
Balancing Performance, Energy, and Quality in Pervasive Computing

Jason Flinn†‡, SoYoung Park†, and M. Satyanarayanan†‡

†Carnegie Mellon University, ‡Intel Research Pittsburgh

Abstract

We describe Spectra, a remote execution system for battery-
powered clients used in pervasive computing. Spectra enables
applications to combine the mobility of small devices with the
greater processing power of static compute servers. Spectra is
self-tuning: it monitors both application resource usage and the
availability of resources in the environment, and dynamically de-
termines how and where to execute application components. In
making this determination, Spectra balances the competing goals
of performance, energy conservation, and application quality. We
have validated Spectra’s approach on the Compaq Itsy v2.2 and
IBM ThinkPad 560X using a speech recognizer, a document prepa-
ration system, and a natural language translator. Our results con-
firm that Spectra almost always selects the best execution plan,
and that its few suboptimal choices are very close to optimal.

1 Introduction

Creating applications for pervasive computing environ-
ments is a challenging task. Such environments are sat-
urated with computing and communication capability, yet
need to be gracefully integrated with human users [17]. The
need for graceful integration leads to smaller, less obtrusive
computing devices. Since people are naturally mobile, these
devices are often battery powered, and their size limits the
amount of energy that can be stored. Device size also con-
strains compute power and storage capacity. Remote execu-
tion using wireless networks to access compute servers fills
a natural role in pervasive computing; it allows applications
to combine the mobility of small devices with the greater
processing power of large servers in the fixed infrastructure.

We envision a future in which support for mobile
clients varies widely with location. Some well-conditioned
environments may provide plentiful wireless bandwidth
and powerful compute servers. Other locations may be
resource-impoverished, with poor connectivity and little in-
frastructure support. Pervasive applications must thus adapt
to a changing environment. When little infrastructure exists,
they must execute most functionality on the mobile client.
However, when the environment is well-conditioned, they
should discover and use the resources offered.

We also envision a broad range of resource-hungry appli-
cations such as speech recognition, natural language trans-
lation, and augmented reality becoming important in perva-

sive computing. These applications may be executed on a
wide range of mobile hardware, from powerful laptops to
wristwatch-sized devices. Variation in the environment and
in client capability makes it quite difficult for developers
to statically determine which components of an application
should execute remotely. Instead, we propose that location
decisions be made dynamically when applications execute.

In this paper, we describe Spectra, a remote execution
system that simplifies the task of developing applications
for pervasive computing. Applications statically specify
which code components might possibly profit from remote
execution. When applications execute, Spectra continu-
ally monitors resource supply and demand to advise them
how and where they should execute the specified compo-
nents. Spectra’s advice lets applications adapt to changes
in resource availability without requiring them to explicitly
specify their resource requirements. Instead, Spectra mon-
itors application behavior, models resource usage, and pre-
dicts future resource needs.

2 Design considerations

2.1 Competing goals for functionality placement

In pervasive computing environments, a remote execu-
tion system must reconcile multiple, possibly contradictory
goals. Performance is not the sole consideration; it is also
vital to conserve energy so as to prolong battery lifetime.
Quality must also be considered explicitly, since a resource-
poor mobile device may only be able to provide a low fi-
delity version of a data object or computation [14], while a
stationary machine may be able to generate a better version.
These goals will often conflict—for example, executing a
code component on a remote server might reduce client en-
ergy usage at the cost of increasing execution time.

Spectra explicitly considers these competing goals when
advising applications where to place functionality. For each
alternative placement, it predicts application performance,
energy use, and quality. It then balances competing goals
when selecting from the alternatives—for example, it would
prefer an alternative that offers significant performance im-
provement at the cost of slightly increased energy use.

2.2 Variation in resource availability

Pervasive computing is characterized by tremendous
variation in resource availability. Network characteristics

1

and remote infrastructure available for hosting computation
vary with location. File cache state and CPU load on lo-
cal and remote machines significantly impact application
performance. Application energy consumption varies de-
pending upon the specific platform on which an application
executes. Variation in any resource can significantly change
the best placement of functionality. Thus, a remote execu-
tion system must continually monitor resource availability
and adapt to changes in the environment.

Spectra includes a set of resource monitors that measure
local and remote resource availability. Each monitor mea-
sures a single resource or set of related resources—for ex-
ample, the network monitor reports available bandwidth and
latency to remote servers. The monitors are implemented in
a modular framework, which enables us to easily add mea-
surement capability for new resources.

2.3 Self-tuning operation

To predict the time and energy needed to execute a code
component, the remote execution system must match re-
source availability with the resource demands of the com-
ponent. For example, the time needed to transfer data over
a network can be roughly predicted by dividing the amount
of data that the application will transfer by the available net-
work bandwidth. Thus, a remote execution system must
have a model of application resource demand in order to
make correct placement decisions.

One approach would be to require applications to explic-
itly specify resource requirements. However, this seems
infeasible for most applications. Many resources are im-
portant in pervasive computing, and an application would
have to specify models for each. Also, models for some re-
sources are platform specific—application energy usage, for
instance, depends upon hardware characteristics. The bur-
den of specifying such models seems too high—we believe
that few developers would be willing to invest the effort.

Spectra takes an alternate approach, which we call self-
tuning. It observes applications execute, measures their re-
source usage, and generates models of resource consump-
tion. It then uses the models to predict future demand.

2.4 Modification to application source code

Systems such as Coign [7] support remote execution
without source-code modification by exploiting externally
visible object interfaces. This approach is attractive be-
cause it supports closed-source applications and requires
little development effort. However, we believe that a little
application-specific knowledge can go a long way.

Spectra asks developers to specify possible methods of
partitioning applications. Often there will be only a few use-
ful partitions. While developers will often have an intuitive
notion of which partitions are useful, it may prove difficult
to automatically extract these partitions from source code.

First, the best partitions may not occur along object bound-
aries. Second, since the number of potential partitions is
exponential with the number of objects, selecting partitions
for large applications may be computationally intractable.
Finally, it will be impossible to support legacy applications
which do not provide externally visible object interfaces.

Application-specific knowledge improves models of re-
source demand. Often resource usage will depend upon
a few application-specific parameters—for example, the
amount of CPU cycles required to translate a sentence from
Spanish to English often depends upon the length of the sen-
tence to be translated. Spectra allows applications to spec-
ify the important parameters that affect the complexity of
the operations they perform. Spectra derives more accurate
predictions by anticipating the effect of these parameters.

We have tried to situate Spectra in a sweet spot of the
design space. In exchange for a minimal amount of ap-
plication modification, Spectra provides significantly better
advice than could be provided without modification.

2.5 Granularity of remote execution

Fine-grained remote execution yields increased flexibil-
ity since it creates more opportunities to locate functionality
on remote servers. However, coarse-grained remote execu-
tion may lead to better performance by amortizing overhead
over a larger unit of execution.

Since Spectra is designed to make intelligent place-
ment decisions that balance competing goals and adjust to
changes in resource availability, its decision overhead is
non-negligible. Therefore, Spectra targets applications that
perform relatively coarse-grained operations—currently a
second or more in duration. Examples of such applications
include speech recognition and language translation. Appli-
cations that perform shorter operations, i.e. a few millisec-
onds in duration, will not benefit from Spectra since system
overhead will negate the performance and energy benefits
achieved by making correct location decisions.

2.6 Support for remote file access

Many of Spectra’s target applications access a large
amount of file data. For remote execution to yield correct
results, file operations performed on remote servers must
produce the same results that would be produced if the op-
eration were performed on the client. Systems such as But-
ler [13] solve this problem by using a distributed file sys-
tem that presents a consistent file system image across all
machines on which functionality may be executed.

Unfortunately, file consistency comes at significant cost
in pervasive computing environments. Network connec-
tions to file servers often exhibit high latency, low band-
width, or intermittent connectivity. When an application
modifies files, it will block for long periods of time wait-
ing for data to be reintegrated to file servers.

2

���������
	���� ���
����
���	�� Describes an application operation.� �����
� ��������
���	�� ��� Signals operation start.���
�������
 �
� Makes a RPC to the local Spectra server.��� ��������	�� �
� Makes a RPC to a remote Spectra server.����� ��������
��
	�� ��� Signals operation end.

Figure 1. Spectra API

This performance consideration led us to adopt the Coda
file system [9]. Coda provides strong consistency when
network conditions are good. Under low bandwidth con-
ditions, Coda buffers file modifications on the client to im-
prove performance. Buffered modifications are reintegrated
to file servers in the background. Until a modification is
reintegrated, it is not visible on other machines.

Spectra interacts with Coda to provide the requisite con-
sistency for remote execution. Before it executes function-
ality remotely, Spectra predicts which files will be accessed
by the application. If any such files have buffered modi-
fications on the client, Spectra triggers the reintegration of
modified file data to servers before executing the operation.

3 Implementation

Spectra consists of a client, which executes on the same
machine as the application, and a server, which executes
on machines that may perform work on behalf of clients.
It is common for a single machine to run both client and
server. The client is tightly integrated with Odyssey [14],
a platform for applications that vary fidelity. Fidelity is an
application-specific metric of quality. For example, fideli-
ties for a video player are lossy compression and frame rate;
for a speech recognizer, vocabulary size is a fidelity.

3.1 Application interface

Figure 1 shows the Spectra API. An application statically
identifies operations: code components that may benefit
from remote execution. When the application starts execut-
ing, it registers its operations using ����� �"!�#���� $%��&'�'()��#"* .
For each operation, it specifies a set of possible execution
plans, which represent different methods of partitioning
functionality between local and remote machines. The ap-
plication also specifies the possible fidelities at which the
operation may be performed, as well as input parameters,
variables that significantly affect operation complexity.

For example, we have modified a speech recognition ap-
plication to use Spectra. It has one operation, recognition
of a spoken utterance, with three possible execution plans:
local, remote, and hybrid. The local plan performs compu-
tation entirely on the client, the remote performs computa-
tion entirely on a server, and the hybrid plan represents a
specific split of computation between local and remote ma-
chines. The operation has one fidelity, the number of words

������+�������,��
�-��	/.10��������3240�������+"5'6
7�8���
��9.;:�5=<

������+�������,�����	����>.10��
��	������%240����-��� 2?����	�8@2
0��A������	��3240��
��
�����5�6

���CB=����,�����������	������>.D�
������	��%2E�
��
����@2
0���F�	�����	��%240���F�	�
�����5�6

������+�������,�����	����>.G�������H24I 24��F�	�����	��%2J��F�	�
�����5�6K

Figure 2. Sample service implementation

in the vocabulary used for recognition, and one input pa-
rameter, the length of the utterance to be recognized.

Applications call L)�-�%��M $%��&'�'()��#"* N�O to determine
how and where each operation should execute. The applica-
tion specifies the values of any input parameters, for exam-
ple, the length of the utterance to be recognized. Odyssey
chooses the fidelity at which the operation will execute, and
Spectra chooses which execution plan will be used. When
the execution plan involves a remote server, Spectra also
chooses a particular server to use.

Applications use the &'N ("N�P�Q'(N�O and &�N ����R N-#'� N�O
calls to make remote procedure calls (RPCs) to local and
remote Spectra servers. While applications could invoke re-
mote functionality directly, these calls let Spectra measure
the amount of local and remote resources used by the oper-
ation. Additionally, Spectra acts as a central repository for
information about server status.

Operations often consist of multiple RPCs. For ex-
ample, the speech hybrid plan uses both &'N ("N)P�Q'(N�O
and &'N ����R N-#�� N�O calls to perform the operation. Ap-
plications signal the end of operation execution by calling
��M'& $%��&'��()��#�* N�O . Marking the start and end of operation
execution allows Spectra to precisely measure resource use.

3.2 Invoking remote functionality

Spectra clients maintain a database of servers willing to
host computation. The database stores snapshots of recent
status (availability, CPU load, file cache state, etc.). Cur-
rently, potential servers are statically specified in a config-
uration file. We have designed Spectra so that it could also
use a service discovery protocol [1, 20] to dynamically lo-
cate additional servers, but this feature is not yet supported.

Application code components executed on Spectra
servers are referred to as services. Each service executes
as a separate process to protect against malicious or faulty
application code. Spectra provides an application library
that simplifies service implementation. Figure 2 shows the
main loop of a simple service. The !��-��S �"P�� ��MH��# function
parses the command line and extracts Spectra-specific infor-
mation. In the main loop, !��-��S%�"P�� ���-#�N�O blocks until a re-
quest is received. The function returns the type of operation
requested, a unique identifier associated with the request,

3

and application-specific input data. The sample service has
only one request type—services that handle more than one
type of request multiplex on N�O�#�*"O)� . When processing is
complete, the service calls !�����S �"P�� ���-#�N�O , passing in the
request identifier and application-specific output data.

3.3 Resource monitors

Spectra measures supply and demand for many different
resources in order to make correct location decisions. Its
measurement functionality is implemented as a set of re-
source monitors, code components that measure a single
resource or a set of related resources. The monitors are
contained within a modular framework shared by Spectra
clients and servers. The modular design makes it easy to
add new measurement capability. Further, it allows us to
implement several different methods of measuring a partic-
ular resource and choose the appropriate method for each
execution environment.

Currently, Spectra has six types of monitors: CPU, net-
work, battery, file cache state, remote CPU, and remote file
cache state. Each monitor provides a common set of func-
tions. Prior to executing an operation, Spectra generates a
resource snapshot that provides a consistent view of the lo-
cal and remote resources available for execution. Spectra
first generates a list of servers that could possibly execute
some portion of the operation. For each server in the list,
Spectra iterates through the set of resource monitors, calling
O����"&%�"P�# Q-S'Q3��(. Each monitor returns predicted resource
availability—for example, the network monitor returns pre-
dicted network bandwidth and latency for communicating
with the specified server. The predictions in the snapshot
are used to decide how and where to execute the operation.

During operation execution, the resource monitors ob-
serve application resource usage. Before executing an op-
eration, Spectra calls !�#'Q-��# N�O , which alerts each monitor
to begin observation. After the operation completes, Spec-
tra calls !�#�N�O N�O , which terminates measurement and re-
turns the amount of resources consumed. The Q"&"& � !�Q-�'�
function accounts for resource usage on Spectra servers—
the monitor adds reported resource consumption to the total
resource usage of the operation.

Spectra logs resource usage and creates models that pre-
dict future demand. Thus, the more an operation is exe-
cuted, the more accurately its resource usage is predicted.

3.3.1 The CPU monitor

The CPU monitor predicts availability using a smoothed
estimate of recent load. The monitor first determines the
amount of competition for the CPU by measuring the per-
centage of cycles recently used by other processes. It then
calculates the percentage of cycles available for operation
execution by assuming that background load will remain
unchanged and that the operation will get a fair share of

the CPU. It multiplies this value by the processor speed
to predict the cycles per second the operation will receive.
Narayanan et al. [12] describe this algorithm in more detail.

The monitor observes CPU usage by associating an oper-
ation with the identifier of the executing process. This dis-
tinguishes the CPU usage of concurrent operations. Before
and after execution, the monitor observes CPU statistics for
the executing process and its children using Linux’s

� O'��N)P
file system. It returns total cycles used by the operation.

3.3.2 The network monitor

The network monitor predicts bandwidth and latency us-
ing an algorithm first developed for Odyssey [14]. Predic-
tions are based upon passive observation of communication.
The RPC package logs the sizes and elapsed times of short
exchanges and bulk transfers. The short, small RPCs give
an approximation of round trip time, while the long, large
bulk transfers approximate throughput. The network mon-
itor periodically examines recent transmission logs and de-
termines the instantaneous bandwidth available to the entire
machine. It then estimates how much of that bandwidth is
likely to be available for communicating with each server,
assuming that the first hop is the bottleneck link.

Observing network usage is trivial since all client-server
communication passes through Spectra. For each operation,
the network monitor records the number of bytes sent and
received, as well as the number of RPCs performed.

3.3.3 The battery monitor

When asked to predict availability, the battery monitor
returns the amount of energy remaining in the client’s bat-
tery. It also returns an estimate of the current importance of
energy conservation, which is determined by goal-directed
adaptation [4]. Using this technique, the user estimates how
long the mobile computer will need to operate on battery
power. The system monitors energy supply and demand,
and adjusts a global feedback parameter that represents the
importance of energy conservation.

During operation execution, the monitor measures en-
ergy consumption. Since it is difficult to distinguish the
energy usage of concurrent operations, Spectra ignores
data gathered from concurrently executing operations when
modeling demand and predicting future energy needs.

Spectra obtains energy measurements from two sources:
the Advanced Configuration and Power Interface [8] and
SmartBattery [18] device drivers. Each source is supported
by a separate resource monitor—this modular design makes
it easy to select the appropriate measurement methodology
when compiling for different hardware platforms.

3.3.4 The file cache state monitor

The Coda file system hides server access latency by
caching files on clients. If data is cached locally, opera-

4

tions can take significantly less time and energy to execute.
To predict this effect, the file cache state monitor asks Coda
which files are in its cache. Although it is possible that
cache state will change slightly during operation execution,
the changes are unlikely to be significant. The monitor also
obtains an estimate of the rate at which uncached data will
be fetched.

During operation execution, the monitor observes Coda
file accesses and returns the names and sizes of files ac-
cessed. Section 3.5 describes how this data is used to pre-
dict which files will be accessed during future operations.

3.3.5 The remote proxy monitors

Resource monitors on Spectra servers measure CPU and
file cache state. They communicate this information to re-
mote proxy monitors running on Spectra clients. Each client
periodically polls servers to obtain a snapshot of resource
availability. It then calls the �"O�&'Q-#�� O'���"&)! function of
each remote proxy monitor to update server status.

When Spectra executes a RPC, server monitors observe
resource usage and report the total resource consumption as
part of the RPC response. The Spectra client passes this
data to proxy monitors by calling the Q"&�& �%!�Q-��� function.
The proxy monitors accumulate server resource consump-
tion and report the total when the operation completes.

3.4 Predicting resource demand

Spectra builds on previous work in history-based re-
source prediction [12] by using measurements of applica-
tion resource usage to generate models that predict future
demand. It assumes that the resources usage of an opera-
tion will be similar to the amount used by recent operations
of similar type.

Spectra provides default predictors that model resource
demand. For numerical data such as CPU and energy us-
age, the default predictor generates simple linear models of
application behavior. The default file predictor is somewhat
more complicated, and is described in the next section. We
believe that the default predictors will usually prove suf-
ficient; in fact, we use them for all current applications.
However, Spectra also provides an interface through which
application-specific predictors may be specified.

When an application calls ����� �"!�#���� $%��&'�'()��#"* , Spec-
tra creates predictors for each resource type. Each predictor
reads the logged resource usage data and generates a param-
eterized model of demand that is stored in memory. When
subsequent operations are performed, Spectra updates the
in-memory model in addition to logging resource usage.

Each model predicts resource demand as a function of
application fidelity and operation input parameters. Fideli-
ties and input parameters may be either discrete or con-
tinuous. The default predictor uses binning to model dis-
crete variables: it maintains a separate prediction for each

possible discrete value. The default predictor also main-
tains a generic prediction that is independent of any dis-
crete variable—this prediction is used whenever a specific
combination of discrete variables has not yet been encoun-
tered. The default predictor uses linear regression to model
continuous variables. It adjusts for changes in application
behavior over time by giving more recent samples a greater
weight in its predictions.

For some applications, resource usage depends heavily
upon the specific data on which an operation is performed.
For example, the input document to the Latex document
preparation system will significantly affect resource usage:
a 100 page document consumes more CPU cycles and bat-
tery energy than a 2 page document. Spectra’s default pre-
dictor anticipates this relationship with data-specific mod-
els of resource usage. Applications such as Latex associate
each operation with the name of a data object. The default
predictor maintains a LRU cache of the most recent data
objects. When asked to predict future demand, the predic-
tor uses a data-specific model to predict resource usage if it
finds such a model in its cache. Otherwise, it uses the more
general, data-independent model.

3.5 Ensuring data consistency

Since Coda relaxes data consistency under poor network
conditions to achieve acceptable performance, Spectra must
interact with Coda to ensure that remote operations read the
same data that they would read if they were executed lo-
cally. This is vital for applications such as compilers and
Latex that read files commonly modified on clients.

Prior to executing an operation, Spectra predicts which
files are likely to be accessed. Spectra provides a default file
predictor that builds upon the numerical predictor described
in the previous section. The file access predictor maintains
a numerical prediction of access likelihood for each file that
may be accessed. When updating each file’s model, the pre-
dictor assigns the value of 1 to a file access, and the value of
0 when a file is not accessed. Each resulting prediction thus
represents the likelihood that a given file will be accessed.

Spectra uses the file predictor to estimate the cost of ser-
vicing cache misses. It compares the list of files that may be
accessed by an operation to the list of cached files. For each
uncached file, it estimates the number of bytes of data that
must be fetched from file servers by multiplying the file size
by the predicted access likelihood. Summing this value over
all files yields a prediction for the total number of bytes that
must be fetched to perform an operation. Spectra divides
this prediction by the rate at which Coda will fetch data
from servers to estimate time spent servicing cache misses.

Spectra uses the file predictor to maintain data consis-
tency. Before executing an operation remotely, Spectra en-
sures that all modifications to files with non-zero access
likelihood have been reintegrated to file servers. Spectra

5

also ensures that modifications made during the remote ex-
ecution of an operation are immediately visible to the client.
Since Coda performs file reintegration at volume-level gran-
ularity, Spectra triggers the reintegration of all modifica-
tions for a volume that includes at least one modified file.

If a large amount of data must be reintegrated in poor
network conditions, then data consistency significantly in-
creases remote operation execution time. Spectra estimates
the added execution time by multiplying the size of the
modifications by the predicted bandwidth available to the
file server. If the predicted reintegration costs are too high,
Spectra avoids them by executing the operation locally.

3.6 Selecting the best option

When applications call L)�-� ��M $%��&��'()��#�* N�O , Spectra
selects a location and fidelity at which to perform the oper-
ation. Spectra first determines which servers could possibly
execute part or all of the operation. It then polls the resource
monitors to obtain a snapshot of resource availability. Fi-
nally, it uses a heuristic solver [12] to search the space of
possible servers, execution plans, and fidelities. The solver
selects the alternative that maximizes an input utility func-
tion. Because it uses heuristic techniques, it is not guaran-
teed to select the optimal alternative—however, as shown in
Section 4, it usually selects a very good option.

Spectra provides a default utility function that has so far
proven sufficient for all applications. However, applications
may override the default with an application-specific im-
plementation. The default utility function evaluates execu-
tion alternatives by their impact on user metrics. User met-
rics measure performance or quality perceptible to the end-
user—they are thus distinct from resources, which are not
directly observable by the user. Spectra currently considers
three metrics: execution time, energy usage, and fidelity.

As the solver searches the space of possible alternatives,
it calls the utility function with specific input parameters,
fidelities, execution plans, and server choices. The default
utility function first predicts a context-independent value for
each metric: total execution time, total energy usage, and a
vector representing fidelity. It then weights each value by
its current importance to the user and returns the product of
the weighted values as the utility of the alternative.

The default utility function predicts execution time to be
the sum of local and remote CPU time, network transmis-
sion time, time to service cache misses, and time to ensure
data consistency. This simple model reflects Spectra’s cur-
rent implementation, which does not allow computation and
network transmission to overlap.

The utility function uses the models of operation re-
source usage to predict resource demand. It matches de-
mand to the availability predictions in the resource snap-
shot. It calculates local and remote CPU time by dividing
the predicted cycles needed for execution by the predicted

cycles per second available on a machine. Network trans-
mission time is calculated by predicting the number of bytes
to be transmitted and dividing by the available bandwidth.
The effect of latency is predicted by multiplying the esti-
mated number of RPCs by the round-trip time. The calcu-
lations for time to service file cache misses and ensure data
consistency are described in the previous section.

The importance of execution time is application-specific.
Therefore, Spectra requires each application to provide a
function that expresses the desirability of different latency
values. Many of our applications use the simple expression,
1 � T , where T is the predicted execution time. This has the
nice property that an operation that takes twice as long to
execute is only half as desirable to the user.

Energy usage is calculated using the model of operation
energy demand. Spectra weights the predicted energy usage
by the importance of energy conservation. As described in
Section 3.3.3, the importance of energy conservation is rep-
resented by a parameter, c, that ranges between 0 and 1.
The weighted energy component of utility is calculated as�
1 � E � kc, where E is predicted energy usage and k is a con-

stant (currently 10). Thus, when c is 0, energy does not
impact utility at all; when c is 1, energy has a large impact.

Fidelity is a multidimensional metric of application-
specific quality. Since fidelity is fixed as an input to the
utility function, no prediction is necessary. However, an
application must provide a function that specifies the desir-
ability of each fidelity as a numerical value.

3.7 Applications

In order to validate the effectiveness of our system, we
have modified three applications to use Spectra: the Janus
speech recognizer [21], the Latex document preparation
system, and the Pangloss-Lite language translator [5].

3.7.1 Speech recognition

Janus performs speech-to-text translation of spoken
phrases. It may use one of the three execution plans de-
scribed in Section 3.1. Recognition can be performed at
either full or reduced fidelity. The reduced fidelity uses a
smaller, more task-specific vocabulary that limits the num-
ber of phrases that can be successfully recognized but re-
quires less time to recognize a phrase. We assign the re-
duced fidelity a utility of 0.5 and the full fidelity a utility of
1.0 to reflect this behavior. For execution time, we assign
utility to be the inverse of the expected latency.

3.7.2 Document preparation

Latex generates a DVI file from multiple input files. It
has only one fidelity, but supports two possible execution
plans: local, in which all work is done on the client, and re-
mote, in which all work is done on a server. As with Janus,
we assign utility to be the inverse of the expected latency.

6

Baseline Energy Network CPU File cache
0

50

100

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

) Local / Reduced
Local / Full
Hybrid / Reduced
Hybrid / Full
Remote / Reduced
Remote / Full
Spectra

S S S S

S

Figure 3. Speech recognition execution time

Energy
0

10

20

30

40

E
ne

rg
y

(J
ou

le
s) Local / Reduced

Local / Full
Hybrid / Reduced
Hybrid / Full
Remote / Reduced
Remote / Full
Spectra

S

Figure 4. Speech recognition energy usage

We modified Latex to use Spectra by creating a front-end
and a Spectra service. The front-end calls Spectra to select
an execution location, specifying the name of the top-level
input file so that Spectra can parameterize its predictions by
document. The service runs Latex as a child process. Data
consistency is a significant consideration since input files
are often modified on the client and must be reintegrated
before processing is done remotely.

3.7.3 Natural language translation

Pangloss-Lite translates text from Spanish to English. It
can use up to three translation engines: EBMT (example-
based machine translation), glossary-based, and dictionary-
based. Each engine returns a set of potential translations for
phrases within the input text. A language modeler combines
their output to generate the final translation.

We assign the EBMT engine a fidelity of 0.5 The glos-
sary and dictionary engines produce subjectively worse
translations—we assign them fidelities of 0.3 and 0.2, re-
spectively. When multiple engines are used, we add their
individual fidelities since the language modeler can com-
bine their outputs to produce a better translation. For exam-
ple, when all engines are used, fidelity is 1.0. If a translation
takes longer than 5 seconds, we assign it a utility of 0. Con-
versely, all translations that take less than 0.5 seconds have
a utility of 1. Translations that take time, T, between 0.5
and 5 seconds are assigned utility

�
T � 0 � 5 � � �

5 � 0 � 5 � .

4 Validation

Our validation of Spectra measures how well it adapts
to changes in resource availability. We executed Janus, La-
tex, and Pangloss-Lite under a variety of scenarios in which

we varied resource availability. For each scenario, we mea-
sured application latency and energy usage for each possible
combination of fidelity, execution plan, and remote server.
We also asked Spectra to choose one of the possible alterna-
tives for application execution. The next three sections dis-
cuss the results; Section 4.4 evaluates Spectra’s overhead.

4.1 Speech recognition

To evaluate Spectra’s support for Janus, we limited ex-
ecution to two machines. The client, an Itsy v2.2 pocket
computer [6], represents the small, mobile devices used for
pervasive computing. The Itsy was developed by Com-
paq’s Palo Alto Research Labs and includes a 206 MHz
StrongArm-1100 processor and a Smart Battery. An IBM
T20 laptop with a 700 MHz Pentium III processor was a
possible remote server. Since the Itsy lacks a PCMCIA slot,
we connected the two machines with a serial link.

We first recognized 15 phrases so that Spectra could
learn the application’s resource requirements. We then mea-
sured how well Spectra performed when recognizing a new
phrase in five different resource scenarios.

Figure 3 shows measured execution time for each sce-
nario. The first data set shows results for the baseline sce-
nario, in which both computers are unloaded and connected
to wall power. In all figures in this section, each bar shows
the mean of five trials—the error bars are 90% confidence
intervals. The first six bars show execution time for the al-
ternatives available to Spectra. The local execution plan is
clearly inferior to the hybrid and remote plans, taking 3–9
times as long to execute. The large disparity is caused by
Janus using floating-point instructions that are emulated in
software on the Itsy’s SA-1100 processor. However, using
the hybrid plan and performing some computation locally
takes less time than using the remote execution plan.

The “S” label in each scenario shows the alternative cho-
sen by Spectra. In the baseline scenario, Spectra correctly
chooses the hybrid plan and the full vocabulary. This com-
bination executes faster than all but one alternative; that al-
ternative is only slightly faster but its utility is only half as
desirable. The last bar in each data set shows the execu-
tion time when Spectra chooses an alternative—comparing
this bar to the one indicated with an “S” shows Spectra’s
overhead. In all scenarios, the overhead is minimal—the
difference in height is within the 90% confidence intervals.

Each remaining scenario varies the availability of a sin-
gle resource. In the energy scenario, the client is battery-
powered with an ambitious battery lifetime goal of 10 hours.
The second data set in Figure 3 shows latency results, and
Figure 4 shows energy use. Since energy is critical, Spec-
tra chooses the remote execution plan and the full vocab-
ulary. Although hybrid execution takes less time, it con-
sumes more energy because a portion of the computation is
done on the client. Spectra correctly chooses to avoid the

7

Baseline File cache Reintegrate Energy
0

2

4

6

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Local
Remote A
Remote B
Spectra

S
S

S
S

Figure 5. Small document execution time

reduced vocabulary—the small energy and latency benefits
do not outweigh the decrease in fidelity.

The network scenario halves the bandwidth between the
client and server. This makes remote execution undesirable,
and Spectra correctly chooses to use the hybrid plan and full
vocabulary. The CPU scenario loads the client processor
by executing a CPU-intensive background job. The cost of
local computation increases, making the remote execution
plan more attractive than the hybrid plan.

The file cache scenario simulates a network partition in
which the Spectra server is unavailable and the file servers
remain accessible. Prior to execution, the 277 KB language
model for the full vocabulary is flushed from the client’s
cache. This does not affect reduced-quality speech recog-
nition. However, the execution time of full-quality recog-
nition increases significantly because the language model
must be refetched from a file server. Spectra anticipates
the cache miss and chooses to use reduced-quality recogni-
tion. Since full-quality recognition would be approximately
3 times slower, the decrease in fidelity is acceptable.

4.2 Document preparation

We next evaluated Spectra’s support for Latex. Latex’s
resource needs differ from those of Janus; it performs less
computation but accesses more files. Since input files may
be modified on the client, data consistency is important.

We executed the Latex front-end on an IBM 560X laptop
with a 233 MHz Pentium processor. Since the 560X has no
energy management support, we used a digital multimeter
to measure energy. We ran Spectra servers on the laptop and
two remote servers; server A had a 400 MHz Pentium II pro-
cessor and server B had a 933 MHz Pentium III processor.
The network link was a shared 2 Mb/s wireless network.

We used two documents for evaluation: the smaller was
14 pages in length and the larger was 123 pages. We first
executed Latex 20 times to allow Spectra to learn applica-
tion resource requirements. Figures 5 and 6 show execution
time for both documents. The first data set in each shows the
baseline scenario, in which all computers are unloaded and
connected to wall power, and data files are cached on ev-
ery machine. Since little network communication is needed,
CPU speed is the primary consideration. Spectra correctly
chooses to use the faster server B for both documents.

Baseline File cache Reintegrate Energy
0

2

4

6

8

10

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Local
Remote A
Remote B
Spectra

S

S

S
S

Figure 6. Large document execution time

Energy
0

10

20

30

40

E
ne

rg
y

(J
ou

le
s)

Local
Remote A
Remote B
Spectra

S

Energy
0

20

40

60

E
ne

rg
y

(J
ou

le
s) Local

Remote A
Remote B
Spectra

S

(a) Small document (b) Large document

Figure 7. Latex energy usage

In the file cache scenario, server B does not have any
input files cached. Spectra correctly anticipates that file ac-
cess time will increase the time needed to execute Latex on
server B and switches execution to server A.

In the reintegrate scenario, a 70 KB input file for the
smaller document is modified on the client. Before exe-
cuting Latex on a remote server, Spectra must ensure that
the modified file is reintegrated to the file servers. Rein-
tegration over the wireless network significantly increases
execution time for remote execution. However, the speed of
local execution is unaffected. Spectra therefore chooses lo-
cal execution for the smaller document. For the larger doc-
ument, Spectra correctly predicts that the modified file will
not be needed and does not force reintegration. It chooses
the fastest plan: execution on server B.

The energy scenario is identical to the reintegrate sce-
nario, except that the client is battery powered and a very
aggressive goal for battery lifetime is specified. For the
smaller document, Spectra chooses to use server B, even
though this takes more time to execute. Figure 7(a) shows
the reason: server B uses slightly less energy than other
options. Because energy is of paramount concern, Spec-
tra opts for energy savings over faster execution time. The
choice for the larger document is much clearer, since exe-
cution on server B saves both time and energy.

4.3 Natural language translation

We evaluated Pangloss-Lite using an experimental setup
identical to that used for Latex. We first translated a set of
129 sentences. We then asked Spectra to choose the best
option for translating five additional sentences.

Pangloss-Lite has many options for execution; there are

8

Baseline File cache CPU
0

20

40

60

80

100

P
er

ce
nt

ile

11 words
23 words
35 words
47 words
59 words

Figure 8. Accuracy for Pangloss-Lite

100 different combinations of location and fidelity. Due to
the large number of options, we present results in a different
format. We rank the alternatives by the utility they achieved.
Each bar in Figure 8 shows the percentile into which Spec-
tra’s chosen alternative falls; a value of 99 indicates that
Spectra has made the best choice. Each bar in Figure 9
compares the utility achieved by Spectra with the utility that
would be achieved by an oracle with no overhead.

In the baseline scenario, all computers are unloaded and
wall-powered, and data files are cached on all machines.
For the three smallest sentences, Spectra uses all engines;
for the two larger sentences, it does not use the glossary
engine. These choices are best for all sentences. This sce-
nario shows the importance of modeling input parameters—
Spectra correctly predicts that execution time will increase
with sentence size and switches to a lower fidelity to achieve
acceptable performance for larger sentences.

Spectra runs the dictionary engine locally for the four
smallest sentences and executes all other components on
server B. Remote execution yields significant performance
improvements for the glossary and EBMT engines because
they have large CPU requirements. The location of the dic-
tionary engine and the language modeler does not affect
performance much because their processing requirements
are small. Thus, although Spectra’s location choice for
these two components is not optimal for all sentences, the
performance penalty is small (less than 0.07 seconds).

This illustrates an important property: when alternatives
significantly differ in utility, Spectra almost always makes
a correct decision. If it does choose an inferior option, that
option’s utility is usually close to that of the best option.
For the baseline scenario, the utility of Spectra’s choices are
all within 2% of the best option. Even adding in the over-
head of picking the correct alternative, the utility of Spec-
tra’s choices are all within 7% of the best choice.

Figures 8 and 9 show results from two additional sce-
narios. In the file cache scenario, we evicted a 12 MB file
needed by the EBMT engine from server B’s cache. The
CPU scenario is identical to the file cache scenario, except
that we execute two CPU-intensive processes on server A.
In general, Spectra did an excellent job for Pangloss-Lite,
achieving on average 91% of the best utility. However,
Spectra is limited by its execution model which currently

Baseline File cache CPU
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
U

til
ity

11 words
23 words
35 words
47 words
59 words

Figure 9. Relative utility for Pangloss-Lite

Duration (ms.)
Activity No Servers 1 Server 5 Servers

register fidelity 1.2 1.5 1.2
begin fidelity op 8.3 13.1 65.5

file cache prediction
�

5.2 8.5 8.5
choosing alternative 0.4 1.0 43.4
other activity 2.7 3.6 13.6

do local op 5.9 4.7 5.1
operation execution 4.9 4.0 4.0
other activity 1.0 0.7 1.1

end fidelity op 2.1 2.1 2.2

total 18.4 21.4 74.0

Figure 10. Spectra overhead

supports only sequential execution. We plan to explore ex-
ecution plans that support parallel execution. For Pangloss-
Lite, this would yield considerable benefit: the three en-
gines could be executed in parallel on different servers.

4.4 Overhead

We measured Spectra’s overhead by performing a null
operation that returns immediately after being invoked. Fig-
ure 10 shows that with no remote servers available, the null
operation takes 18 ms. to execute. File cache prediction
takes 5.2 ms. with a relatively empty cache; however, it can
take as long as 359.6 ms. when the cache is full. This ex-
cessive overhead is due to an inefficient interface in which
Coda writes the entire cache state to a temporary file. We
plan to replace this interface with a more efficient imple-
mentation. Overhead increases with the number of poten-
tial servers, primarily due to additional time spent choosing
the best alternative. With 5 servers, overhead is only 74 ms.,
which is very reasonable for our targeted applications that
perform operations of a second or more in duration.

5 Related work

Remote execution is a well-established field in systems
research. While most remote execution systems target only
performance benefits, a few recent systems have explored
how remote execution can reduce application energy use.
Rudenko et al. [15] compare the energy cost of executing
several tasks both locally and remotely. Their RPF frame-

9

work [16] adaptively decides where a task should be ex-
ecuted based upon a history of past power consumption.
Kunz’s toolkit [11] uses similar considerations to locate mo-
bile code. Although both systems monitor execution time
and RPF also monitors battery use, neither monitors indi-
vidual resources such as network and cache state, limiting
their ability to cope with resource variation. In addition,
neither exploits the full potential of the energy-performance
tradeoff—they use remote execution only when both energy
usage and performance are not adversely affected.

Kremer et al. [10] propose using the compiler to select
tasks that might be executed remotely to save energy. At
present, this analysis is static, and thus cannot adapt to
changing resource conditions. Such compiler techniques
are complementary to Spectra—they could automatically
select operations and insert Spectra calls into executables.

Vahdat et al. [19] note issues considered in Spectra’s de-
sign: the need for application-specific knowledge and the
difficulty of monitoring remote resources. Butler [13] uses
AFS for consistency between local and remote machines.
Our use of Coda is similar, but reflects a different target
environment: Coda’s support for disconnected and weakly-
connected operation is vital in pervasive computing.

Several systems analyze application behavior to locate
functionality. Coign [7] statically partitions objects in a dis-
tributed system by logging and predicting communication
and execution costs. Abacus [2] monitors network and CPU
usage to migrate functionality in a storage-area network,
and Condor monitors goodput [3] to migrate processes in a
computing cluster. Because these systems are not designed
for pervasive computing, they do not monitor the range of
resources considered by Spectra. In addition, they do not
support adaptive applications that modify their fidelity.

6 Conclusion

Remote execution is an important capability in pervasive
computing because it combines the mobility of small de-
vices with the greater processing power of large compute
servers. Spectra helps applications realize the benefit of re-
mote execution by matching resource supply and demand
in order to advise applications how and where they should
execute functionality. Our evaluation shows that Spectra
usually chooses the best alternative for execution despite
wide variation in resource availability. When Spectra does
not make the best decision, its choice is usually very good.
Given these encouraging results, we believe that Spectra
will prove to be a valuable platform for future research.

Acknowledgments

We wish to thank Ralf Brown and Rob Frederking for assistance with Pangloss-
Lite, and Jie Yang for help with Janus. We thank Jan Harkes and Shafeeq Sinnamo-
hideen for their invaluable knowledge of the Coda file system. Lastly, we thank
Dushyanth Narayanan for numerous useful discussions throughout this project.

This research was supported by the National Science Foundation (NSF) under
contracts CCR-9901696 and ANI-0081396, the Defense Advanced Projects Research
Agency (DARPA) and the U.S. Navy (USN) under contract N660019928918, IBM,
Nokia, Intel, Hewlett-Packard, and Compaq. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of NSF, DARPA, USN, IBM, Nokia,
Intel, HP, Compaq, nor the U.S. government.

References

[1] Adjie-Winoto, W., Schartz, E., Balakrishnan, H., and Lilley, J. The design and
implementation of an intentional naming system. In Proc. of the 17th ACM
Symp. on Op. Syst. Princ., pages 202–16, Kiawah Island, SC, Dec. 1999.

[2] Amiri, K., Petrou, D., Ganger, G., and Gibson, G. Dynamic function place-
ment for data-intensive cluster computing. In Proceedings of the USENIX 2000
Annual Technical Conference, San Diego, CA, June 2000.

[3] Basney, J. and Livny, M. Improving goodput by co-scheduling CPU and net-
work capacity. Intl. Journal of High Perf. Comp. App., 13(3), Fall 1999.

[4] Flinn, J. and Satyanarayanan, M. Energy-aware adaptation for mobile applica-
tions. In Proc. 17th Symp. on Op. Syst. Princ., Kiawah Is., SC, Dec. 1999.

[5] Frederking, R. and Brown, R. D. The Pangloss-Lite machine translation system.
In Proc. of the 2nd Conf. of the Assoc. for Mach. Trans. in the Americas, pages
268–272, Montreal, Canada, 1996.

[6] Hamburgen, W. R., Wallach, D. A., Viredaz, M. A., Brakmo, L. S., Wald-
spurger, C. A., Bartlett, J. F., Mann, T., and Farkas, K. I. Itsy: Stretching
the Bounds of Mobile Computing. IEEE Computer, 13(3):28–35, Apr. 2001.

[7] Hunt, G. and Scott, M. The Coign automatic distributed partitioning system. In
Proc. 3rd Symp. Op. Syst. Design and Imp., New Orleans, LA, Feb. 1999.

[8] Intel, Microsoft, and Toshiba. Advanced Configuration and Power Interface
Specification, February 1998. http://www.teleport.com/˜acpi/.

[9] Kistler, J. J. and Satyanarayanan, M. Disconnected operation in the Coda file
system. ACM Transactions on Computer Systems, 10(1), Feb. 1992.

[10] Kremer, U., Hicks, J., and Rehg, J. M. Compiler-directed remote task execution
for power management. In Proc. of the Workshop on Compilers and Operating
Systems for Low Power, Philadelphia, PA, Oct. 2000.

[11] Kunz, T. and Omar, S. A mobile code toolkit for adaptive mobile applications.
In Proc. of the 3rd IEEE Workshop on Mobile Comp. Syst. and App., pages
51–59, Monterey, CA, Dec. 2000.

[12] Narayanan, D., Flinn, J., and Satyanarayanan, M. Using history to improve
mobile application adaptation. In Proc. of the 2nd IEEE Workshop on Mobile
Comp. Syst. and App., pages 30–41, Monterey, CA, Dec. 2000.

[13] Nichols, D. Using idle workstations in a shared computing environment. In
Proc. of the 11th ACM Symp. on Op. Syst. Princ., Austin, TX, Nov. 1987.

[14] Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., and
Walker, K. R. Agile application-aware adaptation for mobility. In Proc. of the
16th ACM Symp. on Op. Syst. Princ., Saint-Malo, France, Oct. 1997.

[15] Rudenko, A., Reiher, P., Popek, G. J., and Kuenning, G. H. Saving portable
computer battery power through remote process execution. Mobile Computing
and Communications Review, 2(1):19–26, Jan. 1998.

[16] Rudenko, A., Reiher, P., Popek, G. J., and Kuenning, G. H. The Remote Pro-
cessing Framework for portable computer power saving. In Proc. of the ACM
Symposium on Applied Computing, San Antonio, TX, Feb. 1999.

[17] Satyanarayanan, M. Pervasive Computing: Vision and Challenges. IEEE Per-
sonal Communications, 8(4):10–17, Aug. 2001.

[18] SBS Implementers Forum, http://www.sbs-forum.org/. Smart Battery Data
Specification, Revision 1.1, Dec. 1998.

[19] Vahdat, A., Lebeck, A. R., and Ellis, C. S. Every Joule is precious: A case
for revisiting operating system design for energy efficiency. In Proc. of the 9th
ACM SIGOPS European Workshop, Kolding, Denmark, Sept. 2000.

[20] Viezades, J., Guttman, E., Perkins, C., and Kaplan, S. Service Location Proto-
col. IETF RFC 2165, June 1997.

[21] Waibel, A. Interactive translation of conversational speech. IEEE Computer,
29(7):41–48, July 1996.

10

