การสังเคราะห์เสียงพูดภาษาไทยสำหรับคำที่ไม่รู้จัก Morphological Derivative for Unknown Words in Thai text-to-speech Synthesis

Pisit Promchan,

PsTNLP laboratory, http://geocities.com/pisitp, Bangkok, Thailand, E- Mail: pisitp@yahoo.com,

Tel: 5740440 ext. 216, 7449783

Wittaya Wongvachirapanich, Saanti Chinnakarn,

Department of Computer Engineering, Prince of Songklanakharin University, Songkla, Thailand, E- Mail: s4010388, s4010362 @thaimail.com

Speech Processing Applications

- Interactive Voice Responding
- Telephone Banking
- Information over the Phone
- Internet Phone
- Digital Mobile Phone
- Computer Telephony Integration (CTI)
- Call Processing
- Voice Messaging & Mail
- Digital Transmission Channel

- Tele-marketing
- Tele-medicine
- Text-to-Speech
- Speech Recognition
- Digital Speech Coding
- Talking Dictionary
- Talking Computer
- Tool for Disabilities
- Future Man-Machine Interface
- Toys
- Etc...

Thai Text-to-Speech

- The Problems
- Unknown Words
- Transliteration
- Proper noun

- The Architecture
- Thai Word Segmentation
- Dictionary Based Pronunciation
- Morphological Derivative for Unknown Words
- Signal Processing
- CTI
- Morphological Derivative
- A Fuzzy Logic Approach
- Unknown Word Identification
- Syllable Parsing
- Approximation Matching Algorithm for Thair
- Variable Precision

The Architecture

Thai Word Segmentation, Syllable Parsing and Unknown Word Identification Algorithm

- Thai Word Segmentation
- Longest First Matching
- Trie Based Dictionary

Syllable Parsing

- Rule based
- 16 rules developed according to the: "หลักภาษาไทย", อ. กำซัย ทอง

หล่อ"

- Unknown Word Identification
- Prior word + Garbage
- Garbage + Consequence Word
- Prior word + Garbage + Consequence Word
- Measure the best combination via Syllable Parsing Algorithm
- The garbage syllable if exist is synthesized as half /ae/ vowel.

Speech Unit Selection Using Approximation Matching Algorithm

- Fuzzy Value Calculation
- VF = {M1, M2, M3... M6}
- M1: Preceding Vowel
- M2: Consonant
- M3: Consecutive Consonant
- M4: Vowel
- M5: Following Consonant
- M6: Tone

Formula

$$vF = \frac{1}{N} = \frac{M[i] \times Wi}{(Wi \times Freqi)}$$

Sample Output for "ลินคอล์น"

UNIT	S vF	M[i]
ลิ้น	0.99	[0 1 0 1 1 0.8]
ลิง	0.92	[0 1 0 1 0.8 1]
อิน	0.88	[0 0.7 0 1 1 1]
สิน	0.88	[0 0.7 0 1 1 1]
คอน	1.00	[0 1 0 1 1 1]
ขอน	0.96	[0 0.9 0 1 1 1]
ନବଥ	0.92	[0 1 0 1 0.8 1]
คอม	0.92	[0 1 0 1 0.8 1]

Digital Signal Processing, Synthesis & CTI

- DSP
- Investigating the Speech Coding Algorithms

- Synthesis
- Speech Parameter Adjustment
- Speech Units Concatenation
- Decoding & Post Processing
- Speech Output
- CTI
- HW detects the 5th dial tone
- Coupling & interface circuit

Experimental Result

Experimental Result Summary

- Total words: 55,573
- Average Precision: 99.59%
- Precision VS Recall intersection: 98%

- Unknown words: 3,249
- Average Precision: 96.69%
- Precision VS Recall intersection: 88%

Future Works & Availability

- Pronunciation Dictionary Improvement
- Evaluation of Speech Coding Algorithms for Thai
- CTI Improvement
 - Public Availability
 - http://www.geocities.com/pisitp
 - ! Thank You for Your Attention !