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Abstract

This paper presents the development of a method for solving aerodynamic inverse load
problems. A hybrid of Finite Element Method (FEM) and Artificial Intelligence (Al) is utilized
as a basis for the method. Several illustrative problems are presented, involving static and
dynamic load identification, which are solved by Artificial Neural Networks and Genetic
Algorithm. FEM is used for generating data needed for the neural network training, and also
for calculating fitness values in Genetic Algorithm. The MATLAB and its Neural Network
Toolbox are selected as the main devel opment tool.

1 Introduction

Modding of physcd phenomena dways involves the formulation of differentid or integrd
equations. Once these equations have been formulated with the necessary coefficients, initid and
boundary conditions, then the behavior of the system can be smulated and studied. Thisis known as
solving direct problems. In contrast, the determination of coefficients, initia or boundary conditions
which give rise to any messured sysem's behavior is caled inverse problems. Mathematicaly
gpeeking, theinverse problem isill conditioned. There is no guarantee of the existence of the solution.
Furthermore, issues such as solution uniqueness, and its sability are also very sgnificant.

Determination of aerodynamic load from its structural response measurement is categorized as an
inverse problem. Aerodynamic load of a flying arcraft can not be measured easlly. A direct
conventional method of measuring pressure ditribution on the aircraft structure becomes impractical
for aflying arcraft. The insrumentation sat-up is highly complex an expensve. Davis and Sdtzman
(2000) in their paper, for example, describe the complexity of the instrumentation for measuring the
wing's pressure distribution on the F-16A aircraft.

One dternative method to measure aerodynamic load indirectly is by measuring the observed
sructurd responses. These quantities are easer to measure. The process of reconstructing
aerodynamic load from these structurd measurements using a hybrid Finite Element Method and
Artificid Intelligence is described here. MATLAB and its Neural Network Toolbox are used as the
main tool for developing the agorithm for the whole process (Figure 1). Both the static and dynamic
aerodynamic load estimation are presented to illustrate the effectiveness of the devel oped method.
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Figure 1: MATLAB Usad as aHatform for Developing a Hybrid FEM-Artificia
Inteligence Method for Solving Inverse Problems

2 Artificial Intdligence Techniques

There are two atificd inteligence techniques which are auitable for solving many inverse
problems, these are Artificid Neura Networks (ANN) and Genetic Algorithms (GA). Many authors
have reported successful uses of these techniques.

Artificial Neural Networks

Artificid Neural Network is a massvely interconnected processing units known as neurons. It isa
samplified representation of the working knowledge of a human brain. The structura arrangement of
the neurons and its interconnection gives rise to many different network characteristics. One of the
most frequently used networks is the Feedfordward Neura Networks in which the data flows in one
direction from the input to the output, i.e. no feedback loop presents.

Given sufficient number of neurons, the ANN can be trained to map any input-output
relaionships. Network parameters such as weights and bias are adjusted during training. Once
successful training has been reached, these networks parameters are fixed and reedy for use in
operation. The training processis that in which alarge computational burden occurs, especialy when
involving a large sample of training data. Many training agorithms have been developed, and the
MATLAB Neura Network Toolbox (Demuth and Bedle, 1998) provides a large number of training
agorithms such as Lavenberg Marquadt!, QuickProp, Kohonen SOM, etc. Hagan (1996) provides
extensve theoretical background of the many agorithms used in the Toolbox.

The authors have found that the MATLAB Neurd Network toolbox verson 3 is excellent
software for the ANN development. It has a modular network representation, and hence provides a
great flexibility for the ANN designer. The toolbox has fewer functions than earlier versons, and yet
more powerful. However, it does not have a good graphical user interface. It is therefore not so
suiteble for interactive network development. Other commercia software, such as NeuroShell,
FlexNN or STATISTICA Neura Networks are more suited for this purpose. Though, these
softwares do not offer a great programming flexibility as offered by the MATLAB Neurd Network
Toolbox verson 3.



Genetic Algorithms

Genetic Algorithm (GA) is one of modern heurigtic optimization techniques. This dgorithm is
originaly developed by Holland (1975) and is based on the mechanism of the Darwinian evolution.
GA is a populaion-based dgorithm. The population may condst of severd potentid optima
solutions which is cdled individuas. These individuds are subjected to different 'genetic operations
such as sdlection, crossover and mutation. These operations are designed to drive the whole
population to a near global optima solution. Many GA parameters can be tuned to produce a good
performance. Parameters such as the number of individua in the population, crossover probability,
mutation probability are tunable for any given problems.

The Genetic Algorithm is conceptudly smple. The program can be easly written in MATLAB.
Meanwhile, software products such as GENEHUNTER and FLEX-GA are commercidly available,
and can be easily runin MATLAB.

3 Static Aerodynamic Load | dentification

The inverse problem discussed here is formulated as follows. It is desred to caculate the
aerodynamic load acting on an aircraft wing as modded in figure 2. Five deformation sensors are
placed 20 cm gpart dong a 1-meter wing. The rigidity of the wing is 10’Pakg.m®. Two different
approaches namely ANN and GA are used to solve this inverse problem. The structure of the wing
is modded usng finite dement method, and is written in MATLAB using object-oriented
programming (OO). The MATLAB 5 or later versons offer a facility to write a program in OO
philosophy. This has made the finite dement programming much smpler than it would be otherwise
with procedura language. For example, an FEM cantilever beam of length 1-meter, divided into 10
beam eements can be easily congtructed using a command like, cantilever(1,10,steel), where stedl
isamateria object (Sofyan, 1999).

arbitrary distributed load
represented as Fourier

Table 0: The Effect of Measurement Noise to the
Accuracy of the ANN Estimation

x axis M easur ement noise level
0% 1% 3% 5% 10%
5 deflection readings 20 cm apart R 1 0.997 0.957 0.905 [ 0.673
M SE (x10*) 0 6.922 103 164 374

Figure 2: Static Aerodynamic Load on a
Wing Edimated from Five
Deformation Sensors



Load Estimation Using Artificial Neural Networks

The MATLAB Neurd Network Toolbox is used in designing the networks. The toolbox is highly
flexible and can be used to design, train and smulate any kind of networks with relative ease. Here, a
feed-forward neurd network is used and trained usng a Lavenberg-Mardquadt! agorithm. The
training data is obtained by solving a number of direct problems as shown in Figure 3. The error
estimate is then used to update the network weights and bias.

The training of the feedforward network converged to a smal error of 9x10%*Pa? in 15 epochs.
One epoch is defined as one iteration of the network training utilizing the whole training data. This
indicated that the designed network had successfully mapped the inverse relaionship.

Next, the effect of noise in the measurement on the accuracy of the identification was investigated.
The noise was Smulated as a white Gaussian noise added to the measurement. Table 1 shows the
error of the estimation from different Sgnd to noise rétio in the measurement. The data shows that
the ANN dill givesagood result for up to 5% noise in the measurement.
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Figure 3. Aerodynamic Load Recongtruction Using Artificid Neurd Networks

Load Estimation Using Genetic Algorithm

The same problem as described above is solved here usng Genetic Algorithm (see Figure 4).
Here suppose that a 5% noise is present in dl the deformation measurements. A binary
representation with 5 bits resolution is used to edtimate the Fourier parameters describing the
aerodynamic load. Two hundreds individua were used to initiate the population. The agorithm was
run with crossover and mutation probabilities of 0.9 and 0.01 respectively. Figure 5 shows the
convergence history of the agorithm, whilst Figure 6 shows the comparison between the estimated
and true aerodynamic load.
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Figure 4: Aerodynamic Load Recongtruction Using Genetic Algorithm
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4 Dynamic Aerodynamic L oad | dentification

In contrast to datic load identification, the dynamic load identification involves tempord and
gpatia variaions. The aerodynamic load to be estimated varies with time, and so too the structura
response measurements. Here the mass and damping distribution of the structure should be included
in the modding.

To illudrate the effectiveness of the method to the identification of dynamic aerodynamic load, the
smulation of a wing modeled as a plate sructure was performed using the finite eement modeing
package NASTRAN (1985). The wing's dimension was 10x1 metre with eastic modulus E=12000
Pa, density = 10° kg/nT and Poisson's ratio of 0.3.

Load Estimation Using Artificial Neural Networks

A time delayed neura network is used for the estimation of the dynamic aerodynamic load. Figure
7 shows the structure of the network with the addition of delay units at the input neurons. The delays
at theinput neurons are created by setting net.InputWeight{..}.delays to, for example [1 2 3 4] for
the addition of four delay units The network was then trained with data from running FEM
smulations of severd input forms with different spatial and tempord varigtions. The equation for the
applied aerodynamic load isin the following form:

P(x,t) = (ax? +bx+ C)gl sn(wt +q)

1 D

Where a, b, ¢ represent spatial variation, whereas w and q are frequency (rad/s) and phase shift
(red) respectively. The structural responses used to estimate aerodynamic loads were strain data at
the wing root and quarter span. The sampling rate of 100Hz was used to record the structural

responses.
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Figure 7 Network’s Configuration for the Tempora and Spatia Load Identification

A feedforward neura network with four delays was successfully trained in 6 epochs. The mean
square error achieved was 4.9x10°P&f. To test the generdization of the network, an unseen
aerodynamic not used in the training, was estimated from strain measurements. Here the load to be
estimated was P(x,t)=(0.5-0.5x%) Sn(6pt).

Figure 8 and 9 show the estimated aerodynamic load and its error respectively. It can be seen that
the dynamic applied load can be estimated accurately using this gpproach.
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Figure 8: Dynamic pressure load
estimated from strain data Figure 9: Errorsin estimating pressure
load usng ANN

Sensor Selection Using Genetic Algorithm

It has been shown above that a delayed neura network can be trained to learn the inverse
relationship between the measured sructurd responses and the applied aerodynamic load. The
success of the training and the resulting network’s performance depends on the information content
and its qudity of the measured data. Hence, the selection of this messured data is crucia. Here, an
optimization using genetic algorithm was carried out to salect the sensor data needed for the selection
of the best sensor combination in the estimation of aerodynamic load (see Figure 10). For this
particular problem, two sensors are to be placed on the wing to measure bending dtrain. The
possible sensor locations are given as shown in Figure 11.
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Figure 10: Sensor Selection Using Genetic Algorithm

Sensor spacing 1 meter apart
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Figure 11: Strain Gage Sensor Locations on the Wing

Table 2 shows the results of running the agorithm 10 times. It can be shown that the optima
sensor location for this particular problem is found to be a 1 and 3 meter from the wing's root.
Alternatively, combination sensors 1-5 or 1-4 can aso be used with less accuracy.



Table 2: Sensor Optimization Result Using GA

Norun Best sensor Achieved Generation
combination M SE number
1 1-3 3.5574e-5 3
2 1-4 3.7028e-5 9
3 1-4 3.7028e-5 5
4 1-3 3.5574e-5 3
5 1-3 3.5574e-5 3
6 1-3 3.5574e-5 9
7 1-5 3.6998e-5 4
8 1-5 3.6998e-5 7
9 1-7 3.9536e-5 4
10 1-4 3.7028e-:5 5

5 Conclusons

A method of solving an inverse aerodynamic load from dructurd response data has been
presented. The method is based on applying a mapping capability of neurd networks, and an
optimization drategy of Genetic Algorithm, combined with Sructurd Finite Element Moddling
(FEM). The FEM is used to generate data required for training the neura networks, and to provide
data for the fitness caculation for the GA. MATLAB and its Neural Network Toolbox have been
used intensvely in the development of the method. Ladtly, the effectiveness of the method has been
demondtrated on the identification of both static and dynamic aerodynamic load on awing structure.
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