the radial Fourier transform of the ob-
ject function p(z,y, z). Interpolation [72] or gridding [59] techniques are then
employed to compute a Cartesian representation of the 3D Fourier transform
fi(wz, wy, w,) from the radial Fourier samples. This has to be done with a cer-
tain care as discussed in [68, 70]. Reconstruction is finally achieved through
3D Fourier inversion. Computational complexity of 3D direct Fourier methods
is O(N? log N). As usual this does not take into account real computer code
complexity which can be much greater.
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3.5 3D Filtered Back Projection

In comparison to methods based on 3D Radon inversion, e.g. the Grangeat’s
method with the two-stage approach, 3D FBP can perform reconstruction on
a per projection basis. This property makes efficient and fast reconstruction
easier to implement and optimise.

In general we can distinguish “exact” and approximate 3D FBP algorithms.
“Exact” FBP algorithms rewrite the 3D Radon inversion formula, through us-
age of Grangeat’s fundamental relation, in filtered backprojection form. The
3D FBP reconstruction formula for cone-beam projections was written inde-
pendently by Defrise and Clack in [20] and by Kudo and Saito in [43]. Unfor-
tunately this formula uses two-dimensional shift-variant filtering which makes
it unattractive. Approximate FBP algorithms makes use of explicit approxim-
ations to simplify the reconstruction problem and hence speed-up the recon-
struction. In the following sections we are going to present some of the most
popular approximate 3D FBP reconstruction algorithms.

3.5.1 The Feldkamp-Davis-Kress method

Originally formulated for the circular path by Feldkamp, Davis and Kress in [25]
this method has been the most popular cone-beam reconstruction algorithm
since its introduction. Generalisations to more complex paths of the FDK
method have been proposed by Wang et al. [81] and by Schaller [68] among
others. These will not be considered in this discussion.

Let us consider Figure 3.21 in which the source moves along a circular path.
The reconstruction on the x — z mid-plane can be performed exactly using the
standard fan-beam filtered backprojection formula (2.13)

1 27 R? D
IR
where (¢, s) refers to the rotated coordinates frame.

The idea of the FDK algorithm is to perform reconstruction for tilted fan-
beams with an adaptive fan-beam formula (slightly) modified to take into ac-
count the tilt angle . To see how this can be done, let us examine the situation
for the point object A of Figure 3.21. For the source position S(3) the ray to
be considered in the backprojection belongs to the tilted plane II4(3) which
intersects the detector along some horizontal line ¢ = cost. Note that as
varies for each projection, the line touched by the ray passing through A goes
up and down because the magnification factor varies. It’s easy to show that

D
R—s

D
M(IE,O, Z) = dc(ﬁ7p7 0) k(tTS _p) dpdﬂ

R

q= Y
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Figure 3.21. The Feldkamp-Davis-Kress reconstruction method makes use of an
adaptive fan-beam formula for tilted planes.

We can write the fan-beam reconstruction formula on the II4(3) plane. To do
this we can use a trick: scale all the geometrical quantities that appear in the
fan-beam formula for the mid-plane (3.5.1) with a factor cos ¢ which accounts
for the mid-plane — Il 4 passage. This means that:

R — R/cos(
D — D/cos(
s — s/ cosC

df — df x cos(

where the scale factor cos¢ = D/+/D? + ¢? provides compensation for the
tilting of the plane. Note that as ¢ depends on the angular position 3 of the
source, the reconstruction of A can nonetheless be performed adapting the
2D fan-beam reconstruction formula to each different cone-beam projection.
Putting the geometrical scaling rules into (3.5.1) we obtain the Feldkamp-
Davis-Kress algorithm

( ) 1/27r R2 / D

H\T,Y,2) = & .
2 Jo (Rl_) 5)? \/52 +p?+¢° (3.43)
- de(8,p, k(t — d
de(B,py ) k(tp— —p)dpdf

While this algorithm is exact for any point object like A, it’s clearly approx-
imate for more complex objects because it ignores the missing of Radon data
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in the shadow zone. However we expect this approximation to be fair for small
cone angles because the shadow zone is small compared to the object support.
Rizo et al. in [66] have shown FDK reconstruction for some real objects to be
reliable for cone apertures inferior to about 10°.

Properties. The FDK method possesses some interesting properties:

e it provides exact reconstruction on the mid-plane of the object, on every
other plane the reconstruction error increase with the cone angle,

e it provides exact reconstruction for objects homogeneous in the axial
direction,

e the integral of reconstructed values along lines parallel to the rotation
axis is exact,

e it has been proven in [28, 20] to be the best approximation of “exact”
algorithms for the circular path.

Implementation. The Feldkamp-Davis-Kress algorithm is usually imple-
mented in three consecutive steps (see also Figure 3.22):

1. cone-beam projections are pre-weighted

D

/D2 +p2+q2

9(B,p,q) = dc(B,p,q) X

2. filtered row-by-row using a one-dimensional kernel function k(p)
Jc(ﬁupa Q) = /g(ﬂmph Q) k(p - pl) dpl

3. and backprojected

1/ R* D D
— = d.(5, t, d
new ) =g [ e e gt g 18

with t = xcos 8 — zsin 3 and s = xsin 8 + z cos (.
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Figure 3.22. Steps of the Feldkamp-Davis-Kress reconstruction method. Cone-beam
projections are pre-weighted by a pixel distance factor, filtered (in Fourier space by
ramp filter) and backprojected. Reconstruction is per projection.

Notes. We would like to add a couple of comments regarding Feldkamp-
Davis-Kress reconstruction:

e filtering is done row-by-row. Any filter used for fan-beam reconstruction
is suitable. Popular choices are the ramp filter with or without apod-
ization window and the Shepp-Logan filter (see § 2.4.3). Alternative
approaches for filter design, based on wavelets [14, 90] and approximate
inverse (more about this in § 3.8), are also available.

e as in the 2D case a pixel dependent 1/72 factor is present in the calcula-
tion of the final backprojection step.

e the computational complexity is O(N?) but its structure makes it easy
to optimise its implementation and achieve fast reconstruction.



3 3D Cone-Beam Reconstruction

3.6 Rebinned 3D FBP

One way to speed-up Felkamp-Davis-Kress reconstruction is to get rid of the
pixel dependent 1/r? factor appearing in the backprojection formula. This is
made possible by the rebinning of cone-beam projections into so called oblique-
parallel projections or into oblique fan-parallel projections.

3.6.1 Oblique-parallel rebinned 3D FDK

An oblique-parallel projection [69, 78, 30] is a two-dimensional projection in
which each row corresponds to a tilted planar parallel-beam projection. The
rebinning of cone-beam projections into oblique-parallel projections for the
circular path is illustrated in Figure 3.23 in which a set of cone-beam projec-
tions d.(83,p,q) is used to produce an oblique-parallel projection d,(3,p,q)
rising from a virtual X-ray source. To this end the fan-beam to parallel-beam
rebinning equation (2.22) is applied to each projection row. The cone-beam to
oblique-parallel beam rebinning d.(3, p, q) — dop(3, P, q) operation can there-
fore be written as:

_7 P
ﬁ—ﬁ+arcs1nR

p = D tan(arcsin %) (3.44)

_ [ D%+ p?
=N R 2

Careful interpolation (both azimuthal and on detector pixels) is required. After
rebinning reconstruction can be performed. Following the same reasoning as for
the non-rebinned FDK algorithm we can deduce the oblique-parallel rebinned
Feldkamp-Davis-Kress algorithm:

1 2 D R
wz,y,z) = 5/0 /\/DQ:W dop(ﬁvpvy Rtiis) k(t — p)dpdp3 (3.45)

where R; = vV R? —t2. Note that while a pre-weight factor is still there, the
computational expensive pixel dependent 1/r? factor is gone. Obviously the
trade-off is the rebinning operation but this in general is not a serious issue
because it can be performed during the acquisition of cone-beam projections.

3.6.2 Besson’s fan-parallel extension to 3D cone-beam

An extension to the 3D cone-beam case of the original fan-parallel reconstruc-
tion formula has been proposed by Besson in [11]. Basically this extension is
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Figure 3.23. Rebinning of cone-beam projection into oblique-parallel projections.

based on an hybrid between fan-beam and parallel-beam FDK reconstruction.
Each fan-parallel projection is obtained from a set of cone-beam projections
through azimuthal interpolation only, avoiding the resolution loss implicit in
the radial interpolation process required in the cone-beam to oblique-parallel

rebinning.
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3.7 3D Fast Back Projection

Turbell and Danielsson have recently proposed in [78, 79] a modified Feldkamp-
Davis-Kress reconstruction algorithm which performs the backprojection in
O(N3log N) steps instead of the O(N*) steps required for the traditional back-
projection. This algorithm is the 3D extension of the two-dimensional fast
filtered backprojection method presented in § 2.6. It requires oblique-parallel
rebinning and a number of projections power of 2 to be efficient. Another dis-
advantage is that it requires an additional O(N?) matrix to store summation
links and that it’s not a per projection algorithm. A detailed analysis including
real world performance tests is available in Linkoping Ph.D. thesis [78, 36].

3.8 3D Approximate Inverse

The approximate inverse framework presented in § 2.7 can be exploited to
design improved filtering strategies for 3D filtered backprojection algorithms.
For 3D parallel-beam geometry the approximate inverse is written as:

(T, y, 2 //d (0,t,y) ky(zcos0 + xsinf —t,y) dt do (3.46)

where as usual we have assumed that rotation is around the y-axis and that we
deal with a translation and rotation invariant mollifier e (z,y, 2). k,(t,q) is the
reconstruction kernel corresponding to the parallel-projection of the mollifier.
Note that k, is 2D. Like in the two-dimensional case the reconstruction kernel
can be computed from a truncated series of a suitable SVD or by using the
explicit filtered backprojection formula based on Riesz potential.

3.8.1 Reconstruction formula for the cone-beam geometry

As for the 2D fan-beam geometry, the problem of adapting the approximate
inverse scheme to the cone-beam geometry resides in the space-variant mag-
nification factor to be applied to the mollified representation of the object to
be reconstructed. For small cone angles Dietz has proven in [22] that a good
approximation for the circular path is

o (R=1)2 p2r 1 5
Fi) =S [ g B )8 (3.47)

where p and ¢ are the projection coordinates for r (p = % t,q = % Y,
t=xcosf—zsinf and s = xsin f+ z cos ) and where d, denotes 2D filtered

cone-beam projections

de(B,p,q) /d (B,p1,q1) ky(p — p1,q — 1) dp1 dqu (3.48)
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Here INf7 (p, q) is the approximate reconstruction kernel given by

k(p,q) = k(8) = — h S - 9/ ¥y (hSp - w)|Sh - w| dw—
o (3.49)
- S - 0/6J- V., (hSp - w)sign(S) - w) dw
with
0 the vector connecting the X-ray source to pixel Q = (p, q),
h=(R—-1)/(2R),
So =8(8=0),
S§ the tangent to the source path for § =0
and with 1), and ¥, defined as

1 (t) = reconstruction kernel for e,
t
(0= [ ()

where it was assumed that the mollifier €, is also dilation invariant.

In conclusion the approximate inverse scheme leads to a filtered back pro-
jection algorithm. In contrast to the Feldkamp-Davis-Kress method, filtering
is two-dimensional and shift-variant. However it is possible to make it shift-
invariant by introducing some approximation in the computation of the recon-
struction kernel. Approximation errors are expected to be small for small cone
angles.

Example : 3D Gaussian mollifier. Let us consider the family of three-
dimensional Gaussian mollifiers

1

— = kP2
ed(x) = (272)372 e XN/
It has been showed by Dietz in [22] that:
2 _ 42
o ’y - t 71’2/2’)/2
1/"7(75) - 2(27_‘_72)5/2 €

The integral of 1), has a closed expression too. It’s easy to see that

2
B Yyt —12/242
) = semrp e



3 3D Cone-Beam Reconstruction

3.9 3D Iterative Methods

Three-dimensional iterative methods are based on the same estimation-update
concept we have encountered in the 2D iterative methods analysis. Slowness
of reconstruction was the main problem for two-dimensional iterative methods
and obviously this same problem is even worse for volumetric reconstruction.
Nonetheless interest in 3D iterative methods is increasing. ART, EM, TRML
and even Monte Carlo based methods are available for 3D reconstruction. Look
to § 2.8 for some interesting references covering this topic.



The Strange Engine toolkit

The tentative state of cone-beam computerized tomography requires advanced
software tools to lead the research and development of proprietary reconstruc-
tion algorithms. The common approach to address this issue, is to write small
in-house software routines which tailor specific research needs. To speed-up the
development, usually these routines are written with a procedural programming
language, e.g. the C language; public domain libraries and/or commercial nu-
merical software environments can then be used to glue them together and to
display results. This approach is seriously flawed because it produces mono-
lithic software pieces which are difficult to reuse and maintain.

Enter now Strange Engine, our dedicated software toolkit which provides a
comfortable and user friendly common ground for research and development of
cone-beam computed tomography reconstruction algorithms. Strange Engine
allows algorithm developers (the users) to focus on their real job, leaving all
the other duties to the toolkit. Strange Engine in fact offers everything needed
for the testing of proprietary reconstruction code; this includes:

e management, analysis and simulation of cone-beam projections,
e management of software phantoms and of 3D volumes,

e reconstruction plug-in ActiveX facility,

e uniform data input and output from and to storage devices,

e import and export of data from and to industry standard formats with
real-time frame grabbing for video based devices.

51
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Strange Engine is modern and fully object-oriented: it has been written in the
C+ language and provides a problem domain abstraction through a component
driven interface specified using state-of-the-art software technologies.

Strange Engine is configurable and expandable: its component driven interface
allows users to add new custom reconstruction plug-ins.

Strange Engine is easy to use and visually appealing: it features a full-fledged
Microsoft Windows 2000 graphical user interface with drag & drop support.

4.1 Toolkit design

Strange Engine was born by our necessity to write and test, on the Microsoft
Windows platform, cone-beam CT reconstruction algorithms. We have found
that the development of a reconstruction algorithm is not a linear process, but
more like a parallel pipeline in which particular tasks have to be repeated in
different stages concurrently. Nonetheless algorithm development goes through
some distinct phases of advancement:

Phase 1. The initial task is to assess that the reconstruction algorithm is
well-coded (no programming errors) and that it really produces data resembling
an object reconstruction. In this phase the user basically needs to check his
code using some cone-beam projections test data and see if it does a good
reconstruction job. Usually test data is supplied by a cone-beam projections
simulator which computes cone-beam projections starting from an analytical
description of a test object known as software phantom.

Phase 2. Once the reconstruction algorithm code has been debugged and
tested against reconstructions of some simple software phantom it can enter
phase 2 in which more in-depth analysis has to be performed. This includes
some reconstruction tests for both complex software phantoms and real-world
data and a comparison with other trusted reconstruction algorithm codes.

Phase 3. Validated reconstruction algorithm codes can finally be bench-
marked and optimised against competing codes.

From this analysis it is clear that in order to test a cone-beam computed tomo-
graphy reconstruction algorithm code the user needs a series of ancillary tools.
The minimum set-up involves a data displayer to visualize cone-beam projec-
tions and 3D volume data, a cone-beam projections simulator with software
phantoms and a trusted reconstruction code. All these tools have to make
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input and output of data in the same digital format. Regarding this point, we
should bear in mind that while usage of simple data formats like raw binary
is trivial, it leads to hard-coding of reconstruction parameters. In addition
import and export of data to industry standard formats is a definite must as
well as the capability to pre- and post-process data. Strange Engine addresses
all these issues offering a modern solution based on object-oriented analysis.

4.1.1 A bit of history

The current release of Strange Engine is version 1.0a build 12 distribution dated
December 14, 2000. Before examining actual Strange Engine’s architecture, let
us briefly review its development history which goes back to 1998 fall.

Strange Engine started as a personal tool for the development and test of
cone-beam computed tomography reconstruction algorithm code on Microsoft
Windows NT platform. In 1999 spring an early internal version was used for
[2]. This early version was severely limited and contained only built-in code
for Feldkamp-Davis-Kress reconstruction. The first public release of Strange
Engine (build 6) was released on September 1999. This version added lots of
important features: ActiveX reconstruction plug-in support, import and export
to foreign data formats and refined image display. Build 7 won the 3™ prize for
the communication “3D Tomographic Reconstruction ActiveX Style” [3] given
for the ACM International Graduate Student Contest held in Austin, May
2000. Later builds added an improved ActiveX component driven interface,
additional off-the-shelf reconstruction plug-ins and some minor new display
feature.

4.1.2 Strange Engine constraints

Strange Engine is very versatile nonetheless some constraint does exist. During
the design phase we decided to introduce some initial assumption that as the
development progresses could be removed. Currently the constraints are:

1. cone-beam projections are assumed to be taken on a circular path,
2. cone-beam projections are assumed to be planar,

so that the cone-beam set-up is the one we already inspected in Figure 3.14.
We would like to point out again that Strange FEngine is an open project.
New builds can quite easily extend the current architecture to address specific
needs like e.g. reconstruction for the helical path, curved and other not-planar
detectors, 2D reconstruction and so on. This is made possible by the toolkit’s
modern object-oriented design we are going to examine next.
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Figure 4.24. Strange Engine object framework.
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4.1.3 The object-oriented point of view

A serious rethinking of cone-beam reconstruction algorithm development can
effectively be made using modern object-oriented techniques. The result of
our analysis of the problem domain led to the object abstraction (framework)
depicted in Figure 4.24. In the Strange Engine framework each development
task have been subdivided into “atoms” called objects. The object abstraction
has been inspired by component-driven object-oriented programming languages
such as Smalltalk, Component Object Model (COM) and Java. In the following
sections we will examine in details the framework’s main features and goals.

Data- and op-objects. In the Strange Engine framework an object can de-
scribe a data entity or a data operator. We will call these two kinds of objects
data-objects and op-objects respectively. Data-objects contain raw image data
and every parameter necessary to describe what the raw image data refers to.
For example a set of cone-beam projections is represented by an instance of the
“Projection Collection” data-object which contains projection images and all
the information needed to explain in what situation these images were taken.



4.1 10O0IKIU Aacesign

Op-objects on the other hand do not contain any image data but are merely
data operators which manipulates data entities to perform specific tasks. An
example of this is the “Backprojector” op-object: it encapsulates a reconstruc-
tion algorithm which produces volume data from cone-beam projections.

Data-objects list. In the current Strange Engine 1.0a build 12 distribution
four different data-objects are defined:

Phantom &

A Phantom represents an analytical 3D software phantom com-
posed by ellipsoids and /or truncated cylinders (phantom elements).
Fach element is characterised by a signed attenuation coefficient
+pu. The size, position and orientation of elements in space is spe-
cified through appropriate shift, scaling and rotation (with Euler
angles) transformations. To simplify the design of phantom with
“holes” at element intersections the signed attenuation coefficient
is summed.

Surface @

A Surface encapsulates 2D image pixel data and the geometry for
the image plane. This includes dimensions, position and orientation
of the image plane, number of rows, number of columns and depth
of pixel data. Each pixel is represented by a floating-point value.
Three surface child objects are implemented:

e Slices,
e Projections,
e Slides.

Slices are sections of volumetric data. Projections are cone-beam
projections in the sense of (3.33). Slides are essentially cone-beam
intensity projections in which each pixel value measures the X-ray
intensity hitting the pixel. Contrary to projections each pixel value
is represented by an integer; this is useful to spare memory in low
dynamic range situations. A slide can be converted into a projection
by using a reference slide and the Lambert-Beer’s relation (2.3).
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Surface Collection @ LQI‘O*

A Surface Collection represents a set of different surfaces. Two kinds
of collections are available: in-place and linked. In-place collections
store surfaces one after the other in a single big memory space.
Linked collections on the other hand store only links to surface
files residing in storage space. Strange Engine provides a built-in
garbage manager which allows to load, restore and offload single
surfaces from the system memory pool. This makes possible saving
of memory and speed-up of surface processing.

Volume %ﬁ

A Volume encapsulates 3D voxel data and the geometry for the
voxel cube. This includes dimensions of the voxel cube, number
of planes, number of rows, number of columns and depth of voxel
data. Each voxel is represented by a floating-point value. Starting
from a volume, a slice collection representation can be generated.

Op-objects list. In the current Strange Engine 1.0a build 12 distribution
four different op-objects are defined:

-

>
i
A N

Projector

A Projector serves a double function. It can generate an in-place
or linked projection collection by ray-tracing a phantom or work in
conjunction with a Digitizer to grab a slide collection from a video
source (more on this later). The phantom ray-tracer makes use of
a single ray per detector pixel, which connects the X-ray source to
the pixel centre. Optional anti-alias is also available by adding four
extra rays (each pixel is the average of a pyramidal beam).
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A Backprojector acts like a front-end for cone-beam reconstruction
code provided by the user. The reconstruction code has to be encap-
sulated by the user into an external ActiveX plug-in. Communic-
ation between Strange Engine backprojector and the user written
plug-in is granted by two Strange Engine custom COM interfaces
IBackProjector and IBackProjectorRenderer (more on this later).
A second (optional) service which can be offered by user written
ActiveX plug-ins is voxel synthesis of phantoms. Voxel synthesis
refers to voxel sampling of the intrinsic analytical representation
of phantoms. This is again done through other two custom COM
interfaces called IPhantom and IPhantomElement.

Processor

A Processor is a simple pre-processing tool for projection collections.
It provides three basic image processing functions:

e shift,
e rotate and
e spherize.

These functions are sometimes useful to correct image distortions
present in projections grabbed from video devices (e.g. X-ray de-
tectors based on a camera + image intensifier set-up).

Digitizer

A Digitizer works in conjunction with a projector and a Matrox
Genesis advanced digitizer card. Its job is to grab a linked slide
collection from a video source connected to the Genesis card and
save it to disk in real-time. Grabbed slides can afterwards be con-
verted into projections by using a reference slide collection and the
Lambert-Beer’s relation (2.3).
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4.2 Toolkit user interface

Strange Engine is not just a software toolkit, it’s a visual software toolkit.
Strange Engine’s objects are visualised through a standard Microsoft Windows
Graphical User Interface (GUI) which provides:

e object persistency,
e user interaction and

e object-to-object interaction.

4.2.1 Object persistency

Every Strange Engine’s object can be saved and loaded to and from stor-
age devices in proprietary file formats. Lossless binary compression is used,
whenever it makes sense, to spare disk space. Import and export (some re-
strictions apply) to the following industry standard formats is also available:

e raw binary,

Windows Bitmap (BMP),

Windows Video (AVI),
o NCSA2 HDF3,

ACR/NEMA* DICOMS 3.

4.2.2 TUser interaction

Strange Engine acts like a container. At start it looks like an empty space ready
to be populated with Strange Engine’s objects. Each object sports a full fledged
Microsoft Windows 2000 graphical user interface. In Figure 4.25 for example
Strange Engine’s multi document dialog is used to create a backprojector object
which interacts with the user through a panel window.

2National Center for Supercomputing Applications.

3Hierarchical Data Format. http://hdf.ncsa.uiuc.edu.

*American College of Radiology/National Electrical Manufacturers Association.
®Digital Imaging and Communications in Medicine. http://www.xray.hmc.psu.edu.
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Figure 4.25. At start Strange Engine looks like an empty container ready to be
populated with objects. Big window: Strange Engine application. Left window: the
multi document dialog. Rigth window: a backprojector object.

4.2.3 Object-to-object interaction

An essential feature of Strange Engine is object-to-object interaction. We have
seen that op-objects perform specific actions on data-objects. This means that
the user creates a new op-object and then ask it to act on a input data-object.
The input data-object is modified (this is the case of the processor object) or
used to create another output data-object: e.g. the backprojector object takes
a projection collection object and produce a volume object. An exception to
this rule is the digitizer object which does not require an input data-object but
works in conjunction with a projector object.

Object-to-object interaction is performed by the user through Microsoft
Windows drag & drop. Op-objects and data-objects can be reduced to icons.
Op-objects have “hot spots” on which the user can drop a data-object (or
op-object) icon. Every “hot spot” is sensitive only to appropriate objects and
rejects all the others (see Figure 4.26).
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Figure 4.26. Object-to-object interaction is performed through Windows drag &
drop. In this example the icon on the left represents a projection collection which
is dragged over a backprojector object and dropped on its hot spot. The hot spot
recognizes the dragged object to be a projection collection and accept it for drop.

4.3 The ActiveX edge

The crucial feature of the Strange Engine toolkit resides in its capability to
fit user-written reconstruction code. Basically this works in the following way.
The user encapsulates his reconstruction code in a sort of black box, a so called
plug-in, which plugs into Strange Engine main application. The plug-in has
to follow some programming specification which are dubbed by Microsoft as
ActiveX. Strange Engine receives and sends “messages” from and to ActiveX
plug-ins according to user input. This communication happens through doc-
umented COM interfaces (for technical details see references cited in § 4.5)
specified in Strange Engine’s mini Application Programming Interface (API).
In addition to user-written reconstruction code, each plug-in can also contain
(optional) user interface fragments. This is very useful for example to expose
to the end user plug-in specific reconstruction options and parameters.
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4.3.1 Strange Engine’s COM interfaces.

The Strange Engine’s mini Application Programming Interface defines 8 simple
COM interfaces:

e IBackProjector,

e [BackProjectorRenderer,
e [Phantom,

e [PhantomElement,

e [ProjectionCollection,

e [ListElementStub,

e [Projection,

e IVolume.

Figure 4.27 describes the COM mediated interactions of Strange Engine objects
with a reconstruction ActiveX plug-in. Let us examine how this happens.

IBackProjector and IBackProjectorRenderer are the two primary in-
terfaces. A projector object exposes the IBackProjector interface to a plug-in.
The plug-in exposes the IBackProjectorRenderer interface to the projector.
Note that the ActiveX plug-in is contained within the projector object.

The IBackProjector methods SetComputation() and StepComputation()
are used by the plug-in to inform the projector object that reconstruction is
proceeding well, so that the projector can refresh its graphical user interface
and compute simple estimates of time required for each reconstruction step.

The plug-in must implement IBackProjectorRenderer interface. The three
methods BackProjectPhantom(), BackProjectProjection() and the optional
BackProjectProjectionCollection() are invoked by the plug-in projector con-
tainer to fill voxel data of a given volume object which represents the recon-
struction region. BackProjectPhantom() should provide a voxel representation
of a phantom, while the other two methods should provide cone-beam recon-
struction obtained from a set of projections. The method invoked depends
obviously by user input. The difference between BackProjectProjection() and
BackProjectProjectionCollection() is this: Strange Engine first of all tries to
invoke the latter which directly operates on a projection collection object.
If BackProjectProjectionCollection() is not implemented (it can because it is
declared as optional in Strange Engine’s mini API), the mandatory method
BackProjectProjection(), which operates on a per projection basis, is invoked.
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Figure 4.27. Strange Engine’s COM interfaces.
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IPhantom and IPhantomElement are used by plug-ins to access phantom
data. Each phantom contains a set of phantom elements which the plug-in
can enumerate through the GetCount() and the GetAt() methods. Phantom
elements properties are then read through the PtIn() method.

IProjectionCollection and IListElementStub are used by plug-ins to
access projection data residing in a projection collection. Each projection
collection contains a set of projection “stub” objects which the plug-in can
enumerate through the GetCount() and the GetAt() methods. Stubs are sort
of projection surrogates which mediates loading and unloading of linked pro-
jections residing in disk space through methods Load() and OffLoad(). The
GetHomogeneity() method can be used by the plug-in to check if all the pro-
jections contained in the collection, were taken by the same detector (same
detector plane geometry and same number of pixels) so that caching of some
reconstruction intermediate quantity is possible.

IProjection describes a Strange Engine’s projection object. This includes
the detector plane geometry (GetRasterGeometry() method), source and de-
tector position (GetSourcePosition() and GetDetectorCenterPosition() meth-
ods), detector orientation (GetTrajectoryMatrix() method) and image pixel
data (GetDataPointer() method).

IVolume describes a Strange Engine’s volume object. This includes volume
dimensions, number of voxels (GetVoxelGeometry() method) and voxel data
(GetDataPointer() method).

4.3.2 Plug-in request and plug-in user interface

When a Strange Engine’s backprojector object requests a plug-in, the system
ActiveX list is scanned and available Strange Engine plug-ins are shown. The
selected plug-in is then loaded and injected into Strange Engine. In addition to
implementation code related to COM IBackProjectorRenderer interface, each
ActiveX plug-in can contain user interface fragments. These fragments can
be used by the end user to modify plug-in specific reconstruction options and
parameters, trigger plug-in actions, etc.... Fragments are organized in panel
windows which are appended (see Figure 4.28) to the panels of the Strange
Engine backprojector object requesting the plug-in.
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Figure 4.28. On backprojector request (left window) installed Strange Engine plug-
ins are shown (mid window). The selected plug-in is loaded and injected into Strange
Engine main application. If available, plug-in’s user interface fragments are appended
to the backprojector object GUI (right window).

4.4 Toolkit usage

Till now we have examined Strange Engine by the developer point of view.
The end-user is not required to know every single detail of Strange Engine API
to use it as every other Windows application. To see this in practice let us
look at three different examples of Strange Engine usage:

e Data display
- visualise image data in full grey shades with windowing,

- analyse image data pixel values and produce line profile plots.

e Acquisition and reconstruction
- grab slides from a video source in real-time,

- use an ActiveX plug-in to perform reconstruction.

e Algorithm test
- assemble test phantoms and produce simulated projections,
- test user written algorithm on simulated projections,

- compare results with voxel representation of the test phantom.
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4.4.1 Data display

This is the most basic usage of the
Strange Engine toolkit. The user can
load from a storage device any pre-
viously saved object, e.g. a projec-
tion, or import a raw binary matrix
into a new data-object. As depicted
in Figure 4.29 (see figure cameo on the
right and float pages) image data is
visualised with 256 grey shades. Win-
dowing (position and width) of data
is available through two toolbar curs-
ors. Other image functions include
8 levels of zoom and report of pixel
values (pointed by cursor, image min-
imum and maximum). Generation of
a line profile plot with optional ex-
port to Excel spreadsheet text format
is also provided.

E - =loix
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4.4.2 Acquisition and reconstruction

At start Strange Engine checks the system to find an installed Matrox Genesis
digitiser card, if found the user can create a digitizer object. A digitizer object
provides controls to define the video input region, scale and trigger options.
A live preview window (see Figure 4.30) is opened to show to the user what
it’s going to be digitised. After digitizer configuration the grabbing begins and

slides are saved on disk as they are
acquired. When all the slides have
been grabbed, a reference slides col-
lection can be used to convert the
acquired slides into projections from
which cone-beam reconstruction can
be performed using any Strange En-
gine’s ActiveX plug-in. If needed, be-
fore reconstruction, a processor object
can provide projection pre-processing.
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Figure 4.29. Strange Engine as a data viewer. Top: Image data is visualised with
256 grey shades and windowing. Status bar reports: window position/width and pixel
values (pointed, minimum and maximum). Bottom: a “profiler” tool lets the user
examine image values along a line traced on the image picture.
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4.4.3 Algorithm test

This is the premiere task for which

Strange Engine has been developed. S el
It’s possible to test custom reconstruc-
tion algorithms encapsulated by the
user into a Strange Engine compliant
ActiveX plug-in or just use an off-the-
shelf plug-in. To do this we load or
create a test phantom by putting to-
gether ellipsoids and truncated cylin-
ders as shown in Figure 4.31.

=lolx|

A projector is then used to compute
a simulated cone-beam projection col-
lection which is displayed as a pro-
jection icon list. Projector options
include number of projections, geo-
metry of the detector, detector path,
number of pixels and pyramidal beam
anti-alias. Once simulated projections
have been calculated we can create
a backprojector, select our choice for
the reconstruction plug-in and ask for
arender: a volume object is produced.
The volume object is visualised as a
slice collection (see Figure 4.32). We
can view each slice and examine them
through the image functions examined
in the data display example. Compar-
ison with a voxel representation of the
phantom is also possible.

4.4.4 Performance

Strange Engine performance is heavily hardware dependent. Table 4.1 reports
computation times for some typical task. Two studies have been investigated:

e the S study : 3D Shepp-Logan phantom projection to 64 projections
(64 x 64 pixels) which are backprojected into a 643 voxel cube;

e the V study : video acquisition and backprojection of 300 projections
(512 x 540 pixels) into a 256 x 256 x 30 voxel cube.
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Figure 4.30. The Strange Engine’s digitizer object provides real-time frame grabbing
for video sources. Video input region, image scale and trigger are user defined. A live
preview window (small window on the left) shows live video.
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Figure 4.31. Strange Engine allows the user to assemble software phantoms by
defining ellipsoids and truncated cylinders elements. This picture refers to the 3D
Shepp-Logan phantom composed of 12 ellipsoids.
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Figure 4.32. A Strange Engine’s projector object is used to produce simulated cone-
beam projections of a test phantom. Top: projections are organized as a projection
collection (large window with multiple icons inside). Bottom: a projection collection
is backprojected into a volume object which is visualised as a slice collection. A slice
(small window on bottom right) is opened and examined.
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Task S study (seconds) V study (seconds)
Full disk load 0 (inst.) 180,/90,/60/ 2
Disk save 0 1/1/1/0

Projection ~ 11.7/14.9/6.7/1.3  900/600,/400/260
Backprojection  3.8/1.9/1.3/1.0 575/363/235/95

Table 4.1. Performance for some typical Strange Engine task. * = a different build
has been used. For the V study “Projection” refers to slides to projections conversion.

Image size (pixels) Maximum throughput (msec-fps)
to memory to disk
768 x 576 (full CCIR) 123-8 300-3
512 x 540 (full FOV) 120-8 200-5
512 x 270 (half FOV) 85-12 120-8

Table 4.2. Maximum ”safe” throughput for the PC3 personal computer connected
to CCIR video. Throughput is reported in minimum time per grab in msec and in
frames per second (fps). ”Safe” here means that the throughput variance calculated
on 1 minute of continuous acquisition is inferior to 5% of average throughput.
The tasks examined were:
e full disk load: time required to load the projection collection from disk;
e disk save: time required to save the projection collection on disk;
e projection: time required to produce a projection collection;

e backprojection: time required to perform a reconstruction.

For both studies the reconstruction has been performed using the FDK ActiveX
plug-in. To stress hardware dependence, four different personal computers have
been considered:

e PC; a Pentium 133 with 32 MB RAM,

e PCy a Pentium Pro 200 with 128 MB RAM,
e PC3 a Celeron 300 with 64 MB RAM and

e PC4 an Athlon 600 with 256 MB RAM.

Acquisition maximum video throughput for the PC3 personal computer have
also been examined (see Table 4.2) for a CCIR video source.
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4.5 Toolkit internals

Strange Engine is written in C++ and has been developed on Microsoft Windows
NT 4.0 and Windows 2000 using the Integrated Development Environment
(IDE) Microsoft Visual C+ 6.0. Technically the build 12 distribution comes
from ten projects: a main project defining the Strange Engine application
and the object abstraction, two custom link libraries, three public domain link
libraries and four ActiveX plug-ins.

4.5.1 The main project

The main project builds to the Strange Engine application. It is written using
the Microsoft Foundation Classes (MFC) version 4.2 object framework [41, 60]
and consists of more than 80 C++ classes.

User interface provides multiple documents management through standard
Multi Document Interface (MDI). Drag & drop is achieved through Windows
Object Linking and Embedding (OLE).

Graphical display and rendering is provided by the standard Windows
library Graphics Device Independent (GDI). Experimental three-dimensional
display based on Silicon Graphics OpenGL [88] is also partially available.

Digitizer support is implemented through Matrox Imaging Library (MIL)
and a camera specific Device Configuration File (DCF) “StrangeEngine.dcf”.
For further information consult Matrox documentation [53].

COM support has been implemented following the treatment given in [18],
recommendations found in [12] and the Microsoft ActiveX specifications [41, 45]
for in-place controls. The Windows 2000 Category Manager is used to speed-up
the search of suitable Strange Engine plug-ins installed in the system.

Plug-in user interface support is implemented through the two standard
Windows ISpecifyPropertyPages and IPropertyPage COM interfaces [41]. This
makes very easy to develop plug-in graphical user interface through ActiveX
component IDEs like Microsoft Visual C++.

Mini API is specified using ActiveX Interface Definition Language (IDL).
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Inspiration for some parts of the project and for some specific aspects of the
implementation was taken from the stimulating reading of C++ programming
technical books [17] and 3D graphics bibliography [76, 84].

4.5.2 Custom link libraries

Two C++ custom link libraries have been built to ease Strange Engine and
companion plug-ins development: VectorMath and FourierFarm. While the
former is for internal usage only, the latter is publicly available in Microsoft
Windows Dynamic Link Library (DLL) format [64].

VectorMath is a static link library for Strange Engine and companion plug-
ins internal usage only. It provides C++ classes for object-oriented management
of vector algebra, i.e. points, vectors, quaternions and matrices. It is basically
a partial transposition of Java 3D vector math API [76].

FourierFarm is an intelligent DLL wrapper which encapsulates filtering and
1D and 2D Fast Fourier Transform (FFT) functions. Depending on requested
Fourier transformation and on libraries installed in the system it switches from
our custom implementation based on Duhamel-Hollman split-radix algorithm,
to the Faster Fourier in The West (FFTW) proposed by MIT researchers in [26].
A dedicated version for Intel Math Kernel LibraryS (MKL) is also available.

4.5.3 Other link libraries

Three other link libraries, derived from public domain distributions, have been
included in the current Strange Engine 1.0a build 12 project:

e papyrus [62] for DICOM 3 support (see also [1]),
e hdf for Hierarchical Data Format support’,
e z1ib® for binary gzip compression.

These libraries have been built as separate static link libraries. They are used
internally by Strange Engine main application for file formats exchange.

Shttp://developer.intel.com
"http://hdf.ncsa.uiuc.edu.
8http://www.cdrom.com/pub/infozip/zlib/.
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4.5.4 ActiveX plug-ins

Four ActiveX reconstruction plug-ins are provided with Strange Engine 1.0a
build 12 distribution:

e FDK,

o FDK+,

e TFDK and
e Alnv.

All the four plug-ins are supplied as ActiveX libraries (.ocx files). The FDK
ActiveX plug-in is also available as source code to serve as example for users
willing to write their own reconstruction plug-ins (as described in § 4.3).

FDK is our straightforward implementation of the Feldkamp-Davis-Kress
algorithm which have been formulated in § 3.5.1.

FDK+ is our optimised and extended implementation of the FDK method.
TDFK is our implementation of oblique-parallel rebinned FDK of § 3.6.1.

AlInv is our implementation of Dietz’s reconstruction formula (3.47) and re-
construction kernel (3.49) for Louis’s approximate inverse algorithm.

An in-depth analysis of plug-ins features and performance and a comprehensive
comparison follows in the next chapter.

4.6 The build 12 distribution

Strange Engine runs on Microsoft Windows NT 4.0 and Windows 2000 PCs.
The minimum recommend system set-up includes a Pentium II class computer,
128 MB of RAM and GB sized storage disk. Video support requires a Matrox
Genesis card and Matrox MIL library.

Strange Engine 1.0a build 12 distribution is available on the Internet at:

http://www.bigfoot.com/~agostinellis






ActiveX plug-ins implementation

The Strange Engine software distribution currently contains four proprietary
ActiveX reconstruction plug-ins: FDK, FDK+, TFDK and Alnv. The custom
filtering Fourier library FourierFarm is also provided. In the following sections
we are going to examine implementation details for each of these solutions,
show reconstruction results and make a comparison of the computational and
overall performances.

5.1 Introduction

The ActiveX plug-ins included in the Strange Engine 1.0a build 12 distribution
implement three different cone-beam reconstruction algorithms for the circular-
path + planar detector geometry of Figure 3.14:

e FDK and FDK+ — Feldkamp-Davis-Kress method,
e TFDK — oblique-parallel rebinned Feldkamp-Davis-Kress,
e Alnv — Louis’s approximate inverse through Dietz’s formula.

All three algorithms are of filtered backprojection kind. Figure 5.33 shows how
the reconstruction is actually performed. In general three consecutive steps are
done: pre-weighting, filtering and backprojection. Note that the Alnv and the
TFDK plug-ins provide in addition internal code for Dietz’s kernel computation
and cone-beam to oblique-parallel rebinning respectively.

75
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Figure 5.33. Reconstruction steps for Strange Engine build 12 ActiveX plug-ins.

5.2 Evaluation of different Fast Fourier Transform codes

A crucial step for filtered backprojection algorithms is obviously filtering.
Strange Engine’s ActiveX plug-ins employ our object-oriented FourierFarm
DLL to perform fast filtering through Fourier transformation. This allows
transparent and future-proof exploitation of new filtering techniques and codes
as they become available. Four different FFT codes have been evaluated:

e our “My FFT” code based on Duhamel-Hollman split-radix algorithm,
e MIT’s Fastest Fourier in The West version 2.1,

e Intel Math Kernel Library 3.1 and

e AMD ADSP library 3.1.
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The FFTW and MKL libraries provide both complex-to-complex as well as
real-to-complex fast Fourier transformation. My FFT code and ADSP library
provide only complex-to-complex transformation. MKL, ADSP and My FFT
codes require an input array of 2V points, while FFTW manages an arbitrary
number of points.

The MKL library is optimised for Intel DSP instructions and makes use
of an adaptive scheme to load different libraries for different Intel processors.
The ADSP library is optimised for AMD DSP instructions.

A series of speed tests have been performed through our BenchFFT routine.
Systems considered were a Intel Pentium Pro 200 Mhz and an AMD Athlon
600 MHz with plenty of memory. Some results are shown in Figure 5.34 and
Figure 5.35. We have found MKL to be in general a bit faster than FFTW
and both to be much faster than our My FFT code. MKL is also expected to
be somewhat faster on more recent Intel processors. ADSP library is strangely
not giving good scores even on the recent AMD Athlon processor. We have
also tested ADSP convolve function and found it not be brilliant as well.

In conclusion we can say that FF'TW is a very good FFT solution though
the MKL library should be used whenever possible to achieve maximum per-
formance. Our My FFT is not bad as a last alternative solution. This is exactly
the strategy followed by our FourierFarm DLL.

oR2C
mC2C

I

a0
'E R Ew 3
EEEa=g

nlr ==

2048 points FFT 256 points FFT

Figure 5.34. Performance for four different FF'T codes on an Athlon 600 MHz system.
Back histogram: complex-to-complex (C2C). Front histogram: real-to-complex (R2C).
On ordinates time per transformation is reported in microseconds. FFTW E and
FFTW M scores were taken using “Estimate” and “Measure” operation modes. Here
the FFTW library was compiled with maximize speed optimisation on Visual C++6.0.
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5.3 The FDK plug-in
5.3.1 General remarks

First of all let us rewrite once again the Feldkamp-Davis-Kress method we
already examined in § 3.5.1. The FDK formula is:

( )_1/271’ R2 / D .

MO9S =50 ®=s2) D'+ 2+ @
5 5 (5.50)

Cdy (B, 0y )kt —p)dpdps

The straightforward three-steps implementation of this formula follows.

Step 1 - Pre-weigthing:
D

9(B:p,q) = de(B,p, q) x Nz

This means that for every cone-beam projection, each pixel is weighted by its
distance from the X-ray source. In our geometry these factors are the same
for every projection so they can be cached. The cost of this step is hence
Np x Ny x Ng =N 3 multiplications with obvious meaning of the symbols.

@ R2C|
@ C2C|

2048 points FFT

Figure 5.35. Performance of MKL and FFTW libraries on a PPro 200 MHz system.
Back histogram: complex-to-complex (C2C). Front histogram: real-to-complex (R2C).
On ordinates time per transformation is reported in microseconds. FFTW E and
FFTW M scores were taken using “Estimate” and “Measure” operation modes. Here

the FFTW library was compiled with maximize speed optimisation on Visual C++4.0
(VC4 scores) and Visual C+5.0 (VC5 scores).



J.0 111€ I JKn\ plug-1i 9

Step 2 - Filtering:

de(B,p,q) = /g(ﬂ,pl,q) k(p — p1) dp:

Each projection is filtered row-by-row. The filter is the same for all the rows
so it can be computed only once. However it’s necessary to perform Ng x Ny
convolutions of N, points. The theoretical cost for this is Ng x [N, x Ng = N4
A cost reductions can be achieved through Fourier transformation: it is easy
to see that 2Ng x Ny 1D FFTs plus Ng x N, x N, multiplications are required.
An overall cost of 2N31og N is hence expected.

Step 3 - Backprojection:

1 /20 R D D

Wz, y, z) = ) /0 m de(B, R—s t,5——y)dp

with ¢t = zcosf — zsin8 and s = xsinf + zcos3. This step is the most
computationally expensive. For each of N; x N, x N, = N 3 reconstruction
points, Ng Multiply And aCcumulate (MAC) operations have to be performed.
The 1/7% term is y-independent so it’s the same for all the slices parallel to
the source rotation plane. Therefore its calculation takes Ng 2D matrix-vector
multiplications. If projections are taken equi-angularly this can be reduced to
2Ng x N, x N, multiplications. The last cost is hidden in the voxel backpro-

jection terms
D D

= t7 pu—

R-s 17 R s
For nearest-neighbour interpolation it requires 2Ng x N, x Ny x N, = 2N 4
multiplications and 2N* (very time consuming) floating-point to integer math
conversions. This cost is even greater for more elaborate interpolation schemes
like bilinear interpolation.

p Y

5.3.2 Computational cost

Table 5.3 summarizes the computational cost for the FDK algorithm. As
already noticed in chapter 3, the total cost is O(N?). This comes essentially
from the final backprojection step.

5.3.3 Interface implementation

The FDK plug-in has been developed on Microsoft Visual C+ 4.0 but the ver-
sion contained in build 12 comes from a 6.0 compile. It implements all the three
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Step

Computational cost

Pre-weigthing
Filtering
Backprojection
TOTAL

N3 mults.

2N3log N 1D FFTs + N3 mults ~ 2N3log N mults.
N* MACs + 2N* mults. ~ 3N* mults.

O(N%)

Table 5.3. Computational costs for the Feldkamp-Davis-Kress method.

methods of Strange Engine’s IBackProjectorRenderer interface: the mandat-
ory IBackProjectProjection and IBackProjectPhantom and also the optional

IBackProjectProjectionCollection.

5.3.4 Reconstruction implementation

The reconstruction code is a no frills implementation of the FDK method. The

three steps have been written directly as they are in the original formula:

e No pre-weight matrix is cached.

e Filtering is performed through FourierFarm. The kernel is a Ram-Lak
filter band-limited to Nyquist frequency (see filter kg, in § 2.4.3).

Interpolation is nearest-neighbour.

5.3.5 User interface

The Figure on the right shows the user
interface of the FDK plug-in. Two
user controls are available. A radio
control selects the interpolation scheme
(currently only nearest-neighbour). A
checkmark control let the user choose to
call the IBackProjectProjection method
or the IBackProjectProjectionCollection
method (which is a bit faster).

Reconstruction region is limited to the unit ball.

Il Backprojectorl

General Optiors | Taiget | Renderer Dptions | >

Filter is computed only once in IBackProjectProjectionCollection.

=10j x|

~ Interpolation quali
& Low (Mearest Neighbiour]

€ High [Bilinear]
€ %z High (Bizubic]

r~ Other

[~ {Frocess Projection Collection ( bit fasterf

Render

HpenEL Preview:
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5.4 The FDK+ plug-in

The FDK plug-in has been thought as pedagogical and in fact is available as
source code. The FDK+ plug-in builds on FDK plug-in experience to achieve
faster reconstruction. Speed-up is essentially gained rewriting the backprojec-
tion implementation.

5.4.1 Interface implementation
The FDK+ plug-in has been developed on Microsoft Visual C+ 6.0. It imple-
ments IBackProjectPhantom and IBackProjectProjectionCollection.

5.4.2 Reconstruction implementation

The pre-weighting and filtering routines are almost identical to the ones in the
FDK plug-in. Higher reconstruction speed is reached using a series of “tricks”
in the crucial final backprojection step:

e angular symmetry,

e axial symmetry,

e axial interpolation skip for nearest-neighbour interpolation,
e fixed point math,

e index Look Up Table (LUT) boost.

The flow diagram of the FDK+ tricks is showed in Figure 5.36. Each one is
presented in the following paragraphs.

Angular symmetry. If the number of projections is even, an obvious azi-
muthal symmetry is fulfilled because given the projection at angle 5 the com-
plementary § + 7 projection always exist in the available projection collection.
In these conditions it is advantageous to carry on backprojection for a projec-
tion and its complementary at the same time. This is because for a certain
reconstruction point (z,y, 2):

s(B+m) = —s(f)
t(B+m) = —t(B)

Computation time for s and ¢ can then cut by half. Please note that while the
saving of a multiplicative factor in the backprojection step does not certainly



9 ACLIVEA Plug-111s limpieimentation
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Figure 5.36. Flow diagram of backprojection tricks used in the FDK+ plug-in.
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Figure 5.37. Angular/axial symmetry and interpolation skip acceleration. Top left:
computation of s and ¢ is done only once for complementary projections. Bottom : a
voxel column projects to a pixel column and two voxels with y = £§ project to 4.

modify the order of the computational effort it can really provide real accel-
eration because it has to be multiplied by a huge N* term. So even a small
factor can produce big time savings.

Axial symmetry. Another symmetry does exist if the number of planes in
the axial direction is even. Given a certain reconstruction point (z, 7, z) the
same calculation of § = y D/(R — s) can be used with sign reversed for point
(x,—7,z). This cuts computation of ¢ by half.

Axial interpolation skip. FDK+ provides nearest-neighbour interpolation
only. Backprojection using this interpolation is particularly suited to be op-
timised. We found that for a given column of voxels (parallel to the axial
direction) it’s possible to skip the backprojection on the row direction because
their projection on the detector plane is a line parallel to the axial direction.
In other words the pixel index in the row direction is the same for all the voxels
of a column so that we can compute row backprojection (and floating-point to
integer conversion) only once. This makes possible a saving of a N, factor in
row backprojection.
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Fixed point math. While in the recent years the floating-point performance
of processors has been increasing dramatically, integer units are still much
faster. This means that in general processing speed for integer numbers will
be much greater than for floating-point numbers. This simple observation
suggested us to investigate usage of fixed-point math in the backprojection
step. Fixed-point math uses integers to represent decimal numbers.

Let Ty, = 1.23456... be a floating-point value. If we multiply T, by a
“big” integer number X (base) and take the integer part of the result, we end
with an integer number that we call a fixed-point version of T, and which will
be denoted as Ty,. We can write:

Typ = int(X x Tpp)

Obviously Ty, can be recovered by dividing its fixed-point version by X. Note
that this introduces an error which depends on the base and on the order
of magnitude of T. This error can be reduced increasing X. However if we
increase the base too much we will produce very big integer numbers which
will not fit processor registers. Usually this means that X as to be such that
Typ fits into 32 bits. Clearly a compromise between small base values (great
errors) and big base values (too many bits) has to be established.

To exploit fixed-point math acceleration all the involved quantities in the
backprojection step have to be converted to fixed-point. In FDK+ all the
geometric quantities, like the scale factors, are computed as floating-point val-
ues and then converted into fixed-point math. The usual value of the base is
X = 8192. In the case in which fixed-point would overflow 32 bits, FDK+
automatically switches to floating-point backprojection. Usage of 64 bits in-
tegers on Intel processors has also been investigated, but was found not to be
any faster than usage of floating-point numbers.

Index LUT boost. If fixed-point acceleration has been turned on, an ad-
ditional small speed-up can be achieved in the backprojection step by pre-
computing voxel indexes and storing these values in a Look Up Table. Index
LUT boost is automatically switched on by FDK+ if memory required for the
LUT is inferior to 512 KB.

5.4.3 Filtering and zero padding

Another FDK+ feature is zero padding. To “zero pad” an array of numbers
means to append to it a certain number of zeros. Zero padding founds ap-
plication in the digital filtering in which arrays are convolved through circular
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convolution. In computed tomography circular convolution can produce re-
construction artefacts like so called “cupping” (see [40]). To avoid this kind
of effects the FDK+ plug-in uses zero padding through our FourierFarm DLL.
Given a projection of N, x N, pixels, the padding produces a 2N, x N, pixels
projection which is Fourier transformed, multiplied row-by-row with a padded
Ram-Lak filter and inverse transformed. Filtering ends by taking the first half
of the filtered 2V, x N, pixels projection.

5.4.4 User interface

iplx
The Figure on the I'lght shows the user General Options | Target| Renderer Options | N
. . i Interpolati uali
interface of the FDK+ plug-in. 7 user -
controls are available. A radio control se- 9 g il
. . € ey High (Bicubiz)
lects the interpolation scheme (currently .
—
only nearest-neighbour). 6 checkmark Ui
. v Use Zero Padding
controls let the user choose filtering op- % Alow Real FFT Lisage
: : : i~ Render trick:
tions (no filtering, zero padding and real- e
: : ¥ Allow Interpolation Skip
tO‘COmpleX FFT) a'nd renderlng trleS ¥ Allaw Avialfbngular Simmetry Boost
(angular and axial symmetry, fixed-point

math and interpolation skip).

Render WpenGL Preview

5.5 The TFDK plug-in

The TFDK plug-in provides an experimental implementation of the oblique-
parallel rebinned FDK method presented in § 3.6.1. This method is based on
a rebinning step in which cone-beam projections are used to compute oblique-
parallel projections and on a modified FDK formula in which the computational
expensive 1/r2 term is removed:

1 f2m D
wz,y,z) = 5/0 /\/D?j—kq?dop(ﬁ’p’ q) k(t —p)dpdp3

Reconstruction from cone-beam projections is therefore a four steps process.
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Step 1 - Rebinning: For each pixel (p, ¢) of the 3 oblique-parallel projection
a cone-beam pixel d.(f3, p, q) has to be found through the rebin relation:

_7 P
ﬁ—ﬁ+arcs1nR

D
=Dt =
D an(arcsin R)

_ [ D%+ p?
T= N R 2

We expect the computational cost of this step to be quite high, because for
each of the N3z x Ny x Ng = N 3 oblique-parallel pixels at least 3 multiplications
and 3 complex math functions have to performed. However rebinning is not
really a reconstruction step but has to be considered a pre-processing step, so
its cost is not that much important.

Step 2 - Pre-weighting:

D
9(6:p,0) = dop(0,2,0) X —rs7==5

This means that for every oblique-parallel projection, each row has to be
weighted by its distance from the X-ray source. In our geometry these factors
are the same for every projection so they can be cached. Note that unlike in
the traditional FDK method the pre-weight factor is not depending on p so the
cost of this step is just N, x Ng = N2

Step 3 - Filtering:
Czop(ﬁapa q) = /9(57]71,(]) k(p_pl) dpl

Is exactly the same as in the FDK method. Expected cost is then 2N3log N.

Step 4 - Backprojection:

2
,u(:z:,y, Z) = %/0 dop(ﬂapa Q) dﬂ

with p =t and ¢ = y D/(R—s). Note that the computationally expensive 1/r?
term is gone and that it’s necessary to perform a multiplication only for the ¢
coordinate. For nearest-neighbour interpolation the overall backprojection cost
is then N* multiplications + 2N* floating-point to integer math conversions.
Some performance gain in comparison to traditional FDK backprojection is
hence expected.
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5.5.1 Interface implementation

The TFDK plug-in has been developed on Microsoft Visual C++ 6.0. It imple-
ments IBackProjectPhantom and IBackProjectProjectionCollection.

5.5.2 Reconstruction implementation

Implementation of TFDK plug-in reconstruction is much similar to the one for
the FDK plug-in. Pre-weighting is not cached. Filtering is performed through
our FourierFarm DLL, filter used is Ram-Lak filter band-limited to Nyquist
frequency. Zero padding is not used. Backprojection code is a straightforward
implementation of oblique-parallel backprojection.

What makes TFDK plug-in apart is the cone-beam to oblique-parallel beam
rebinning step. Implementation follows this scheme:
e a virtual detector:
- is positioned on the origin,
- has dimensions computed scaling cone-beam detector dimensions,
- has the same number of pixels as for the cone-beam detector,

e the number of oblique-parallel projections (Ng) is taken equal to the
number of cone-beam projections,

e cach oblique-parallel projection is computed through azimuthal super-
sampling:

- K,s temporary projections are computed, through the rebin relation
and bilinear interpolation,

- and interpolated to form a single oblique-parallel projection;

e each pixel of the virtual detector is calculated using the cone-beam to
oblique-parallel beam rebinning relation reported above.

Further details are available in [21].
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5.5.3 User interface

=
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trol selects temporary projections inter-
polation (currently only weighted aver-
age). An edit control retrieves the order
of interpolation K.
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5.6 The Alnv plug-in

The Alnv plug-in implements the approximate inverse reconstruction scheme
for cone-beam projections using Dietz’s reconstruction formula and Dietz’s
approximation for the reconstruction kernel:

B _(R—1)2 2 1 ~
Fu) = S [ g e 0 a8

with
dNC(ﬂaP?Q) = //dC<ﬁvp17QI) IN{’Y<p —DP1,49 — CJl) dpl dCI1

and

Eo(pva) = FO) == hS0-0 [ v,(hS0-w)[Sh- w| du—

—S§- 9/L . (hSp - w)sign(Sy - w) dw
6

The meaning of the symbols was explained in § 3.8. This algorithm is of
filtered backprojection kind and basically differs from the FDK method only
in the filtering part which is two-dimensional. Let us note that for each dif-
ferent geometry the reconstruction kernel formula provides a different filter.
Hence before reconstruction we have to compute the appropriate filter. While
caching can of course be used for known cone-beam geometries, in general
reconstruction can be performed in three steps.
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Step 1 - Filter computation Given a certain cone-beam geometry the
appropriate filter can be computed using Dietz’s approximate formula for the
reconstruction kernel:

o (p.a) = FO) == 1S0-0 [ v,(hS0-w)[S) - w|du
_s)- e/gl ., (hSo - w) sign(Sh - w) dw

In our case Sg = (0,0, R) and S}, = (R, 0,0). The cost of this step is expected
to be very high because it needs numerical integration. However the result can
be cached and re-used for reconstruction in the same cone-beam geometry, so
it has to be considered a pre-processing step.

Step 2 - 2D Filtering

de(B,p,q) = //dc(ﬁ,pl,ql)/%(p—pl,q—ql)dpl dqy

Once the reconstruction filter has been computed, two-dimensional filtering
is performed on cone-beam projections. The cost of this step is in theory
Ng x N2 x N2 = N, but can be reduced to 2Ng 2D FFTS + Ng x N, x N,
multiplications. An overall 4N3log N cost is expected (double the expected
cost for 1D filtering).

Step 3 - Backprojection

o (R=1)% pr 1 -
Fi) = [ g e 0 8

This formula is much similar to traditional FDK backprojection formula. For
nearest-neighbour interpolation thus a 2Ng x N, x Ny, x N, = 2N 4 multiplic-
ations + 2N* floating-point to integer math conversions cost is expected.

5.6.1 Interface implementation
The Alnv plug-in has been developed on Microsoft Visual C+ 6.0. It imple-
ments IBackProjectPhantom and IBackProjectProjectionCollection.

5.6.2 Reconstruction implementation

Implementation of Alnv plug-in reconstruction is again much similar to imple-
mentation for the FDK plug-in. Pre-weighting is not cached. 2D Filtering is
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performed through our FourierFarm DLL. Zero padding is not used. Alnv man-
ages reconstruction kernels through on-disk caching. On a rendering request
disk is searched for a suitable kernel file:

e if kernel file is found, it is loaded and used for 2D filtering,

e otherwise the kernel is computed, through optional supersampling, and
saved on disk for later use.

Kernel computation. The Alnv plug-in makes use of the Gaussian mollifier

1 2 2
I(x) = — o IxI7/2v

e5(x) (2772)3/2 €

Closed forms of the 1), and ¥, functions for the Gaussian mollifier were given in

§ 3.8. Alnv computes the reconstruction kernel using straightforward numerical
integration of Dietz’s kernel formula. For each pixel of the kernel:

1. 0, (So-0) and (S; - 0) are computed,
2. the 8 plane is found,
3. the two integrals on 0+ are computed by summing on “small” mesh steps.

To speed-up kernel computation only one quadrant of the reconstruction kernel
is computed. The other three quadrants are obtained by simple mirroring. A
supersampling experimental option is also available. With supersampling each
pixel is obtained as the average of 2F “superpixels” contained in the pixel.
In our tests supersampling proved not to bring any real improvement in the
reconstruction. However it can be used to fasten kernel computation because
a kernel of size X X Y can be obtained, if all other parameters are the same,
by mip-mapping of a supersampled kernel kX x kY. Figure 5.38 shows two
reconstruction kernels computed for v = 173 and v = 172 for the same cone-
beam geometry.

Kernel file format. Kernels are stored as raw binary files. Each pixel of a
kernel is represented by a 32 bit IEEE (Intel endian) value. Every kernel file
name is specified in the format:

“Dim(p) — Dim(q) — N, —» N, — R — (D — R) — ~.ker”

)

Where the separator — is the underscore ‘ _ ’ and where Dim(p) and Dim(q)
are the detector dimensions along axes p and q.
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Figure 5.38. Reconstruction kernels for two + values. Left and black line: v = 172,
Right and red line: v = 173. Plots refers to profile taken on the central horizontal line.
Cone-beam geometry was: Dim(p) = Dim(q) =4, N, = N, =128, R=4, D =8.

5.6.3 User interface

=
The user interface of the Alnv plug-in is eneral Optians | Targel | Renderer General | ]
. . . i~ Interpolation quali
shown in the Figure on the right. Three O oM o]
controls are available. A radio control se- € High Biirea1]
. . 21 weny High [Bicubic]
lects the interpolation scheme (currently —
e
only nearest-neighbour). A drop-list con- [GasonMliier =] [0 | Gannatale
trol selects the mollifier (currently only I™ UseZeoFading
. . . [¥ Use Super Sampling for Filker computation
Gaussian mollifier). An edit control re- [T superFres

trieves the v value. Two checkmark con-
trols selects zero padding (not implemen-
ted yet) and supersampling.

Render MpeniEl Preview:
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a b c Ze Ye Zc a(®) BC) u
0.69 0.92 0.9 0.0 0.0 0.0 0 0 2.0
0.6624 0.88 0.874 0.0 0.0 0.0 0 0 -0.98
0.41 0.21 0.16 -0.22 0.25 0.0 0 72 -0.02
0.31 0.22 0.11 0.22 0.25 0.0 0 =72 -0.02
0.21 0.35 0.25 0.0 0.25 0.35 0 0 0.01
0.046 0.046 0.046 0.0 0.25 0.1 0 0 0.01
0.046 0.02 0.023 -0.08 0.25 -0.605 0 0 0.01
0.046 0.02 0.023 0.06 0.25 -0.605 0 0 0.01
0.056 0.02 0.023 0.06 -0.625 -0.105 0 90 0.01

0.0566 0.160.04 0.0 -0.625 0.1 0 90 0.02
0.046 0.046 0.046 0.0 0.25 -0.1 0 0 0.01
0.023 0.023 0.023 0.0 0.25  -0.605 0 0 0.01

Table 5.4. Definition of the 3D Shepp-Logan phantom. In this phantom 12 ellipsoids
are superimposed. For each ellipsoid: a, b and ¢ are the radii; x., y. and z. are the
centre coords; a and (3 are the rotation angles; p is the signed attenuation coefficient.

5.7 Reconstruction results

All the Strange Engine reconstruction plug-ins have been tested and bench-
marked on different computer platforms. Tests were performed mainly through
an assortment of simulated cone-beam projections and a set of real-world cone-
beam projections acquired from a Varian RT simulator (see [2, 5] for details).

Reconstructions produced by FDK, FDK+, Alnv and (preliminary) TFDK
plug-ins were investigated. In the beginning we also examined if the fixed-
point math rendering trick of FDK+ plug-in does affect the quality of the
reconstructed volume. We found that the FDK+ plug-in, with fixed-point
math turned on, produces reconstructions which are visually identical to the
ones for the FDK plug-in (see Figure 5.39). A maximum error of 1% has been
observed for a fixed-point math base equals to 8192.

5.7.1 Simulated projections

We have examined reconstruction for two test phantoms. A simple ball-shaped
phantom was used for code debug and for first implementation checks. The
3D Shepp-Logan phantom, included in the Strange Engine 1.0a build 12 dis-
tribution, was used for reconstruction evaluation. This phantom is composed
of 10 small and very small, low contrast ellipsoids inside two large ellipsoids.
Its definition, according to [24], is given in Table 5.4.
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Floating-point Fixed-point

2,5

1,5 A/AL
05 J/W

0
Figure 5.39. Comparison of the reconstructions of the 3D Shepp-Logan phantom
section y = —0.258 produced by the FDK+ plug-in with fixed-point and floating-

point backprojection. The reconstruction are visually identical. A profile plot shows
that reconstruction error when fixed-point math is turned on is less than 1%.

—— Fixed-point

—— Floating-point

Some reconstruction results for two of the most significant phantom sections
(y = —0.258 and z = 0.008) are shown in Figure 5.40 and in Figure 5.41. These
reconstructions were obtained using 128 x 128 pixels cone-beam projections
computed by a Strange Engine’s projector. The FDK+ reconstruction is quite
good even for a small (64) number of projections and resolves the tiny three
ellipsoids on the bottom of the section. The Alnv reconstruction (v = 0.005)



9 ACLIVEA Plug-111s limpieimentation

True Alnv

FDK+ TFDK (preliminary)

Y =-0.258

Figure 5.40. Reconstruction of the 3D Shepp-Logan phantom section y = —0.258.
Top left: true section. Top right: Alnv reconstruction for v = 573, 64 projections.
Bottom left: FDK+ reconstruction with zero padding, 64 projections. Bottom right:
preliminary TFDK for 240 rebinned projections and 12" order interpolation.

produces a much smoother (lower resolution) reconstruction with fewer details.
Better resolution can be obtained decreasing the v value. This would probably
require to compute the reconstruction kernel on a finer, e.g. 256 x 256 pixels,
grid. The (preliminary) TFDK plug-in has to make use of a much greater
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True Alnv

FDK+ TFDK (preliminary)

Z=0.008

Figure 5.41. Reconstruction of the 3D Shepp-Logan phantom section z = 0.008.
Top left: true section. Top right: Alnv reconstruction for v = 573, 64 projections.
Bottom left: FDK+ reconstruction with zero padding, 64 projections. Bottom right:
preliminary TFDK for 240 rebinned projections and 12" order interpolation.

(240) number of projections and of a high order of azimuthal interpolation to
achieve a similar reconstruction. For all the plug-ins better reconstructions can
of course be attained using an increased number of projections.



J AClLIVveA pPlug-111s linpieinenitation

Real FDK+ Reconstruction

Figure 5.42. Surface rendering of the 256 voxels reconstruction of a baboon skull
performed by the FDK+ plug-in in about 10 minutes on an Athlon 700 MHz system.
300 cone-beam projections of 512 x 540 pixels were grabbed by Strange Engine from
the video output of a Varian Ximatron RT simulator, pre-processed to correct video
chain distortions and reconstructed.

5.7.2 RT simulator projections

Thanks to the collaboration with the National Institute for Cancer Research of
Genova we were also able to acquire a set of real-world cone-beam projections
from the CCIR video output of the Varian Ximatron RT simulator installed in
the Radiotherapic Oncology service of the Institute.

Projections were acquired and pre-processed through Strange Engine. A
standard set of 300 projections, 512 x 540 pixels, was considered. Initially we
examined simple high contrast objects, like plastic balls, acrylic cylinders and a
metallic frontal pointer. This allowed us to determine the geometric distortions
introduced by video chain faults and to prepare adequate pre-processing. Once
the reconstruction of these simple objects was judged satisfactory we proceeded
to investigate more complex tasks. An example of this is given in Figure 5.42
and in Figure 5.43 (float) in which we compare a real photograph of a baboon
skull (about 20 cm of diameter) with the 3D surface rendering of a reconstruc-
tion performed by the FDK+ plug-in. While noisy the reconstruction shows
quite good spatial resolution and resolves some of the skull’s fine details. We
expect better reconstruction to be easily achievable using smoother filtering.
For further details on our CBCT system for RT simulators we refer to [2, 5].
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Figure 5.43. Surface renderings of the 256% voxels reconstruction of a baboon skull

performed by the FDK+ plug-in in about 10 minutes on an Athlon 700 MHz system.
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Plug-in  Plug-in options Time (msec) Speed scale

FDK single proj. 264 100
FDK multi proj. 253 104
FDK+ all on, ZP 85 168
FDK+ all on, no ZP 73 172
Alnv single proj. 271 97
TFDK multi proj. 238 110

Table 5.5. Comparison of reconstruction performance for the four Strange Engine’s
ActiveX plug-ins on an Athlon 600 MHz system. Time is the time required to backpro-
ject a 128 x 128 projection to a 1283 voxel cube. Single proj. refers to per projection
reconstruction as found in the BackProjectProjection method, multi proj. refers to
BackProjectProjectionCollection reconstruction. ZP stands for zero padding.

5.7.3 Performance comparison

We have tested the plug-ins on different personal computers. Performance
results are compared in Table 5.5 and plotted in Figure 5.44. Detailed per-
formance of our optimised FDK+ plug-in is also reported in Table 5.6 and in
Figure 5.45. Some comments are necessary:

e FDK+ can be up to 80 % faster than FDK.

e TFDK can be up to 10 % faster than FDK. Introducing FDK+ tricks
into the TFDK plug-in could effectively cut by five reconstruction times.

e Alnv does not take an important performance hit by 2D filtering. Alnv
can be made as fast as traditional FDK.

Also let us note how well reconstruction time scales with processor frequency:
an Ahtlon at 600 MHz performs twice as fast as a Celeron at 300 MHz and so
on. This means that performance seems not be influenced by other processor
parameters such as cache as long as there is plenty of memory available.
Performance of the FDK+ plug-in is very aggressively influenced by each
rendering trick. Axial interpolation skip and axial/angular symmetry add a
boost of +20% and +40% respectively. Fixed-point math is however what
improves the reconstruction performance the most: up to +60%. Putting all
together a +80% speed gain can be achieved. When fixed-point math cannot
be used, due to the 32 bit limitation, speed-up is reduced to about a +70%.
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Figure 5.44. Comparison of reconstruction performance for the four Strange Engine’s
ActiveX plug-ins on different personal computers. Top: reconstruction time required
to backproject a single 128 x 128 pixels projection on a 1283 voxel cube. Bottom:
reconstruction time required to reconstruct the baboon skull with the FDK+ plug-in
on a 256 x 30 x 256 voxel cube from 300 projections of 512 x 540 pixels.

5.7.4 Pre-processing performance

To end this discussion let us report some typical pre-processing times required
in the Alnv plug-in for filter computation and in the TFDK plug-in for the
rebinning step:



1UU J9 ACLIVEA Dlug-1ns limpileimentation

350

300 1

250

200

ozrP
EmNO zP

Time (msec)

150

100

All off All on FP math Int. Skip A/A Sym.

Figure 5.45. Impact of rendering “tricks” on the reconstruction time for the FDK+
plug-in. Time is the time required on an Athlon 600 MHz system to backproject a
single 128 x 128 pixels projection on a 1282 voxel cube.

Trick flags Time (msec) Speed scale

ZP FP math Int. Skip Axial/Ang. Sym.
328 100
v 330 99
v v 261 121
v v 135 159
v v v v 85 174
v v v 73 178

Table 5.6. FDK+ plug-in reconstruction performance for an Athlon 600 Mhz system.
Time is the time required to backproject a 128 x 128 projection to a 1283 voxel cube.
Flags refer to: usage of zero-padding for Fourier filtering, fixed-point math, axial
interpolation skip and axial/angular symmetry.

Filter computation has been optimised as described in Alnv documenta-
tion. As an example the calculation of a 128 x 128 pixels reconstruction kernel
takes just 4 seconds on a Athlon 600 MHz system.

TFDK rebinning has not been optimised yet. Rebinning of 64 projections
of 128 x 128 pixels with 12*" order interpolation takes about 1 minute on a
Athlon 600 MHz system.



Conclusions

This thesis describes an original software toolkit dedicated to cone-beam com-
puted tomography, a new fast volumetric tomography technique which is go-
ing to be introduced in next generation medical scanners in a few years. We
have motivated cone-beam computed tomography and presented the technical
aspects related to scanner hardware and 3D cone-beam reconstruction. This
analysis pointed out how difficult to implement and optimise 3D cone-beam re-
construction algorithms can be. New advanced software tools are hence needed
to make algorithm research and development more efficient.

Our Strange Engine software visual toolkit provides a comfortable and
user friendly environment for research and development of cone-beam com-
puted tomography reconstruction algorithms. Strange Engine offers, through
an easy to use graphical user interface, a series of services for simulation, stor-
age and benchmarking of user-written reconstruction algorithms encapsulated
into ActiveX components. We have described Strange Engine object-oriented
architecture and have explained how it can improve the testing of custom re-
construction code. We have also examined four ActiveX components we have
written and compared their performance for both simulated and real-world
data on different personal computers. Our results have shown that cone-beam
computed tomography reconstruction is indeed feasible even on common com-
puter platforms.
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