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Two-dimensional periodic structures in a nonlinear
resonator
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The formation of a periodic transverse structure in the light field in a resonator consisting of mirrors and a thin layer
of a nonlinear medium is considered. It is shown that, when the resonator length is a multiple of one half of the Tal-
bot length, there exist periodic structures that are self-imaged under propagation through both the empty part of
the resonator and the nonlinear medium. The influence of aperture losses is estimated. It is suggested that this
type of a resonator may be useful for diode-array-pumped solid-state lasers.

1. INTRODUCTION

Transverse effects in nonlinear-optical devices are now be-
ing widely investigated. Recently experiments have dem-
onstrated synchronization of a laser array by means of the
Talbot effect,' spatial turbulence and self-organization in a
nonlinear-optical system with two-dimensional feedback,2

and transverse mode locking in a CO2 laser.3 The most
interesting theoretically, in my opinion, is the development
of analytical approaches; their importance can not be over-
estimated because they provide ways to analyze experimen-
tal situations and to test numerical codes.

A wide spectrum of approaches is being discussed. One
approach considers the nonlinear coupling of the different
transverse modes of an empty resonator (Gauss-Hermite or
Gauss-Laguerre modes) and considers the patterns that
arise as a result of transverse mode locking. 4 5 Another
approach relies on the possibility of solving exactly some
envelope equations, by means of inverse scattering transfor-
mation within a sufficiently long nonlinear medium, and
adjusting their solutions at the boundaries and reflecting
surfaces. This method describes the transverse effects in a
passive bistable nonlinear interferometer as the formation of
the solitary waves of the nonlinear Schrodinger equation.6

A third approach reduces the nonlinear diffusion equation
that describes a semiconductor bistable interferometer7 to a
kicked dynamics problem. The input laser field is approxi-
mated by a set of equidistant spikes, so, for one spatial
dimension, the integration becomes straightforward and the
values of a bistable parameter in nearest-neighbor pixels are
connected by a two-dimensional area-preserving map. A
fourth approach lies in the approximation of the nonlinear
medium as a thin layer, within which the diffraction is negli-
gible. The other part of the resonator is considered to be
empty, and the wave field there is transformed by a Fresnel-
Kirchhoff integral. As a result, the dynamics of the trans-
verse (and temporal) structure is computed by successively
iterating a nonlinear local map (one- or two-dimensional)
and a linear nonlocal map (generally speaking, of an infinite
number of dimensions).8 Historically, this method was de-
veloped in microwave radiophysics for a traveling-wave tube
generator with delayed feedback (see Ref. 9 and references

therein). Recently this method has been rediscovered'0 and
has been applied to the passive bistable nonlinear interfer-
ometer, for which the occurrence of transverse period dou-
blings and switching waves was predicted. A nonlinear res-
onator with a phase-conjugate mirror also has been modeled
by this method."

In Ref. 12 it was assumed that a wide-aperture (large
Fresnel number), active optical resonator with a thin active
element and nonlinear losses (due to generation of optical
harmonics or stimulated light scattering) could be approxi-
mately described by a one-dimensional map. This provides
a possibility of observing period-doubling behavior, which
results in the formation of regular and chaotic transverse
structures. It was assumed that such a description is valid
only if the effective Fresnel number ka 2/27rnLR is sufficient-
ly high [k is the wave number, LR is the resonator length, n is
the number of passes through the resonator (iterates of the
map), a is the effective size of the transverse inhomogeneity
of the wave field]. Fortunately, this restriction is not neces-
sary for periodic transverse structures. Our goal is to show
that when the resonator length is a multiple of one half of the
Talbot length, the phenomenon of self-imaging of the peri-
odic fields will still take place in the presence of a thin layer
of an arbitrary nonlinear medium. The paper is organized
as follows: In Section 2 the essential features of self-imag-
ing are described, an exact expression for Talbot beam dif-
fraction at a finite aperture is obtained, and its propagation
through the thin nonlinear slice is considered. In Section 3
the problem of the efficiency of diode-array-pumped lasers
is briefly discussed, and afterward a Talbot cavity with a
thin nonlinear amplifying slice inside is proposed. In Sec-
tion 4 the results are summarized.

2. TALBOT RESONATORS WITH A THIN
NONLINEAR LAYER

In 1836 Talbot 3 viewed with a magnifying lens white light
passing through an equidistant grating made by Fraunhofer.
Talbot was intrigued by the fact that, when the focus of the
lens was shifted gradually away from the grating, distinct
color bands arose parallel to the lines of the grating. For a
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given position of the focus, these bands were of two colors

that were always complementary, i.e., green and red or blue
and yellow. When the lens was gradually shifted, each
member of these pairs of complementary colors replaced the
other periodically. He observed also that these bands be-
came more distinct when the source size was decreased
(white light became more spatially coherent). Sometime
later Rayleigh'3 repeated Talbot's experiments and gave the
correct explanation of this effect. His arguments will be
illustrated below from a modern viewpoint.

Consider a two-dimensional grating at z = 0 that is formed
by a set of a mutually coherent Gaussian beams emitted
normally from the nodes of the rectangular grid (Fig. 1).
After passing the so-called Fresnel length Lfr = ka2/4ir in the
positive z direction, the transverse structure of such a wave
pattern is highly distorted (a, introduced above, is now the
effective width of the single Gaussian beam). At z = Lfr the
overlapping of the beams becomes significant (because the
period of the grating b is of the order of a), and strong
interference occurs. The transverse structure in this plane
is certainly regular and periodic, but it has no similarity to
the field in the plane z = 0 (destructive interference). It
seems obvious that the interference will become construc-
tive when the optical path difference between different Huy-
gens waves emitted by the nodes of a grating in the plane z =
0 to a given node in the plane z is a multiple of a wavelength
X. Really, this gives the distance z = kb2 /47r, where all
partial waves are in phase. In this plane a perfect rectangu-
lar grid is formed by diffraction, but its period is one half
that of the initial field.'4 The ideal reproduction of the
initial field is obtained in the planes z = Lt = ltkb

2
/7r, where It

is an integer (see Fig. 1), although the optical-path differ-
ence is not a multiple of X for any pair of Huygens waves.
This formula obtained by Rayleigh for monochromatic light
explains the periodicity and colors of the Talbot bands,
because the period of reproduction Lt is inversely propor-
tional to the wavelength.

Such behavior of a Talbot beam is quite different from the
behavior of a high-order Hermite-Gaussian beam (TEMmn
mode). Although the transverse structure of a TEMmn
mode also takes the form of a rectangular grid, it is nonperio-
dic, and its flow in the z direction is monotonic rather than
oscillatory.'5 Another free-space propagation mode is a
Bessel beam, whose nondiffracting behavior resembles that
of a Talbot beam. A Bessel beam also exhibits oscillations
of its transverse structure along the z axis and requires an
infinite aperture for unpertubed propagation.'6 The Talbot
and Bessel beams are both examples of a unique phenome-
non of self-imaging, which is discussed in Ref. 17.

Now Rayleigh's formula will be supported by evaluation of
an exact Kirchhoff-Fresnel integral that includes finite-ap-
erture effects. In the paraxial approximation, two-dimen-
sional diffraction of the field E(x, y, z) is described by

E(x, y, z) = ik exp(ikz)
2irz

X jj|~ exp{-- [(x' - X)2 + (y, - y)2]

X D(x', y')E(x', y', z = 0)dx'dy', (1)
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Fig. 1. Transverse profile destruction at z = Lfr and its reconstruc-
tion at z = Lt.

where z is the longitudinal distance, D(x, y) describes the
cutoff of E(x, y, z = 0) by the aperture, which could be a
steplike function (for a pinhole) or a smooth one (as in the
present paper), and E(x, y, z = 0) is the input laser field in
the plane z = 0, which is assumed to be spatially periodic.
The last-named expression could be expanded in a Fourier
series of the form

E(x, y, z = 0) = A Amn exp[i27r(nx/bx + mylb,)], (2)

where bx and by are the periods on the x and y axes, respec-
tively. The aperture function is assumed to have a Gaussian
form: D(x, y) = exp(-x2/2dx2 - y2/2dy2). Therefore inte-
gral (1), when Eq. (2) is substituted, is easily calculated
(because all of the components of the sum are of the Gauss-
ian type):

A. Yu. Okulov



Vol. 7, No. 6/June 1990/J. Opt. Soc. Am. B 1047

E(x, y, z) = exp(ikz) A ., exp[i27r(! + MAI

X expp_ [ (2bn -X)2 (2b m - y)2

L (1 + iz/kdx 2)2dx' (1 + iz/kdy2)2dy 2 k

f(E) = _E + E2 + E3 +....

Thus the periodic field, transformed within the nonlinear
layer, will be

f(E) = a E Amn exP[i27r( +x b )]
jZ -1/2+ kdI . (3)

To understand this expression, consider first the infinite
aperture limit dx = dy = :

E(x, y, z) = exp(ikz) Amn exp[i2r( x + Y

X exp[i2 7r ( + 2)] (4)

This equation shows that if b, = Iby = b and 7rz/kb2
= It

(where and It are integers), then the argument of the second
exponent under the sum in Eq. (4) is a multiple of i27r.
Therefore the field in the planes z = Lt = Itkb2/br = 21tb2/X
reproduces exactly the field in the plane z = 0 (Talbot effect;
see Fig. 1). Note that this effect is mathematically due,
first, to the infinite limits of integration in Eq. (1) and,
second, to D(x, y) = constant. Hence it is physically due to
the infinite aperture. The finite aperture perturbations of
the self-imaging are described by Eq. (3), which for a circular
aperture (dx = dy = d) takes the form

E(x, y, z) = exp(ikz) A n exp[i27r( b + my)]

(2btn - X)2 + (2blltm - y)2

2d2 (1 + iltb 2 /7rd 2) J
X [1 + iltb 2 /7rd 2 j'1. (5)

Here the denominator and the second exponent under the
sum are responsible for perturbations. The denominators
of Eq. (3) contain an expression kd2/z that is equal to the
Fresnel number of the whole aperture rather than of a single
inhomogeneity of the transverse structure. When this num-
ber increases to a value close to unity, the self-imaged Talbot
beam crashes. Similar behavior was observed with Bessel
beams,16 in which the unique multiple (1 + z/kd2) deter-
mines the decay of the transverse structure. In this paper
consideration is limited to the case of large Fresnel numbers
when bid = 0.1. Thus the denominator has the value 1 + i X
0.01, and the aperture losses are relatively small.

In this approximation it is possible to neglect the finite-
aperture effects and to consider the transformation of the
periodic wave field in a thin nonlinear medium. The wave
propagation through this medium is described by iterates of
the local nonlinear map 8:

En+ (x, y, z) = f[x, y, En(x, y, z)]. (6)

An arbitrary nonlinear function f = GE[1 - tanh(KLGE)]
(Ref. 12) or f = E exp[ikL(no + n 2lEn 2)] (Ref. 10) can be
expanded in a power series of the form

+ / E AmnAts exP[i2r(bx by bx by (7)

We see that the local nonlinear transformation increases the
number of spatial harmonics, whereas the periodicity of E(x,
y) under the above transformation is maintained. This is
true if the coefficients ce, /3 are x, y independent or if they are
spatially inhomogeneous with the same period as E(x, y).
(In Section 3 a practical, interesting example of such an
inhomogeneous nonlinear medium is considered.) Hence
the field f [E(x, y)] propagates once more through the empty
part of the resonator and is self-imaged after one round trip.
This fact was not mentioned in earlier publications18 in
which a set of nonlinear amplifying CO2 tubes was analyzed
with an assumption of constant distribution of a field in each
tube. In the present paper it is shown that this restriction
can be removed, at least for a thin, nonlinear layer.

3. SPATIALLY PERIODIC END-PUMPED
SOLID-STATE LASERS

Diode-pumped solid-state lasers have demonstrated favor-
able performance characteristics. For example, an end-
pumped Nd:YAG microlaser exhibits excellent optical and
electrical efficiency that is due to perfect coincidence of the
population-inversion distribution with the TEMoo mode.19
Side pumping by diode arrays increases the total emitted
power,20 but it decreases the overall efficiency, and, what is
particularily important, it tends to destroy TEMoo output.
The reason lies in a significant mismatch between the popu-
lation inversion and the resonator field. In my opinion, a
possible way to match the profile of the inversion to the
resonator mode shape would be to use a spatially periodic
diode-array and end pumping (Fig. 2). The thin, nonlinear-
medium layer (Nd:YAG, tetraphosphate lithium neodymi-
um16) should have a spatially periodic distribution of inver-
sion with a period, for example, b = 200 ,um, Lt = 8 cm, X = 1
,um, an effective size of inhomogeneity a = 50 ,um, and a size
of aperture d = 2000 ,im. Then b2/d 2

= 0.01 [see Eq. (5)],
and diffraction losses are relatively small. Hence it is ade-
quate to use a rough approximation, as if diffraction were
absent12 at the initial stage of the transverse structure for-
mation. In Eq. (6) f corresponds to saturable gain that has
the transverse profile of superimposed Gaussian spikes (Fig.
2).

An expression for f is deduced in the following way. Con-
sider the thin layer of an amplifying medium near z = 0.
Wave E_(x, y, z) penetrates the Nd layer through the antire-
flection-coated right-hand surface and is almost totally re-
flected at the left-hand surface, creating the wave E+(x, y, z)
(Fig. 3a). The nonresonant absorption - does not affect the
propagation because of its low value in solid-state amplifi-

\n2 m2
1/[\ + iz ) (1

X exp[-
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Fig. 2. Configuration of a resonator for a diode-pumped solid-state
laser: LDA, laser diode array; Nd:YAG, active medium.

ers: exp(-'yz) = exp(-0.OOlz). Since diffraction is as-
sumed to be negligible in the active layer, the following
equations for intensities F(z) = E+2 and B(z) = E_2 are valid:

dF oNF
dz 1 + oT 1(F + B)'

dB o NB
dz 1 + o-T 1(F + B)'

(8)

where a is the cross section for stimulated emission, N is
initial inversion, and T, is the inversion lifetime.21 The
boundary conditions are (see Fig. 3a) F(O) = RbB(0), F(L) =
F, B(L) = B. The first integral of this system is BF = C =
constant. After substitution, the variables are easily sepa-
rated. The result is

F exp[oT1(F - C/F)]

= F(0)expjaTj[F(0) - C/F(O)] + cNLj,

B exp[aT 1(B - C/B)]

= B(0)exp{ITr[B(0) - C/B(O)J - NLI,

c

Fig. 3. a, Boundary conditions for calculation of counterpropagat-
ing fields E+(z), E_(z). Rb and Ro are the reflectances of the left and
the output mirrors, respectively. b, Output intensity F versus 1,
input intensity B; 2, its asymptote F = B + NL/'111. c, Output field
E+ versus 1, input field E_; 2, its asymptote E+ = E_(1 + NL/
TIE 2)1/2.
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Fig. 4. Evolution of transverse structure in the resonator of microlaser (Fig. 2) calculated by successive iterations of the map [Eq. (10)] with a
spatially periodic inversion profile (central 4 X 4 spikes).

where N is assumed to be z independent [otherwise o-NL
should be replaced on f L oN(z)dz]. The simplest solution
obtained with the help of boundary conditions (when Rb = 1)
is equivalent to Eq. (7) of Ref. 12:

F exp(2orT1 F) = B exp(2oTIB + 2NL). (9)

The solution of Eq. (9) is plotted in Fig. 3b. In contrast to
the traveling-wave solution, there is a multiple 2 in the
exponents (owing to simultaneous action of E+2 and E_2 on
the inversion). This equation connects the intensities of the
amplified (F) and incident (B) waves. The equation for E+
and E_ is trivially obtained from Eq. (9), and its solution is
plotted in Fig. 3c (this curve was obtained for an absorbing
medium in Ref. 22). Now take into account that the forward
E+ and backward E_ waves are connected at the output
mirror by the boundary condition E_ = Rol2E+.

The final step of this consideration is based on the follow-
ing assumptions: (i) E+(x, y) is spatially periodic, (ii) Ro is x,
y independent, and (iii) the optical length of the resonator is
one half of the Talbot length. Consequently, free-space
propagation leads to the imaging of the amplified field E+
(z = L, x, y) into the incident field E_(z = L, x, y)R0

1/2.
Denoting En(x, y) = E_(z = L, x, y), it is easy to obtain the
following map, which connects amplitudes E,(x, y) from the
nth pass to the (n + 1)th pass:

(En+1 /R 0
1 12 )exp(oTEn+ 1

2/RO) = En exp(oTEn 2 + aNL).

(10)

Nonlinear propagation of the light field E(x, y) inside the
nonlinear resonator (Figs. 2 and 3a) had been modeled by
iterates of the map [Eq. (10)] with a spatially periodic distri-
bution of the inversion N = N(x, y) (in the form of a rectan-
gular grid; see Fig. 2). The initial conditions for En
(x, y) were chosen in the form of a weak plane wave and a
weak coherent ripple. The result of the iterates is presented
in Fig. 4. The small-signal gain at the maxima of inversion
was equal to 2, the highly saturated gain was equal to 1.2, and
the amount of the total nonresonant losses per pass (mainly
output mirror reflectance Ro) was 0.8. Although the model
[Eq. (10)] is local, i.e., "two infinitesimally close points on
the transverse structure may undergo uncorrelated temporal
motions,"23 it describes a physically reasonable distribution
of the wave field. The latter is smooth owing to the smooth
distribution of gain.

4. CONCLUSION

In the present paper a simple theoretical model, describing
the formation of the periodic transverse modes, has being
developed [Eq. (10)]. The main result is that in the infinite-
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aperture limit the nonlinear evolution of the transverse
structure of a periodic diffracting field could be computed
by iterates of a one-dimensional map. As was shown, there
exist certain periodic transverse modes with a period deter-
mined by the distribution of the inversion. These modes in
some region of the parameters are independent of the initial
conditions. The above model gives an example of a system
in which spatially coherent, temporally chaotic solutions are
possible (for another example see Ref. 6).

The possible application discussed above is, in fact, a
combination of earlier research on solid-state lasers with
spatially periodic output mirror reflectance,24 a radiating
mirror-type semiconductor laser,25 and synchronization of a
laser array by means of the Talbot effect.1 The idea of using
spatially periodic end pumping could help to improve the
efficiency of diode-array pumping. Recent experiments on
phase locking of diode arrays'4 have revealed some peculari-
ties of Talbot mode discrimination. An analysis of these
effects, along with computer simulations, will be published
elsewhere.
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