MMSD4610 Lab Assignment 1

Due: Wednesday October 13th, 1999 at 5:30 p.m.

This assignment is actually a take home. You are encouraged to discuss it with your classmates prior to leaving today.

By now you have had a chance to play the “Stock Ticker”© game. As stated earlier, creating a simulation of “Stock Ticker” will be your course project. More details about the requirements of this project will be made available soon (hopefully you should not need them for this assignment).

Requirements:

This assignment gives you a chance to attempt interface design. By now we should have itemised the main objects that we expect to need in this game simulation. We should have seen those objects in action during the game play. Your job for this week is to:

define an interface (e.g.: Address3IF.java, EditorIF6.java in course notes) that provides all the functionality you expect this object will need to provide to play its role in the simulation,

explain in detail why you have chosen the methods, method return types and method parameters for each method of the interface,

provide a .java file that defines the interface; this file must compile using some version of Java (try to use a recent version). The .java files should be provided to the instructor either (a) on a “virus clean” diskette at the start of class or (b) via e-mail to the instructor (timd@simba.com) no later than October 13th at noon,

define a factory (using the Factory Method) that can be used to construct objects that provide the services of your interface,

briefly discuss why you defined your factory this way,

provide a compileable .java file that defines your factory,

try to be thorough and think ahead; your interface and factory may become part of our class design work,

Miscellaneous:

Recall: an interface should have no data members (although static final data members are considered acceptable) and no constructors. Static methods will be considered OK if the explanation as to why the method needs to be static is well argued.

You will be assigned one object from our selection of objects. This choice will be made at random. Your object is written in the space below (if this space is blank then the instructor has goofed --- let him know):

Submission:

Your submission must include the aforementioned .java file, and a readable document describing your interface and why you have defined it as you did. A class diagram is not required but, if you think it helps your explanation, feel free to include one.

Submission can be:

via e-mail to jde@direct.ca before Tuesday evening

via e-mail to timd@simba.com before Wednesday at noon

on paper and diskette at the start of class.

Marking:

All assignments are marked out of 5 marks. For this assignment there are no bonus marks.

Feel free to e-mail me your assignment (a minimum of 3 days early). If you do so, I will give you some feedback (hopefully within a day) and send it back to you. This gives you an opportunity to add what the instructor is looking for BEFORE you are marked (if this isn’t a chance at bonus marks, I don’t know what is).

Design submissions will be discussed next week in class (possibly not everybody’s but hopefully at least one for each main object). If you would prefer your submission be kept anonymous, please indicate that on your submission --- I may still discuss it in front of the class but I will try very hard to not let anyone know whose it is.

Example Interface:

Note: This example interface would probably not get good marks. It does not really describe why the methods are there, it explains their purpose, not their need to exist. Additionally, the interface is not that extensible (it hard-codes too much information about the dice).

/** This interface defines the behaviour of the dice for the stock

 * ticker game. This interface is short-sighted in that it hard

 * codes return values for only those actions in the current game.

 * Though sufficient for modelling the board game itself, this

 * decision will resist extensions to the game.

 */

public interface DiceIF

{

 /** Should comment this */

 public static final Gold = 0;

 /** Should comment this */

 public static final Silver = 1;

 /** Should comment this */

 public static final Oil = 2;

 /** Should comment this */

 public static final Bonds = 3;

 /** Should comment this */

 public static final Industrial = 4;

 /** Should comment this */

 public static final Grain = 5;

 /** Should comment this */

 public static final Up = 0;

 /** Should comment this */

 public static final Down = 1;

 /** Should comment this */

 public static final Dividend = 2;

 /** During each player's turn, they will roll the dice by invoking

 * the roll method on the dice. This method generates a new random

 * group of values for Stock (Oil, Grain, Bonds, etc.), for Action

 * (Up, Down, Dividend) and for Magnitude (5, 10, 20).

 */

 public void roll();

 /** To evaluate each of the three dice a different method is

 * defined. When getStock is invoked, a value of Gold, Silver,

 * Oil, Bonds, Industrial or Grain is returned, depending upon the

 * result of the last roll.

 */

 public int getStock();

 /** To evaluate each of the three dice a different method is

 * defined. When getStock is invoked, a value of Gold, Silver,

 * Oil, Bonds, Industrial or Grain is returned, depending upon the

 * result of the last roll.

 */

 public int getAction();

 /** To evaluate each of the three dice a different method is

 * defined. When getMagnitude is invoked, an integer value is

 * returned indicating how much movement the stock value should

 * make or how large of a dividend should be payed. This return

 * value, in the first draft, is expected to be either 5, 10 or

 * 20. However, finer gradations of value could be implemented

 * in future versions without a radical change to this method.

 */

 public int getMagnitude();

}

