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Preface

The origins of this course begin with Woody Flowers in MIT's Mechanical Engineering
department. Woody Flowers had the idea that teaching should be interactive and
not just lecturing. He developed the famous \Introduction to Design" class (course
number 2.70). In 2.70, undergraduates use scrap parts|metal, plastic, and wood|to
build machines that go on to compete in a head-to-head contest at the end of the
course.

Michael B. Parker, an undergraduate in MIT's Electrical Engineering and Com-
puter Science (Course Six) department, had just taken 2.70. Mike liked the course
so much that he was jealous: \Why should there be a course like this for Mechanical
Engineering students, but not for the students in his department?" he thought.

So in 1987, Mike organized the �rst 6.270 contest as \Course Six's answer" to the
2.70 course. The contest was a programming competition in which students wrote
programs to control computer-simulated robots. In the �rst two years of the contest,
the goal was to design a simulated robot that tried to �nd and destroy other robots.
Unlike the machines that are built in the 2.70 course, there was no human control
of the simulated robots (in 2.70 the students control the machines through a joystick
and some switches). This was what separated the 2.70 course and the 6.270 contest.

A couple of years later, Mike saw a project at MIT's Media Laboratory called
\LEGO/Logo," in which children build robots and other mechanized devices out of
LEGO bricks, motors, and electronic sensors, and then write programs to control
them using a special version of the Logo programming language. Mike wanted to
provide the 6.270 students with similar technology so they could build real robots,
not just the computer-simulated robots that been done in the past.

Mike recruited Fred Martin and Randy Sargent to be the technical consultants to
the upcoming 6.270 contest (which was starting in just a few weeks). It sounded like
a fun way to spend IAP.1

Randy and Fred spent most of their holiday break designing an interface board
that connected to a PC or Macintosh computer, controlling motors and providing
input from a few simple sensors. The budget was tight and time was short as they

1MIT's \Independent Activities Period" is a one-month break between the fall and spring
semesters.
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scurried about the local Radio Shack stores, buying electronic parts for the twenty
teams of students who had preregistered for the course.

Everything went wrong that month: the LEGO parts showed up late; Athena { the
campus computer network { would not give approval for 6.270 to use its workstation
and mix-ups in room scheduling forced groups of students wielding soldering irons to
wander about campus looking for available classrooms.

The robots were powered and controlled through a tether connected to a personal
computer. A lounge was transformed into a workshop, and only the students' ex-
citement carried the contest through the month and into a competition at the end of
IAP. Students who were building robots contributed their time to making the contest
a reality. The contest lasted about four hours|it was a long, drawn-out a�air|but
the students enjoyed it.

The unique feature of 6.270 was that the students were running the course them-
selves. The learning was through mutual help. No professors or faculty members
were involved with the organization or teaching of the course. Students learned from
interaction with other students, and this formed the basis for future 6.270 contests.

After the contest was over, Pankaj (\P.K.") Oberoi, who had been a student
in the contest, called a meeting of interested past participants. P.K. thought the
class had great potential as a learning project and wanted to help organize it for the
upcoming year. He felt that given some organization and structure, the contest could
be transformed into a course in which the students could learn more than just how
to \hack" something together.

P.K. had already worked on key administrative aspects, like recruiting corporate
sponsors. Microsoft had donated some money to the course previously and was willing
to up the ante for another year. P.K. also got the support of Motorola, which agreed
to donate valuable semiconductor parts. He also gained the support of the Course 6
faculty to allow the contest for another year, with a more structured environment.

Randy and Fred were recruited once again by P.K. to help develop technology
for the course. Hesitant at �rst, they laid out artwork for a custom printed circuit
board that used a new Motorola microprocessor with more control features than the
tethered machines. The original board was based on a microprocessor board designed
at the MIT AI Laboratory by Henry Minsky.

P.K. and Fred wrote handouts for the students telling them how to build sensors,
a battery charger, and other robotics components. The contest was transformed from
a group of students wandering around looking for a place to work into a course with
lectures and labs in where the students could learn more technical aspects in addition
to the hands-on exposure they were getting.

Eighty students, organized into thirty teams, took the course that year. Even
before the contest that year, it was evident that the course was a success. As students
carried their robot kits around campus, interest and excitement spread. The contest
was a hit.
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By the end of that year, Fred was interested in the course not only from a tech-
nical perspective, but from a special educational perspective. Students at MIT were
choosing to pull all-nighters building robots rather than taking ski trips. In doing so,
they were learning about engineering design and robotic technologies from �rst-hand,
experiential involvement in a project-based course. The course seemed to �ll a gap
in the students' education.

By providing the tools and materials for students to work with complex electronic,
mechanical, and software ideas, 6.270 gives the students a place to explore and learn
about key ideas in technology, engineering, and design. Teamwork, learning-by-doing,
and learning from one's peers is primary. 6.270 provides a hands-on style of learning
experience for MIT students who are used to the theoretical lecturing style presented
in most of the core classes.

The 1990 class was a big success but the organizers wanted to make the class even
better. The class was hampered by a controller board which had to be programmed
in assembly language and only had a small amount of memory. After the contest,
work began on technology that would be more powerful and more useful to 6.270
students, allowing them to get even deeper into robot design and other technological
issues.

By the start of the 1991 class, Fred and Randy had developed a robot-building kit
with the high degree of power and 
exibility we had wanted. Students were able to
develop software for their robot using a subset of the C programming language called
IC. The new embedded controller board they developed had a number of new features,
including a small display screen that could be used to print debugging messages.
Students were able to use powerful Unix workstations all across campus to develop
programs for their robots.

The 1992 contest was organized by Fred, Randy, and P.K. joined by Karsten
Ulland and Matt Domsch, two sophomores who had taken the course the previous
year. New features continued to be added. Fred changed the layout of the board
to include more channels of analog input for sensors; Randy improved IC to allow
multiple C and binary modules to be loaded to the board; and PK, Karsten, and
Matt worked sta�ng the labs during the day and building the contest tables at night.

The enthusiasm in the course was increasing by enormous proportions. This was
evident in the increase in enrollment. Over 300 students signed up to take the course
for 150 spots. Several new sponsors were recruited to participate in the course. As
in previous years, many participants in the course also contributed towards helping
prepare for the contest. The rapid change in technology did not allow much time
for debugging or completion of the software. Anne Wright, a student in the course
helped take up the slack by reporting bugs and writing software updates.

1993 organizers consisted of P.K., Matt, and Karsten joined by Anne Wright and
Sanjay Vakil, two participants from the 1992 contest. They worked to update the
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technology and notes for the course and to organize the course for a new group of
approximately 170 students divided into 55 teams. With Fred and Randy no longer
active organizers, they set about to establish a new division of labor which would
allow the standards of progress set by the previous contests to continue.

Matt took responsibility of class registration; P.K., Karsten, and Sanjay contacted
greater support from the sponsors and ordered the kits; Karsten and Anne made
changes to the controller board to �x hardware \bugs" from the previous year and
some additional features (a servo); and Anne rewrote portions of the IC compiler to
give it more of the features of real C. These course notes have come about from a
combination of past experiences and each organizer took on the section of the notes
with which they felt most comfortable.

In 1993, over 125 teams signed up to take the course. Because of the popularity
and demand, the lab was kept open most evenings. To handle the demands of the
course, eight TAs were hired from 6.270 alumni. Tripling the sta� helped to o�oad
the organizers. In addition, Motorola sent a �lm crew to the contest to document the
contest from the distribution of the kits to the �nal round on contest night.

1994's contest expanded once more: 10 TAs and �ve organizers helped to create
the contest. Of the 265 registrants came �fty teams. A new weighting system was
also used to try and give past registrants who were not accepted a better chance at
getting into the course. Given that the boards changed minimally, the extra time was
spent updating and clarifying the course notes.

Unfortunately, due to budget and sta� constraints, participation was back to
fourty teams (about 110 students) in 1996. If you're taking the class now and would
like to see it grow again, speak to an organizer about helping organize next year's
contest.

Over the years, the organizers of the 6.270 contest have put a great deal of thought
into how to organize the class to maximize the students learning potential and enjoy-
ment of the course. We have tried at all times to provide the best educational and
technical environment we could. We have tried to schedule events such that teams
have a maximum amount of time to experiment with design and programming issues
with a functioning robot. But the thing which really sets 6.270 apart from all the other
technical and lab courses at MIT is that despite the enormity, this project remains
to be one of the largest student-run activities due to the enthusiasm of the students
who have taken the course. We believe that this is 6.270's greatest strength, and we
hope that this enthusiasm will continue to attract generations of student organizers
to keep 6.270 alive.

The 6.270 Organizers
January 2, 1997
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Introduction to this Guide

These course notes contain a lot of information that should assist you in developing
a working robot by the end of the course. The notes have been arranged in the order
in which you should proceed. Many of the topics can be done simultaneously by
di�erent members of the team so as to multitask. We suggest that you follow a strict
approach through these notes and that you read before you make a mistake.

� Chapter 1 is an introduction to the course. It contains all the administrative
information you need.

� Chapter 2 contains the rules and guidelines for this year's contest.

� Chapter 3 explains good assembly technique and how to determine di�erent
component types.

� Chapter 4 is the assembly manual for nearly all of the components used to
construct a 6.270 robot|including the printed circuit boards, electronic sensors,
motors, and battery packs.

� Chapter 5 delves into various robotic sensors, explaining the principles of op-
eration and applications of various sensors in the 6.270 kit. This section also
include assembly instructions for the sensors.

� Chapter 6 is a reference manual for the C language software that has been
developed for the 6.270 contest.

� Chapter 7 is a chapter which will help you get started with designing your
LEGO robot. It goes into to intricacies of building strong LEGO machines.

� Chapter 8 investigates how to program a mobile robot to face up to the uncer-
tainties and challenges of practical operation.

Three appendix sections provide additional material:
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� Appendix A explains the workings of the 6.270 hardware, including the micro-
processor board, the expansion board, and the infrared circuitry. This section
is written with the assumption of some prior background in electronics.

� Appendix B contains copies of the printed circuit board artwork patterns for
the 6.270 Rev. 2.21 boards.

� Appendix C discusses battery technology and battery charger operation.
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Chapter 1

Introduction to 6.270

6.270 is a hands-on, learn-by-doing class in which participants design and build a robot
that will play in a competition at the end of IAP. The goal for the students is to design
a machine that will be able to navigate its way around the playing surface, recognize
other opponents, and manipulate game objects. Unlike the machines in Introduction
to Design (2.70), 6.270 robots are totally autonomous, so once a round begins, there
is no human intervention (in 2.70 the machines are controlled by joystick).

The goal of 6.270 is to teach students about robotic design by giving them the
hardware, software, and information they need to design, build, and debug their own
robot. The subject includes concepts and applications that are related to various MIT
classes (e.g. 6.001, 6.002, 6.004, and 2.70). However, there are no formal prerequisites
for 6.270. We've found that people can learn everything they need to know by working
with each other, being introduced to some material in class, and mostly, by hacking on
their robots. All undergraduate students, from freshmen to seniors, are encouraged
to register and take the class.

One caveat: 6.270 does require that you be psyched to put forth a real e�ort! We
expect most students to spend about eighty hours over the month of IAP building
their robots. Other commitments during the month of IAP are not recommended.
We've also noticed that people who make a real commitment to the class are more
con�dent, feel more involved, and have a lot more fun. So, if you are going to take
6.270, be ready for a month-long immersion into robotics!

1.1 Registration Policy

Registration in the class is limited to forty (40) teams. We would accept more students
if resources permitted, but they do not.

All entrants will be organized into teams. There are a couple of reasons for this.
First, we �nd that people learn a lot in the close and intense relationship of a small
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team. Second, we think the class would be too much work for one person to handle
alone.

This class will take up enough of your time that you will not be able to work
on other projects such as another course, UROP, or Thesis. Past students that have
tried to do several time consuming projects have usually dropped out of the subject,
or have not been able to produce a working robot. This year the duration of the
subject will be shorter than past years because of the shortening of the IAP period
so it is especially important you estimate the amount of time you will have before
registering.

You are encouraged to form a team of two to three people and register together.
You may also register alone, in which case we will �nd you a team with two other
people.

1.2 Kit Fee and Toolkit Fee

Your 6.270 kit, which is yours to keep at the end of the contest, is valued at about
$750. The class is mostly �nanced by our commercial sponsors (namely Microsoft,
Motorola, LEGO, Hawker, and Polaroid) and Course Six, but part of the budget is
derived from the entry fee.

The team will be required to forfeit the kit back to the EECS department if it
fails to present something to the organizers by the preliminary round of the contest
(Monday, January 27th). Teams that do not return their kit once it is forfeited or
lose their kit will be charged the full $750 for the kit through the Bursar's o�ce.

Separate from the 6.270 kit, a complete set of electronic hand tools will be reserved
for purchase by your team. This kit will include a soldering iron, diagonal cutters,
long nose pliers, wire strippers, a multimeter, and several other useful implements.

The 6.270 tool kit will have a retail value between $75 and $100; we expect
to sell the kits for between $50 and $60 (we can give you these prices due to the
quantity discounts we get in purchasing for the class). You will be expected to either
provide your own electronic assembly tools or purchase the standard tool kit. It is
very important that you have a good set of tools to work with. You will save many
hours of debugging and frustration if you use good tools and assemble the material
carefully. A sharp tipped soldering iron is essential to assembling your microprocessor
board.

A �nal word about contest costs: if it is di�cult for you to a�ord the contest costs,
both the 6.270 kit and the toolkit are returnable (if in good condition) for a refund. If
you would like to take the class, but you cannot a�ord to put up the money to register
for the class and buy the toolkit, come talk to the organizers. We can probably work
something out. Cost should not be a factor in determining whether you are able to
take the course.
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1.3 Credit Guidelines

6.270 is o�ered as MIT subject 6.190 for six units of Pass/Fail credit. Taking the
class for credit is optional. You will be doing a lot of work in the class regardless;
if you sign up for credit you will get o�cial recognition for taking the class. If you
sign up for credit but then do not complete the requirement, your registration will be
dropped; it will be as if you never signed up in the �rst place.

Our job as instructors is to ensure that credit is properly awarded to students
deserving of it. Our basic assumption is that anyone who is in the class is going to
be doing a lot of work; the guidelines should add only a little bit of overhead to you
in reporting your work to us. Hopefully, you may even learn a little more by going
through the process of reporting on your progress.

1.3.1 Credit Guidelines

The following requirements for credit have been established:

� Individual Journal Reports.

Each individual desiring credit must turn in a journal report that will be due on
Thursday, January 30th. The journals are meant to help you with your thought
processes. You should try to make an entry every day or every other day. The
journals should include:

{ ideas that you have contributed to the development of the robot;

{ what management techniques your team is using;

{ strategies you have thought of;

{ problems you have encountered;

{ actual construction work, programming, or other tangible results.

These ideas are examples of thoughts you might include. You are free to include
anything else you think is appropriate. Pictures are a good way to try to convey
your ideas and for reference.

After the contest is over, you can pick up your journals to think about your
ideas.

The purpose of the individual journal is to get a sense of what each person on
a team is contributing to the design, so it's important to make sure we know
what you've done.
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� Team Video Reports.

In addition to the individual reports, a team video report will be made once
per week.

A video station will be set up in the 6.270 lab area. To make your report, you
and your team can simply go to the camera and make a brief presentation on
the status of your robot. This presentation should focus on issues that the team
has worked on together, such as the current state of the robot, the strategy of
the robot, and how the team arrived at a consensus (or not!) on particular
issues.

Hopefully, the video station concept will make the design reporting a fun and
painless process. Any ideas presented to the camera will remain con�dential for
the duration of the contest.

� Recitation Attendance. You must attend at least three of the four meetings
for your recitation section.

� Completed Robot. Your team must \show" a robot the day of Round 1. Its
functionality (or lack thereof) has no a�ect on your receiving credit for the work
you have done; the combination of the individual journals, the video reports,
and class participation will be the main indicators of your involvement.

� Program Listing. You must turn in a copy of the program that your robot
uses in the contest.

These subject requirements are meant to be useful to both you, the class par-
ticipant, and the instructors, who will be authorizing credit. You should have no
problem at all receiving credit if all of the requirements are satis�ed. If you have any
questions about your standing in the subject at any time, feel free to ask any of the
instructors for feedback.

Please note that there is no leeway on any of the due dates, due to the
scheduling constraints of the Registrar and the sanity of the organizers.
Please do not ask for extensions.

1.3.2 Design Units

Since design is an important factor in 6.270, the EECS department will be o�ering
6 design units for EECS students that take 6.270. There are some guidelines and
requirements for getting the design units.

First you must complete all the requirements to get credit for the course. It will
come on your transcript. At the end of the contest, you must do an evaluation of your
robot. In all design processes there should be some type of evaluation and redesign.
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You will need to submit a 5-10 page paper. The paper should include, but need not
be limited to, the following:

� An overall summary of your robot. This could include pictures or drawings.

� An evaluation of your robot's performance.

� Your individual redesign of the robot. If you were given an opportunity to retake
the course with the same goals how would you make your robot di�erent?

� Possible design 
aws in the goals of the contest.

This paper should be submitted by Monday, February 24th to the EECS under-
graduate o�ce. The papers should be your individual evaluations, and not a general
group evaluation.

1.4 Schedule

The schedule of activities between the start of IAP and the eve of the contest is very
tight. You will have to work steadily and with determination to produce a working
machine by the end of the course. In no fashion do we, the contest organizers, say that
this course is not time consuming! In fact, we believe that you should be spending
somewhere between 30 and 40 hours a week on average. However, since it is IAP, we
can assume it is the main timesink you've signed up for.

There will be about 120 students taking the 1997 6.270 course, making it one of
the largest courses taught during IAP. Since much of the learning, we believe, occurs
with hands-on instruction, the class will be too large as a whole to teach on this basis.
Therefore we have several class meeting formats, including lectures, recitations, lab
demos, and lab sessions.

We recommend that you attend all of the lectures and recitations (for the section
you are in) and be on time. We will deal with administrative and \bug �x" matters
at the beginning of each meeting.

To make the course more personal, each organizer and TA will be the primary
advisor for about 8 teams. The TA and organizer pair will be similar to the recitation
instructor and TA pair you have in your normal classes. While these people are your
primary advisors, you can approach anyone with questions you may have.

It is imperative that you check your e-mail often. Most notices will be posted
through electronic mail. In addition, we will mention these notices in labs and lec-
tures. You should check your mail at least once a day, if not more. This is the best
way we can get in touch with the whole class on short notice.



6 CHAPTER 1. INTRODUCTION TO 6.270

� General Lectures The objective of the general lectures is to introduce you
to the basics of the course. These sessions will try to give you an overview of
the course and what you will be doing. The lectures will take place during the
�rst week of the course. Since the students in this class typically have widely
varying experience with the material, we will try to keep the lectures as general
as possible.

The lectures will also show you where to �nd advanced topics and more detailed
answers for ambitious teams. There will be �ve basic lectures, from two to three
hours each, to be held in 34-101. Check the schedule below for times and dates.
It is important that you attend these lectures because they will give you the
essential starting blocks.

� Catch-Up IC Session This is a general lecture for students who have had no
C programming experience. We will go over the basics of the C language in
particular how it applies to the IC language which will be used in the course.
The main purpose of this lecture is to introduce basic concepts like variables,
functions, and syntax. The lecture will be held in 34-101 on Thursday, January
9th at 12:00 PM.

� Recitations Detailed material will be presented in recitations rather than in
lectures, to encourage a more interactive format. There will be several recitation
sections, led by someone who has already taken 6.270 so they can tell you about
their experiences and how to avoid the 6.270 pitfalls. The recitation leader will
usually be one of your TA's or an organizer.

The size of the recitation will be between 5 and 6 teams. The recitations
are meant for group discussions, thinking about problems, sharing ideas, and
experimenting. Many of the recitations will have hands-on experiments and will
require you to have built sensors and motors.

Recitations will be held during the second and third weeks of the course. There
will be two recitations per week. The schedule for the recitations will be dis-
cussed during the �rst lecture.

� Laboratory Sessions This is supervised time for building your robot. Lab
time will be critical when working on your circuit boards. After that, building
motors and sensors will be important. During the �nal week, testing machines
on the table will be the focus of lab activity.

There will be smaller lab discussions where the TA's will give ideas on mounting
sensors, soldering, programming, and general construction. It is also a good idea
to use the lab facilities because there will be people there who can help you with
your ideas. One of the goals of 6.270 is to teach interactively, and by working
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in the labs you will be able to share ideas with other people and experiment
with ideas you may not have thought of.

Labs will be held on the 6th 
oor of building 38. They will be open from 8:45
AM to 11:45 PM during the weekdays, and noon to 10:00 PM on Saturday and
Sunday. The �nal few days of the course, the lab will be open 24 hours.

1.4.1 Important Dates

Before reading the listing of the full month of meetings, please note the following very
important meetings:

Parts-Sorting Session. Attendance at this session is mandatory: each team must
provide one person-hour of manual labor helping to sort out the kit parts.
Usually this session is a lot of fun as you get to meet other people in the class
and see all of the electronic goodies.

Date, Time, and Place: Sunday, January 5th, 1:00 pm, Room 38-201 (The
Chu Lounge).

O�cial Orientation Meeting. Attendance at this session is mandatory: each team
must have at least 50% of its members in attendance. In this session, we will
go over the contest rules and organization of the class, and hand out the kits.

Date, Time, and Place: Monday, January 6th, 10:00 am to 1:00 pm, Room
34-101.

The Contest, First Round. Your machine must compete in the �rst round to
qualify for the second round.

Date, Time, and Place: Monday, January 27th, 6:00 pm, Room 26-100.

Robot Impounding. All work on robots will cease one day after the �rst round.
All robots, including the ones that haven't made it past the second round will
be impounded in 38-600.

Date, Time, and Place: Tuesday, January 28th, 6:00 pm, Room 38-600 (the
lab).

The Contest, Second Round The second round of the double elimination contest
will take place. There should be TV cameras to cover the event for local TV.

Date, Time, and Place: Wednesday, January 29th, 11:00 am, Room 26-100, if
necessary.
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The Contest, Final Round. Robots will be released from impoundment at 10:00
am, on Wednesday, January 29th. You must check your robot into 26-100 by
10:30 am. Good luck!

Date, Time, and Place: Wednesday, January 29th, 6:00 pm, Room 26-100.

1.4.2 Progress Schedule

The time allocated for the 6.270 course is short. There are only 21 days between the
day you get your kit and the preliminary contest. It is therefore imperative that you
set a personal schedule with goals before you begin the course. You may want to
distribute the work among the team members in order to optimize team productivity.

Here is a checklist of important tasks you will need to do in order to make a
working robot with the completion dates to prevent end of IAP stress:


 Course Notes Read the Course notes as soon as possible. All of the details
covered in class will be in the course notes. They contain the administrative
material as well. You should read this by the end of the �rst week, Friday,
January 10th. If you come and ask us a question without reading the notes,
we will be more hesitant to answer your question.


 Microprocessor Board The assembly of the microprocessor board should
take between 10-15 hours for someone who has not soldered before. You should
complete soldering by the morning of Wednesday, January 8th.


 Sensor Assembly You should assemble your sensors early so that you can
play around with them. This will take you about one day. Soldering the sensors
together and testing their properties should be done by Friday, January 10th.


 Motor Assembly You should \LEGOize" at least two motors so you can build
a simple bot. By building a simple gearing mechanism early, you can test out
the properties of the motor such as the torque and speed. We expect you to
have simple gear assemblies being controlled by the microprocessor board by
the evening of Friday, January 10th.


 Strategy By the beginning to the middle of the second week your team should
formulate a strategy for your robot. In the past teams have spent many days
pondering over strategies. The indecisiveness usually leads to panic during
the last week. You should get a strategy and stick with it rather than trying
to restructure your strategy every day. To be at a reasonable pace, without
too much stress at the end, you should have a de�ned strategy by Monday,
January 13rd.
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 Simple TasksWhile you are formulating your strategy, your robot will need to
do some simple tasks depending on the contest. You should use your simple bot
and sensors to program these tasks. The tasks will be discussed in recitation.
You should formulate your strategy, depending on how easy these task are. The
tasks should be tested by Wednesday, January 15th.


 Structure of Robot During the �rst week, your team should \fool around"
with the LEGO to get familiar with the structural properties. Once you have
decided upon a strategy, you should complete the actual robot, with motor
attachments and sensors by Friday, January 17th.


 Programming This is where you will have to tie everything together. You will
need to combine your strategy, sensors, and robot to make the robot do what
you want it to do. Do not underestimate the amount of time needed for this
activity. Hopefully the simple tasks that you had a simple robot do during the
�rst week will �t into your strategy. Complete your basic program by Tuesday,
January 21st.


 Debugging and Testing. Your code probably won't work perfectly the �rst
time you try it out. You should spend a few days testing out the machine and
�xing any quirks it may have. This will be the long and tedious process of �ne
tuning your machine. By Friday, January 24th, you should have a pretty
robust machine.


 Mock Contest We will hold a mock contest on the afternoon of Saturday,
January 25th so that you can see how your machine performs against other
machines. It is advisable to try your machine against other machines before
this day.


 Final RevisionsThe �nal �ne tuning of the machines can be done onMonday,
January 27th.

Many of the teams that have done well in the past have been teams that have
completed a �nal design and strategy early, and have left time to debug the machine.
When the course is four weeks long, teams have the tendency to take the second week
o� because they feel they are ahead, and that programming is a cinch. Be aware,
though, that you will want as much time as possible for debugging.
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6.270 1997 Schedule: Week 1
Time Monday 1/6 Tuesday 1/7 Wednesday 1/18 Thursday 1/9 Friday 1/10

10:00

11:00

12:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

Opening Lecture

34-101

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Beginners’ C

34-101

Lab Hours

6.111 Lab

38-6th floor
(go up in 36) Lecture #2

34-101

Lecture #3

34-101

Lecture #4

34-101

Lecture #5

34-101

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

General Information
Distribute Kits
Video Presentation

Soldering Demos
Offered Periodically

Team Organization
The Board, Demos
Brainstorming

Sensors, Batteries,
Motors, and LEGO

Software
Welcome to IC

Integrating Systems
Control Theory

Soldering Demos
Offered Periodically

LEGO Lab

LEGO Lab
Group 1   34-301

Group 2   34-302

LEGO Lab

LEGO Lab
Group 1   34-301

Group 2   34-302

Solder boards Finish soldering
boards

Begin wiring
motors and sensors

Experiment with
LEGOs

Experiment with
sensors and the
processor board

Begin programming
simple tasks

Begin geartrain and
chasis design

Build simple robots Do video report #1
over the weekend!
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6.270 1997 Schedule: Week 2
Time Monday 1/13 Tuesday 1/14 Wednesday 1/15 Thursday 1/16 Friday 1/17

10:00

11:00

12:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Recitation #1
Group 1   34-301

Recitation #1

Recitation #1 Recitation #1

Recitation #1 Recitation #1

Recitation #1 Recitation #1

Recitation #2 Recitation #2

Recitation #2 Recitation #2

Recitation #2 Recitation #2

Recitation #2 Recitation #2

Group 2   34-302

Group 3   34-301

Group 4   34-302

Group 5   34-301

Group 6   34-302

Group 7   34-301

Group 8   34-302

Group 1   34-301

Group 2   34-302

Group 3   34-301

Group 4   34-302

Group 5   34-301

Group 6   34-302

Group 7   34-301

Group 8   34-302

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Finish construction
of robot

Finalize strategy Begin integration of
software, mechanics,
and sensors.Finish testing

simple programs

Start programming
for final strategy

Do video report #2
over the weekend!
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6.270 1997 Schedule: Week 3
Time Monday 1/20 Tuesday 1/21 Wednesday 1/22 Thursday 1/23 Friday 1/24

10:00

11:00

12:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Recitation #3
Group 1   34-301

Recitation #3

Recitation #3 Recitation #3

Recitation #3 Recitation #3

Recitation #3 Recitation #3

Recitation #4 Recitation #4

Recitation #4 Recitation #4

Recitation #4 Recitation #4

Recitation #4 Recitation #4

Group 2   34-302

Group 3   34-301

Group 4   34-302

Group 5   34-301

Group 6   34-302

Group 7   34-301

Group 8   34-302

Group 1   34-301

Group 2   34-302

Group 3   34-301

Group 4   34-302

Group 5   34-301

Group 6   34-302

Group 7   34-301

Group 8   34-302

Finish your robot

H
ol

id
ay

 -
 L

ab
 C

lo
se

d

Test your robot
against others on
the table in lab

Do video report #3
over the weekend!

Mock contest
Saturday or Sunday!
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6.270 1997 Schedule: Week 4
Time Monday 1/27 Tuesday 1/28 Wednesday 1/29 Thursday 1/30 Friday 1/31

10:00

11:00

12:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Pick up Robots

Robot Check-in

Round Two

26-100

Impounding Final Contest

26-100

Lab Hours

6.111 Lab

38-6th floor
(go up in 36)

Round 1

All Robots Must

Be Here!

26-100

Get some sleep!

Get some sleep!

PARTY!

Cleanup

6.111 Lab

1 person-hour
per team required

Final bug fixes Last chance lab! Turn in journals
and videos
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1.5 Computer Facilities

In this course you will have access to several types of computer facilities. Speci�cs
will be covered in lecture. There is one main facility: the 6th 
oor lab in building 38.
This facility will have playing �elds so that you can debug your machine while you
edit your code. You can download code to your robots at other Athena machines,
but you may need a special connector. We recommend that you do most of your
debugging at this facility.

1.5.1 6th Floor Laboratory

This area has some Athena machines, which can be used for your purposes. The
machines are located near workbenches so you can �x any hardware problems. This
is the only computer location where you may solder, build, glue, or cut hardware. All
hardware work must be done at the benches and not at the Athena terminals. The
terminals will already have their own cables, and you will not need to remove them.
There is to be no eating or drinking in the lab; you may do so in the hallways outside,
but food will not be tolerated in the lab itself.

1.5.2 Athena Clusters

In all Athena locations, there is to be NO soldering, cutting, or gluing in the cluster.
If anyone is caught doing any of these tasks, not only will you be asked to leave the
cluster, but you will also be required to return your 6.270 kit and you will be thrown
out of the course. There are no exceptions to the rule. Debris from cutting wire,
soldering, or gluing can get lodged inside the keyboards and short something.

1.5.3 Athena Etiquette

If you use other Athena clusters please follow the following rules so that 6.270 is not
looked down upon.

� Noise Your machines will be quite noisy. If there are lots of people working in
the cluster who are trying to get work done, please minimize the machine usage,
or move to another cluster.

� Tidiness Don't leave your stu� lying around all over the place. Other people
have to work and move around.

� Hardware Don't solder, glue, or cut any hardware in the clusters. If things go
wrong because of this, 6.270 as a whole may su�er, and we may be denied access
to Athena machines in the future.
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� Locked Screens Don't leave your screen locked for long periods of time. Towards
the end of the month, we will need every available machine. If you lock your
screen for more than 20 minutes, we will log you out.

� Multiple Machines Don't log on at multiple machines. Also try to minimize the
number of people in your team that are logged on. If everyone logs on, then we
will need three times as many machines to download to the robots.

If there are any complaints about 6.270 people working in any of the clusters, we
will have to make external Athena clusters o� limits. Violation of the rules will not
be tolerated and we will be enforcing them strictly.
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Chapter 2

RoboRats

Night falls on Vassar Street. You awake from your nest under the train
tracks, stretch out your long body, yawn (displaying your four long teeth),
and groom yourself for the coming night. Scraping your forepaws' nails
through your fur you groom your left rear leg, right rear leg, back (twisting
all the way around), right fore arm, left fore arm, behind the ears, over
your face. Standing up on your hind legs, your whiskers twitch as you get
your bearings and survey the environment. That's right, you're a rat.

You notice that there's some food scattered around your nest. There's a
mound of garbage in a straight shot to a neighboring family's nest. There's
food near to their nest too, but perhaps you can beat your neighbors to the
food near their nest, then gather the ones around your nest later. But rats
aren't that stupid, and you quickly realize that your neighbor could do the
same. However, the mound of garbage catches your eye. If it were less
stable to travel on, the neighbors couldn't get to your food so easily. You
ponder this for a moment and then realize:

Rats eat garbage!

The contest for the 1997 6.270 contest is RoboRats. The scenario is this: you
are a rat. You want food. You want lots of food. In fact, you want to have more food
than any other rat. Of course, the goal is simple, but there are a few details you need
to examine to fully appreciate the simplicity and complexity of the contest.

2.1 The Table

The layout of the contest table is shown in Figure 2.1. The table, overall, is 4 feet by
10 feet 8 inches, and the base color of the table is white. As you can see, the table

17
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4" 8" 1’ 2’ Blocks

Starting circle (with light)

Black line (on floor)

Raised surface (hill, platforms)

Left side

Right side

Hill Ramp

Figure 2.1: The contest table for RoboRats

is symmetric as viewed from each side's starting circle, thus we shall concentrate the
description on only one half of the table.

The starting circle is positioned in the center of the table, 9 inches from the back
edge of the board. It is 18 inches in diameter with the circle just tangent to the center
of the back edge of the table. There is a starting light array, which is about 3 inches
in diameter, at the center of the circle.

Forming a box (with the back edge), in which the starting circle is inscribed,
are three black lines, each 2 inches wide. A black line down the center of the table
connects this box with the matching box on the other end. A food cube will be placed
along this line, halfway to the hill (see below). An additional food cube will be placed
between this one and each side wall, centered on a 3 inch by 3 inch black square. In
addition, a line extends from each of the two other sides to the corresponding edge
of the table. Again, food cubes will be placed at the middle of these lines.

Along the back edge of the table, is a raised scoring platform 4 inches deep and 3
inches tall. Two food cubes will initially be placed on the platform.

In the center of the table there is a hill, which is 2 inches tall, 12 inches wide
(towards the sides of the table), and 24 inches long. At each end there is a 6 inch
long ramp down to the table surface. A food cube will be placed on the center of the
hill. A 12 inch by 4 inch section of each side of the hill will be �lled with a 6 by 2
group of food cubes.

Along the edges of the table nearest the hill will be additional raised platforms,
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2"

2"

3/4"

2"

3/4"

Figure 2.2: A food cube (holes not to scale)

here 3 inches deep (except at the ends, where they slope to join the edge of the table)
and half an inch tall. Each of these platforms will be 36 inches long, including 6
inches at each end where they are sloping to the table edge. Two food cubes will be
placed on each platform, one towards each end.

Each side has seven food cubes that are considered to be \owned" by the side that
they begin on (and they will be colored as such). The cubes in the center area of the
board are considered \unowned" and will have a third color.

The food cubes (see Figure 2.2) are made of a foam rubber block 2 inches in each
dimension. The cubes also have a three-quarter inch diameter hole drilled through
them along each major axis in the center of the appropriate cube faces.

2.2 Scoring

The score of each individual rat is determined by the end state of contest board. Each
rat receives points for collecting and storing food cubes. The scoring is summarized
in Table 2.1.

A food cube is considered to be in the possession of your robot if, if your robot
were moved in the plane of the table, the cube would move with the robot. A food
cube is considered to be on the scoring platform if it is directly in contact with the
platform and can stay on the platform without support. A cube which is in the
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Cube Type In Your Robot On Your Platform

Yours 2 4
Center 3 6

Opponent's 4 8

Table 2.1: Scoring summary

possession of your robot as well as being on a platform scores points for being on the
platform but not for being in your possession.

Each food cube from the center area which is in your possession at the end of the
round is worth three points. Each cube from your side of the table in your possession
is worth two points, and each cube from the other side of the table in your possession
is worth four points. Cubes on your platform at the end of the round are worth twice
as much as if they were in your possession.

Note that the initial table con�guration scores 4 points for each side, so ending
up with this con�guration (without scoring other points) is not su�cient to pass the
qualifying round.

2.3 Period of Play

� The contestants will have 30 seconds to place their machines on the �eld from
the time they are called to the playing �eld.

� The contestants will place the machines on the playing �eld within the desig-
nated starting circles. The starting orientation for the round will be randomly
selected by the judges from 4 discrete directions. Both machines will have the
same orientation.

� Each machine must have a clearly marked \forward" direction which must point
in the direction indicated by the judges at the start of the round.

� Each machine must have a clearly marked \center" point which must be above
the starting light at the start of each round.

� The contestants must stand a given distance away from the playing �eld. Any
contestant who touches his or her machine or otherwise a�ects its performance
during the round of play will automatically disqualify his or her robot from the
round. All robots must be solely controlled by their onboard computers.
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� The beginning of a round is signalled by the judges turning on the starting
lights. The lights are located underneath the table in the center of the robots'
starting circles and will remain on for the duration of the round.

� The machines must have their own internal clock (software will be provided to
do this) that cuts o� power to the motors at the end of 60 seconds. Any machine
that continues to supply actuator power after 60 seconds will be disquali�ed.

� The round ends when all machines and other objects on the table come to rest.

2.4 The Competition

� The contest will be an double elimination competition held over two days (three
sets of rounds). Machines must qualify for the �nal night of competition, as
follows:

{ Round 1. All machines will play in a qualifying round. If a machine
demonstrates the ability to score points, it will proceed to the next rounds
of the contest, regardless of a win or loss. If a machine fails to do this,
modi�cations may be made, and it will have two chances to run against an
inert placebo. If it cannot win against the inert placebo after two tries, it
will not qualify for the rest of the contest. Losses from round 1 do count
and carry through the rest of the contest.

{ Round 2. Only qualifying robots will play in the second round. Robots
which lost in round 1 will be eliminated from competition should they lose
in this round as well. Round 2 may be skipped this year if few enough
robots make it past round 1.

{ Final Contest. The main competition. Machines will play until they ac-
cumulate two losses. Losses against opponents from rounds 1 and 2 still
count. Robots with interesting behavior which have not quali�ed or have
been eliminated in rounds 1 and 2 may have an opportunity to perform
between actual contest rounds.

The �nal round of competition may be conducted in round-robin format,
ignoring previous losses, at the discretion of the organizers.

� All rounds will have two robot players. If necessary, a placebo will be used for
one player in some rounds.

� In rounds involving a placebo, the contestant's robot must win by at least one
point in order to be declared the winner of that round.
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� If there is a tie score at the end of a round, the judges may award either a
double win or a double loss.

2.5 Infrared Beacon and Light Sources

All robots are required to carry an infrared transmitter. This transmitter acts as a
beacon so that robots can locate each other on the playing �eld. The following rules
describe the functionality of the infrared beacon.

� All entries must carry an infrared beacon that is capable of broadcasting infrared
(IR) light modulated at either 100 Hertz or 125 Hertz with a 40,000 Hertz carrier
(hardware and software is provided to do this).

� Machines failing to meet the infrared transmission speci�cation, or in any way
modifying or jamming their transmission frequency during the round of play
will be disquali�ed.

� Judges will assign frequencies for IR emitters to the machines in the beginning
of each round. Contestants should set this using the robot's DIP switch 1. If
the switch is one, the robot should broadcast 100 Hertz infrared light. If the
switch is zero, the robot should broadcast 125 Hertz infrared light. Software
will be provided to do this.

� The IR broadcasting beacon must be located at between 17 and 18 inches above
the surface of the playing �eld when mounted on the robot.

� The beacon must be located so that its center is never more than four inches
(measured horizontally) from the geometric center of the microprocessor board.

� The beacon may not be deliberately obstructed, or be designed in such a way
that \accidental" obstructions are probable. Because of this, robots may not
extend farther than 16.5 inches vertically (and should avoid lifting objects above
16.5 inches o� above table).

� A polarized light lamp will be placed behind each end of the table. The lamp
near the robot transmitting 100 Hertz IR will have a +45 degree (with respect
to the vertical) polarization, while the lamp near the robot transmitting 125
Hertz IR will have a �45 degree polarization.
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2.6 Structure

� All kits contain exactly the same components, with the exception of some LEGO
parts that may be colored di�erently in di�erent kits.

� Only LEGO parts and connectors may be used as robot structure.

� LEGO pieces may not be joined by adhesive.

� LEGO pieces may not be altered in any way, with the following exceptions:

1. The grey or green LEGO baseplate may be altered freely.

2. LEGO pieces may be modi�ed to facilitate the mounting of sensors and
actuators.

3. LEGO pieces may be modi�ed to perform a function directly related to
the operation of a sensor. For example, holes may be drilled into a LEGO
wheel to help make an optical shaft encoder.

� String may not be used for structural purposes.

� The wooden dowel may be used only as a tower to mount the infrared trans-
mitters and any receivers.

� Any non-LEGO part may be attached to at most �ve LEGO parts.

� A reasonable amount of cardboard, other paper products, and tape may be used
for the purpose of creating optical shields for light sensors. The shield may not
obstruct IR transmission. Please ask TAs or organizers if you would like ruling
on your particular shield.

� Wire may only be used for electrical, and not structural, purposes.

� Rubber bands may be glued to LEGO wheels or gears to increase the coe�cient
of friction.

� Only the thin rubber bands may be used to provide stored energy.

� Contestants may not alter the structure of their entry once the contest has
begun, but may repair broken components between rounds if time permits.

� Contestants may not alter the program being used by their entry once the
contest has begun, except by setting DIP switch 1 as described above.
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� At the start of each round, each robot must �t within a one foot cube. The
broadcast and detection beacon may extend above one foot. Wires may be
compressed, if necessary in order to �t. Entries may, however, expand once the
round has begun.

� Entries may not drag wires between two or more structurally separate parts of
their robot.

� No lubricants may be used.

� Cable ties may not be used for structural purposes.

� Some parts in the 6.270 kit are considered tools and may not be used on the
robot. If there is any question about whether an object is a \kit part" or a
\tool part," ask the organizers.

� No parts or substances may be deliberately dumped, deposited, or otherwise
left to remain on the playing surface. A machine that appears to have been
designed to perform such a function will be disquali�ed.

� Any machine that appears to be a safety hazard will be disquali�ed from the
competition.

� Machines are not allowed to destroy, or attempt to destroy, their opponent's
microprocessor board or infrared beacon.

2.6.1 The $10 Electronics Rule

To encourage creativity, contestants may spend up to $10 of their own funds for the
purchase of additional electronic components used in their design. Other than this
rule, robots must be designed completely from standard kit parts. The following
conditions apply to all non-kit-standard electronic additions:

� The following components, categories of components, or varieties of circuitry
are disallowed:

{ Batteries of any variety.

{ Motor driver circuitry, including relays, power transistors, or any other
replacements or modi�cations to the standard motor driver circuitry.

{ Microprocessors of any kind.

� Resistors rated less than 1 watt and capacitors valued less than 100 �F may be
used freely, without accounting toward the $10 total.
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� Contestants who add any non-kit parts to their project must turn in a design
report that includes: description of the modi�cation, schematic of all added
circuitry, and store receipts for parts purchases. This design report must be
turned in to the organizers with the robot at impounding time. Any machines
found with added circuitry that has not been documented in this fashion will be
disquali�ed.

� If a contestant wishes to use an electronic part which has been obtained through
other means than retail purchase, an equivalent cost value to the part will
be assigned by the organizers. Contestants must obtain this cost estimate in
writing from the organizers and include it in the design report mentioned above.

The main reason for this rule is to allow contestants to explore new ways for
sensing, and create new sensors.

2.7 Organizers

Contestants may approach the organizers in privacy to consult about possible designs
that may be questionable under the rules listed above. These designs will not be
divulged to any of the other contestants. You can send e-mail to 6.270-organizers

for any rule clari�cations.
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Chapter 3

Electronic Assembly Technique

3.1 Electronic Assembly Technique

If there are places in life where \neatness counts," electronic assembly is one of them.
A neatly built and carefully soldered board will perform well for years; a sloppily
and hastily assembled board will cause ongoing problems and failures on inopportune
occasions.

This section will cover the basics of electronic assembly: proper soldering tech-
nique, component mounting technique, and component polarities.

By following the instructions and guidelines presented here, you will make your
life more enjoyable when debugging time rolls around. A rule of thumb is that a job
may take one hour to solder, but if there is a mistake, it takes 3 hours to undo. A
little extra care will save you time in the long run.

3.1.1 Soldering Technique

Figure 3.1 shows proper soldering technique. The diagram shows the tip of the
soldering iron being inserted into the joint such that it touches both the lead being
soldered and the surface of the PC board.

Then, solder is applied into the joint, not to the iron directly. This way, the solder
is melted by the joint, and both metal surfaces of the joint (the lead and the PC pad)
are heated to the necessary temperature to bond chemically with the solder. The
solder will melt into the hole and should �ll the hole entirely. Air or gaps in the hole
can cause static discharges which may damage some components.

Figure 3.2 shows the typical result of a bad solder joint. This �gure shows what
happens if the solder is \painted" onto the joint after being applied to the iron
directly. The solder has \balled up," refusing to bond with the pad (which did not
receive enough heat from the iron).

27



28 CHAPTER 3. ELECTRONIC ASSEMBLY TECHNIQUE

Soldering iron positioned
so that tip touches both the pad
on the PC board and the component
lead coming through the hole

Feed solder on opposite side
from soldering iron so that
the solder is melted into
the joint.

Figure 3.1: Proper Soldering Technique

If you feed the solder into the
soldering iron rather than the joint,
the solder will ball up, refusing to
bond with the improperly heated
PC board pad.

Figure 3.2: Improper Soldering Technique
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With this technique in mind, please read the following list of pointers about elec-
tronics assembly. All of these items are important and will help develop good skills
in assembly:

1. Keep the soldering iron tips away from everything except the point to be sol-
dered. The iron is hot and can easily damage parts, cause burns, or even start
a �re. Keep the soldering iron in its holder when it is not being held.

2. Make sure that there is a damp sponge available used for cleaning o� and tinning
the tip. Soldering is basically a chemical process and even a small amount of
contaminants can prevent a good joint from being made.

3. Always make sure that the tip is tinned when the iron is on. Tinning protects
the tip and improves heat transfer.

To tin the iron, clean the tip and wipe it on a damp sponge and then immediately
melt some fresh solder onto the tip. The tip should be shiny and coated with
solder.

If the iron has been idle for a while, always clean and then re-tin the tip before
continuing.

4. The tips of the irons are nickel-plated, so do not �le them or the protective
plating on the tips will be removed.

5. A cold solder joint is a joint where an air bubble or other impurity has entered
the joint during cooling. Cold solder joints can be identi�ed by their dull and
mottled �nish. The solder does not 
ow and wrap around the terminal like it
should.

Cold joints are brittle and make poor electrical connection. To �x such a joint,
apply the tip at the joint until the solder re-melts and 
ows into the terminal.
If a cold solder joint reappears, remove solder with desoldering pump, and re-
solder the joint.

6. Do not hold the iron against the joint for an extended period of time (more than
10 seconds), since many electronic components or the printed circuit board itself
can be damaged by prolonged, excessive heat. Too much heat can cause the
traces on the printed circuit board to burn o�.

Diodes, ICs, and transistors are particularly sensitive to heat damage.

7. It is good practice to tin stranded wire before soldering to other components.
To tin the wire, �rst strip the insulation and twist the strands. Apply heat with
the soldering iron and let the solder 
ow between the strands.
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8. After a component has been soldered, clip the component's leads (wires coming
out of the component) away from the printed circuit board. Leave about a 1

8

00

of the lead sticking out of the board. When clipping the leads, face the board
and the lead down into a garbage bag or into your hand. Leads tend to shoot o�
at high speeds, and can 
y into someone's eye.

3.1.2 Desoldering Technique

It takes about ten times as long to desolder a component than it did to solder it in the
�rst place. This is a good reason to be careful and take one's time when assembling
boards; however, errors will inevitably occur, and it's important to know how to �x
them.

The primary reasons for performing desoldering are removing an incorrectly-placed
component, removing a burnt-out component, and removing solder from a cold solder
joint to try again with fresh solder.

Two methods of desoldering are most common: desoldering pumps and desoldering
wick. Both of these are available from the 6.270 sta�.

To use a desoldering pump, �rst load the pump by depressing the plunger until
it latches. Grasp the pump in one hand and the soldering iron the other, and apply
heat to the bad joint. When the solder melts, quickly remove the soldering iron and
bring in the pump in one continuous motion. Trigger the pump to suck up the solder
while it is still molten.

Adding additional solder to a troublesome joint can be helpful in removing the
last traces of solder. This works because the additional solder helps the heat to 
ow
fully into the joint. The additional solder should be applied and desoldered as quickly
as possible. Don't wait for the solder to cool o� before attempting to suck it away.

The desoldering pump tip is made of Te
on. While Te
on is heat-resistant, it is
not invincible, so do not jam the Te
on tip directly into the soldering iron. Solder
will not stick to Te
on, so the desoldering operation should suck the solder into the
body of the pump.

3.1.3 Component Mounting

When mounting components, the general rule is to try to mount them as close to
the board as possible. The main exception are components that must be folded over
before being soldered; some capacitors fall into this category.

Components come in two standard packaging types: axial and radial. Axial
mounts, shown in Figure 3.3 and Figure 3.4, generally �t right into the holes in
the PC board. The capacitors and LEDs in the 6.270 kit are all radial components.
The leads of axial components must be bent or modi�ed to mount the component.
The resistors, diodes and inductor are all axial components.
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Good BadBad Ugly

Figure 3.3: Flat Component Mounting

Good Bad Ugly

Figure 3.4: Upright Component Mounting

Most resistors and diodes must be mounted upright while others may lay 
at. If
space has been provided to mount the component 
at, then do so, and try to keep it
as close to the board as possible. If not, then just bend one lead over parallel to the
component, and mount the component tightly.

See Figures 3.3 and 3.4 for clari�cation.

3.1.4 Component Types, Polarity, and Markings

There will be a variety of electronic components in use when assembling the boards.
This section provides a brief introduction to these components with the goal of teach-
ing you how to properly identify and install these parts when building the boards.

Component Polarity Polarity refers to the concept that many electronic compo-
nents are not symmetric electrically. A polarized device has a right way and a wrong
way to be mounted. Polarized components that are mounted backwards will not
work, and in some cases will be damaged or may damage other parts of the circuit.

The following components are always polarized:

� diodes (LEDs, regular diodes, other types)

� transistors

� integrated circuits
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Capacitors are an interesting case, because some are polarized while others are
not. Fortunately, there is a rule: large capacitors (values 1 �F and greater) are
generally polarized, while smaller ones are not.

Resistors are a good example of a non-polarized component: they don't care
which direction electricity 
ows through them. However, in the 6.270 board, there
are resistor packages, and these have non-symmetric internal wiring con�gurations,
making them polarized from a mounting point of view.

Component Value Markings Various electronic components have their values
marked on them in di�erent ways. For the same type of component, say, a resistor,
there could be several di�erent ways that its value would be marked.

The sections on resistors, resistor packs, and capacitors explain how to read their
markings. Other devices, such as diodes, transistors and integrated circuits, are
referenced by their part numbers, which are printed on the device packages.

Resistors

Most resistors are small cylindrical devices with color-coded bands indicating their
value. Almost all of the resistors in the 6.270 kit are rated for 1

8
watt, which is a very

low power rating. Hence they are quite tiny devices.
A few resistors are much larger. A 2 watt resistor is a large cylindrical device,

while a 5 watt resistor has a large, rectangular package.
The largest resistors|in terms of wattage, not resistive value|simply have their

value printed on them. For example, the two large, 5 watt, 7.5
 resistors in the 6.270
kit are marked in this fashion.

Other resistors are labelled using a standard color code. This color code consists
of three value bands plus a tolerance band. The �rst two of the three value bands
form the value mantissa. The �nal value band is an exponent.

It's easiest to locate the tolerance band �rst. This is a metallic silver or gold
colored band. If it is silver, the resistor has a tolerance of 10%; if it is gold, the
resistor has a tolerance of 5%. If the tolerance band is missing, the tolerance is 20%.

The more signi�cant mantissa band begins opposite the tolerance band. If there
is no tolerance band, the more signi�cant mantissa band is the one nearer to an end
of the resistor.

Figure 3.5 shows the meaning of the colors used in reading resistors.
A few examples should make this clear.

� brown, black, red: 1,000
, or 1k
.

� yellow, violet, orange: 47,000
, or 47k
.

� brown, black, orange: 10,000
, or 10k
.
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Color Mantissa Multiplier
Value Value

Black 0 1
Brown 1 10
Red 2 100

Orange 3 1000
Yellow 4 10,000
Green 5 100,000
Blue 6 1,000,000
Violet 7
Grey 8
White 9

Figure 3.5: Resistor Color Code Table

Common
Terminal
7-pack

Isolated
Element
4-pack

Figure 3.6: Resistor Pack Internal Wiring

Resistor Packs

Resistor packs are 
at, rectangular packages with anywhere from six to ten leads.
There are two basic types of resistor pack:

� Isolated Element. Discrete resistors; usually three, four, or �ve per package.
These are not polarized.

� Common Terminal. Resistors with one pin tied together and the other pin
free. Any number from three to nine resistors per package. These are polarized
components. The common ground should be marked by a dot or bar by one
end of the package.

Figure 3.6 illustrates the internal wiring of an 8-pin resistor pack of each style.
Common terminal (polarized) resistor packs are usually marked with an \E" before

their value, i.e. \E47K
" designates a 47K
common terminal resistor pack. Isolated
element resistor packs are marked with a \V," as in \V1K
."
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Cathode Anode

Figure 3.7: Typical Diode Package

Short lead indicates cathode.

Cathode Anode

Side View

(-) (+)

Flatted rim indicates cathode.

Cathode Anode

Bottom View

(-) (+)

Figure 3.8: Identifying LED Leads

Diodes

Diodes have two leads, called the anode and cathode. When the anode is connected
to positive voltage with respect to the cathode, current can 
ow through the diode.
If polarity is reversed, no current 
ows through the diode.

A diode package usually provides a marking that is closer to one lead than the
other (a band around a cylindrical package, for example). This marked lead is always
the cathode.

Figure 3.7 shows a typical diode package.

LEDs

LED is an acronym for \light emitting diode," so it should not come as a surprise
that LEDs are diodes too. An LEDs cathode is marked either by a small 
at edge
along the circumference of the diode casing, or the shorter of two leads.

Figure 3.8 shows a typical LED package.
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Pin 1 Pin 7

Pin 8Pin 14

Notch marking

Figure 3.9: Top View of 14-pin DIP

M

Motorola 68HC11A0

Pin 1 Marking

Figure 3.10: Top View of 52-pin PLCC

Integrated Circuits

Integrated circuits, or ICs, come in a variety of package styles. Two common types,
both of which are used in the 6.270 board design, are called the DIP (for dual-inline
package), and the PLCC (for plastic leaded chip carrier).

In both types, a marking on the component package signi�es \pin 1" of the com-
ponent's circuit. This marking may be a small dot, notch, or ridge in the package.
After pin 1 is identi�ed, pin numbering proceeds sequentially in a counter-clockwise
fashion around the chip package.

Figure 3.9 shows the typical marking on a DIP package. Figure 3.10 is a drawing
of the PLCC package.
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DIP Sockets

Most of the integrated circuits (ICs) are socketed. This means that they are not
permanently soldered to the 6.270 board. Components that are socketed can be
easily removed from the board if they are damaged or defective.

Do not place the components into the sockets before you mount the sockets onto
the board! Sockets are also used to avoid the need to solder directly to ICs, reducing
the likelihood of heat damage.

DIP sockets also have a similar marking to those found on the components they
will be holding. DIP sockets are not mechanically polarized, but the marking indicates
how the chip should be mounted into the socket after the socket has been soldered
into the board.

PLCC Sockets

PLCC sockets are polarized, however: a PLCC chip can only be inserted into the its
socket the \correct" way. Of course, this way is only correct if the socket is mounted
right in the �rst place.

When assembling the 6.270 board, a marking printed onto the board indicates the
correct orientation of the PLCC socket. There are smaller corner holes that will help
you orient the socket. Place the socket on the board and double check the polarity
before soldering.

Capacitors

Quite a few di�erent kinds of capacitors are made, each having di�erent properties.
There are three di�erent types of capacitors in the 6.270 kit:

� Monolithic. These are very small-sized capacitors that are about the size and
shape of the head of a match from a matchbook. They are excellent for use when
small values are needed (0.1 �F and less). They are inexpensive and a fairly
new capacitor technology. Monolithic capacitors are always non-polarized.

� Electrolytic. These capacitors look like miniature tin cans with a plastic
wrapper. They are good for large values (1.0 �F or greater). They become bulky
as the values increase, but they are the most inexpensive for large capacitances.

Electrolytics can have extremely large values (1000 �F and up). They are
usually polarized except for special cases; all the electrolytics in the 6.270 kit
are polarized.

� Tantalum. These capacitors are compact, bulb-shaped units. They are excel-
lent for larger values (1.0 �F or greater), as they are smaller and more reliable
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than electrolytic. Unfortunately they are decidedly more expensive. Tantalum
capacitors are always polarized.

Capacitor Polarity As indicated, some capacitors are non-polarized while other
types are polarized. It's important to mount polarized capacitors correctly.

On the 6.270 boards, all polarized capacitor placements are marked with a plus
symbol (+) and a minus symbol (�). The pads on the boards are also marked
di�erently. The negative lead (�) goes through a square hole and the positive lead
(+) goes through the round hole.

The capacitors themselves are sometimes are obviously marked and sometimes are
not. One or both of the positive or negative leads may be marked, using (+) and (�)
symbols. In this case, install the lead marked (+) in the hole marked (+).

Some capacitors may not be marked with (+) and (�) symbols. In this case, one
lead will be marked with a dot or with a vertical bar. This lead will be the positive
(+) lead. This should not be confused with the stripe with several minus signs which
runs down one side of many electrolytics.

Polarized capacitors that are mounted backwards won't work. In fact, they often
overheat and explode. Please take care to mount them correctly. If you are not sure
about the polarity of a capacitor, please ask a TA.

Reading Capacitor Values Reading capacitor values can be confusing because
there often are numbers printed on the capacitor that have nothing to do with its
value. So the �rst task is to determine which are the relevant numbers and which are
the irrelevant ones.

For large capacitors (values of 1�F and greater), the value is often printed plainly
on the package; for example, \4.7�F". Sometime the \�" symbol acts as a decimal
point; e.g., \4�7" for a 4.7�F value.

Capacitors smaller than 1�F have their values printed in picofarads (pF). There
are 1,000,000 pF in one �F.

Capacitor values are similar to resistor values in that there are two digits of man-
tissa followed by one digit of exponent. Hence the value \472" indicates 47 � 102

picofarads, which is 4700 picofarads or 0.0047 �F.

Inductors

The inductor used in the 6.270 kit looks like a miniature coil of wire wound about a
thin plastic core. It is about the size of a resistor.

Some inductors are coated with epoxy and look quite like resistors. Others are
big bulky coils with iron cores.

Inductors are not polarized.
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Device Polarized? E�ect of Mounting Incorrectly

Resistor no
Isolated R-Pack no
Common R-Pack yes circuit doesn't work

Diode yes circuit doesn't work
LED yes device doesn't work

Monolithic capacitor no
Tantalum capacitor yes explodes
Electrolytic capacitor yes explodes

DIP socket yes user confusion
PLCC socket yes 52-pin severe frustration

Integrated circuit yes overheating; permanent damage
Inductor no
Transistor yes circuit doesn't work

Figure 3.11: Summary of Polarization E�ects

Transistors

There are two types of transistors used in the 6.270 kit. Both are three-wire devices.
The larger the transistor is used for larger currents.

Transistors are polarized devices.

The table shown in Figure 3.11 summarizes this discussion of polarity issues.



Chapter 4

Assembly Manual

This chapter presents an introduction to electronic assembly followed by step-by-step
instructions for assembling the 6.270 hardware. The instructions assume no prior
background in electronics. The order of the assembly should help you get into the
soldering mode, and will give you practice at soldering some of the bulky items before
soldering the delicate devices.

This chapter was revised by Matt Domsch '94 in his \Advanced Undergraduate
Project" to correct inaccuracies and simplify some assembly steps.

Instructions are provided for the following boards and devices:1

� Battery Packs

� Battery Charger Board

� Motor Switching Board

� Expansion Board

� Microprocessor Board

� Infrared Transmitter Board

� Sensor Assemblies

� Motor Assemblies

If your team has more than one soldering iron, you can assemble some of the
boards in parallel.

The reasons for having the teams build the boards are two-fold. First it gives you
an opportunity to learn about the components and how to solder. The second reason

1Note that this year the Microprocessor Board and Expansion Board are pre-assembled, and the
Motor Switching Board is no longer provided in the 6.270 kit.

39
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is to get you familiar with the boards and how they operate. As you read through
the assembly sections, a brief description of the functionality will be given so that
you become familiar with the system.

4.1 The Battery System

The 6.270 Robot Controller system has two battery power supplies. The �rst is the
four AA alkaline cells that snap into the holder that is attached to the Microprocessor
Board. These are used to run the microprocessor and some sensors. They are also
used to keep the program and data in the RAM when the board is switched o�.

These batteries should power the microprocessor board for about thirty hours of
operation before needing to be replaced. The board should not be left on inadvertently
because the batteries will be drained. When the board is o�, you should not remove
the AA batteries, or else the RAM will be erased. These batteries will last longer if
the motor batteries are also plugged into the board.

The second set of batteries plug into the motor power jack. The reason for having
a separate battery for the motors is to provide isolation between the two supplies.
When a motor turns on or reverses direction, it draws a huge surge of current. This
causes 
uctuations in the battery voltage. For motors, this is not a problem, but it
could cause a microprocessor circuit to fail. For this reason, separate batteries are
used for the motors and the microprocessor.

The motor battery is a bank of three Hawker 2 volt lead-acid cells wired in series,
yielding a 6 volt supply. Each cell is rated for 2.5 ampere-hours of operation.

These lead-acid cells are extremely powerful devices. Car batteries are constructed
of similar lead-acid technology. These batteries can be used to start a motorcycle,
or maybe even a car. When handling the batteries, be extremely careful not to short
the (+) and (�) terminals of the battery together. A huge surge of current will 
ow,
melting the wire and causing burns. In extreme cases, batteries can explode and cause
serious injury. These batteries however, have been reinforced very well and should
not explode, but will burn you if they are shorted.

The Hawker cells were donated to 6.270 by Hawker Energy Products, Inc.

The following instructions explain how to build the battery recharger and how to
wire the Hawker cells into power-packs. Note that contest rules prohibit using the
Hawker cells in any con�guration other than what is presented here. This means
that you cannot alter the electrical con�guration, but you can modify the physical
con�guration. You can also use the battery casings that were donated by Hawker
Batteries to hold your batteries. It is important that you take care in assembling
the battery packs because the batteries are charged in their initial state. You should
assemble the batteries �rst so that there are no inadvertent shorts that can cause the
batteries to overheat.
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Rectangular Configuration Triangular Configuration

LEGO Configuration

Figure 4.1: Three Battery Pack Con�gurations

4.1.1 Battery Pack Construction

Before beginning assembly, make sure to have a well-lighted, well-ventilated work-
space. Make sure that all of the electronic assembly tools are available.

The 6.270 kit includes 6 Hawker cells, enough to make two battery packs. It is
recommended that contest robots be designed in a fashion that facilitates battery
pack swapping. One battery pack can be used to operate the robot while the other is
being charged (charging takes about 10 hours). There are reasons for which you may
want your design to have batteries in di�erent locations.

Two obvious alternatives for battery pack construction are depicted in Figure 4.1:
a rectangular con�guration and a triangular one. Another possibility is a LEGO
con�guration shown in Figure 4.1 which can be mounted on a 6x8 LEGO plate.
Other con�gurations may be explored.

Wiring the Battery Cable

Figure 4.2 illustrates how to wire the battery plug and cable assembly.
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Barrel is positive (+)

Tip is negative (-)

Heat-shrink
     tubing

RED WIRE

BLACK WIRE

DC Power Plug Plug Cover

‘‘Use 12 to 16 inches of wire’’

Figure 4.2: Battery Plug and Cable Wiring Diagram


 Cut a 12" to 16" length of the black/red twisted pair cable for use in making
the battery cable. Strip and tin the wire ends.


 1

16

00

Heat shrink tubing is used on the shorter terminal of the DC power plug.
The tubing acts as an insulator to minimize the likelihood of an electrical short
at the plug terminals. It is essential that this wiring be performed carefully
because a short in the power plug will short out the battery terminals and create
a serious hazard.


 Proper polarity is important. The use of red wire to signify the (+) terminal
and black wire to signify the (�) terminal is an international standard. Mount
the black wire to the short terminal and the red wire to the long terminal.


 After soldering, slide the heat shrink tubing down over the short terminal and
shrink it. Also, crimp the prongs of long terminal onto the red wire as a stress
relief.


 Screw the plug cover onto the plug.


 Before installing the cable onto a battery pack, use an ohmmeter to make abso-
lutely sure that the cable is not shorted. The cable should measure open circuit
or in�nite resistance. If a short is placed across the terminals of lead-acid bat-
teries (like the Hawker cells), a huge surge of current will 
ow, melting the wire
causing the short and possibly causing the battery to explode.

Constructing the Battery Pack

Wire the 3-cell pack to the battery cable as indicated in Figure 4.3. Use the red and
black wire to make the two jumpers between the cells (color of these jumpers does
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Figure 4.3: Battery Pack Wiring Diagram

not matter). Make sure to get polarities correct. Incorrect wiring will cause the wire
to get hot and catch on �re.

After the battery pack is wired, an overall con�guration (as suggested in Figure 4.1
can be selected. The battery pack may be held in the desired con�guration using a
variety of materials, including rubber bands, cable ties, hot glue, and/or electrical
tape. The terminal of the batteries can be bent and hot glued so they do not inad-
vertently get shorted. Do not put too much hot glue, or else the battery will not be
able to breathe. There must be a pathway for the gases in the battery to escape or
else too much pressure builds up in the casing and may cause an explosion.

4.1.2 The Battery Charger

The battery charger can charge two 6 volt battery packs simultaneously. Each pack
can be charged at either of two rates:

� Normal charge. Marked Slow on the charger board, this is the normal charge
position. A battery pack will recharge completely in about ten to fourteen
hours. When the batteries become slightly warm they are fully charged. In this
con�guration, the power is supplied to the battery through the larger valued
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resistor (15
). The batteries are charged with a constant current of about 400
milliamps.

When operating in normal mode, a green LED will be lit to indicate proper
charging. In this mode, it is safe to leave batteries on charge for periods of up
to 24 hours without causing damage.

� Fast charge. Marked Fast on the charger board, this position will recharge
a battery pack in �ve to seven hours. The batteries are being charged at a
constant current of about 800 milliamps.

Batteries being charged in fast mode should be monitored closely; as soon as
the pack becomes warm to the touch, the batteries are completely charged and
should be removed from the charger.

Is is better to charge the batteries at the slower rate if possible. When high
currents are being passed through the batteries, they tend to heat up. The
batteries do not accept charge very well at higher temperatures.

Permanent damage to the battery pack can occur if left on fast charge for more
than ten hours. Needless to say, this mode should be used with care.

Assembly Instructions

All of the 6.270 boards have component placements silkscreened directly onto the
board. In addition, diagrams in these instructions will provide copies of the diagrams
printed on the boards, often at better resolution. Refer to the printed diagrams as
often as necessary to be sure that components are being placed correctly.

The instruction checklist may be marked o� as each step is completed.
Figure 4.4 shows component placement on the battery charger board.

1{2 Get the battery charger board and determine which is the component
side. The component side is marked with the placement guidelines in white.
You should always solder on the solder side of the board, which does not have
white writing.

Please make sure that the components are mounted on the proper side of the
board! It would be a terrible mistake to mount everything upside down.

2{2 Resistor Pack.

Install RP7, 1.2k
�4, 8 pins, Blue single in-line pin. The board is labelled
for 1k
; this marking is incorrect. This resistor pack consists of four isolated
resistors so orientation is not signi�cant.
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Figure 4.4: Battery Charger Component Placement

3{2 LEDs.

These LEDs are the LEDs which are in the bag with the battery charger board.
There are additional red LEDs in the kit { do not mix these two up. The other
LEDs are not low power LEDs. You need to use the low powered LEDs in this
section. Mount LEDs so that the short lead is inserted in the shaded half of
the placement marking. Make sure to push the LEDs all the way through and
mount them as close to the board as possible.


 LED19{red


 LED20{red


 LED21{green


 LED22{green

4{2 DC Power Jacks.

Install J3 and J4, DC power jacks. When soldering, use ample amounts of
solder to �ll the mounting holes completely.

5{2 Power Resistors.


 R18{7.5
, 5 watts. This resistor is marked by a big white square outline
on the component side.
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 R19{7.5
, 5 watts. This resistor is marked by a big white square outline
on the component side.


 R20{15
, 2 watts, brown, green, black


 R21{15
, 2 watts, brown, green, black

6{2 Slide Switches.


 SW6{miniature SPDT slide switch


 SW7{miniature SPDT slide switch

7{2 Bridge Recti�er.

Install BR1, rectangular bridge recti�er. Observe polarity: make sure (+)
symbol on bridge recti�er is inserted into hole marked (+) on circuit board.

8{2 Power Cord.

Get the large DC power adapter. Clip o� any connectors on the DC side of the
adapter. Measure the voltage across the wires and make sure that the voltage is
above 12VDC when the adapter is plugged into the wall. Strip 1

4
" of insulation

from power wires. Insert stripped wires into holes marked power input from
component side of board; solder from solder side.

The polarity of the power connection is not signi�cant.

9{2 Check Out

You can test the battery charger in the lab using a voltmeter. Plug the charger
into the wall socket and measure the voltage between positive and negative of
the bridge recti�er. Make sure that the polarity is correct. Plug the battery
pack into each of the jacks, and make sure the red LED is on when the switch
is on FAST and the green LED is on when the switch is on SLOW. You should
check it out with a TA if you are unsure.

10{2 After Checkout.

After the battery charger is checked in lab, add a glob of hot glue as a strain
relief at the base of the power input connection.

4.2 The Motor Switch Board

The Motor Switch Board allows manual control of up to four motors. This is useful
when testing and debugging mechanisms because the motors can be switched on
forward, backward, and o� easily.
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Figure 4.5: Motor Switch Board Component Placement

It is important to realize that the amount of power delivered to the motors by
the Motor Switch Board will be di�erent than the amount delivered when the motors
are driven by the electronics on the Microprocessor Board. The Motor Switch Board
has diode circuitry to simulate the power loss of the Microprocessor Board's control
electronics, but there will still be a di�erence.

Motors driven from the Expansion Board will operate at even less power than
those driven by the Microprocessor Board. The motors are driven through a diode
which provides a .6 volt drop, but the motor drivers may drop up to 1.2 volts and
reduce your motor output.

The careful designer will test mechanisms both from the Switch Board and from
the Microprocessor Board before committing to them.

The simplicity of the Motor Switch Board will give the inexperienced solderer an
opportunity to get some practice before committing to the bigger boards. A second
member in the group should begin to assemble a motor to test the Motor Switch
Board.

4.2.1 Assembly Instructions

Figure 4.5 provides a reference to parts mounting on the Motor Switch Board.

1{2 Get Motor Switch Board, and determine which side is the component
side. The component side is marked with the parts placement layout.

2{2 Diodes.

These diodes have black epoxy bodies. Polarity matters: Install the diodes with
the banded end as marked on the circuit board. These diodes can be mounted
in the horizontal position.


 D7{1N4001
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 D8{1N4001


 D9{1N4001


 D10{1N4001

3{2 DC Power Jack

Install J5, a DC power jack. Fill mounting holes completely with solder when
soldering.

4{2 Switches.


 SW8{2 pole, 3 position slide switch


 SW9{2 pole, 3 position slide switch


 SW10{2 pole, 3 position slide switch


 SW11{2 pole, 3 position slide switch

5{2 Female Socket Headers.

To cut socket headers to length, repeatedly score between two pins using an
exacto knife. Score on both sides of one division and then snap or cut the strip
carefully with the diagonal cutters in two. Do not try to snap header pieces
before they have been su�ciently scored, or they will break, destroying one or
both of the end pieces in question. These are often di�cult to cut without some
past experience, so don't hesitate to ask a TA if you have any trouble. You only
have a limited number of the female header so do not waste them because they
are very expensive and we do not have very many extra.

Cut four 3-long pieces of female socket header. Mount in remaining holes on
board where marked.

4.3 The Expansion Board

The 6.270 Expansion Board plugs on top of the 6.270 Microprocessor Board, using
the Expansion Bus connector. The Expansion Board adds the following capabilities:

� analog multiplexers to provide up to eight times more analog inputs;

� four DIP con�guration switches;

� a user-adjustable \frob knob" for analog input;

� drivers for two additional motors;
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Figure 4.6: Expansion Board Component Placement

� drivers for two LED/lamp circuits;

� a general purpose prototyping construction area.

Figure 4.6 is a component placement guide for the Expansion Board.
Assembling the expansion board is the next step before taking on the task of

soldering the microprocessor board. It is important that good soldering technique be
developed before moving on to the microprocessor board.

4.3.1 Assembling the Expansion Board

1{2 Get the 6.270 expansion board, and determine which is the compo-
nent side.

The side that has white component markings is the component side. The reverse
is the solder side.

2{2 Check for Power-Ground shorts. Before placing any components, take a
multimeter and test for a short between power and ground. Power and ground
can be found on the prototype area as marked on the white silkscreen. The
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resistance between power and ground should be in�nite. If a resistance of 0
ohms is found, replace the board.

3{2 Resistor Pack.

These resistor pack are all polarized resistor packs where the common terminal
end is marked with a band. On the 6.270 board, �nd a square metal pad at one
end of the area that each resistor pack will mount. Insert the resistor pack such
that the marked end mounts in the shaded hole.

The \catty-cornering" technique of soldering the two end terminals �rst is help-
ful here. Solder one end of the terminals before soldering the remaining pins.
Adjust the component such that it is straight and the pins are oriented properly,
and then solder the other end of the resistor pack. After the resistor pack is
straight and aligned, solder the middle pins. This will allow you to align the
resistor pack and make it straight before all the pins are fastened.


 RP5, 47k
�9, 10 pins, polarized, marked \E47K
." The marked end of
the resistor pack goes through the shaded square hole.


 RP6, 47k
�7, 8 pins, polarized, marked \E47K
." Mount on the com-
ponent side so that the marked end of the resistor pack goes through the
shaded square hole. (Note: do not install this part if you wish to use the
phototransistors since they require di�erent values.)

RP5 and RP6 are pull up resistors for the analog inputs. These are used
so that the inputs to the analog ports don't 
oat. They are also used as
part of a resistor divider in some of the sensors used.


 RP7, 1k
�7, 8 pins, polarized, marked \E1K
." Mount so that marked
end of resistor pack goes in square hole on board.

4{2 IC Sockets.

Mount the DIP sockets such that the notch in the socket lines up with the notch
marking in the rectangular outline printed on the PC board. \DIP4" means
the DIP socked for integrated circuit U4.

The catty-cornering technique should help here too. After inserting a DIP into
the board, solder its two opposite-corner pins �rst. This will hold the chip in
place. Make sure it is pressed down as far as it can go; then solder the other
pins. You may need to apply heat to the corner pins to press the socket down
if it is not 
ush with the board.


 DIP21{16 pins. The socket used for this DIP is di�erent from the other
sockets. The pins are more rounded, and the sockets are circular holes.
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The other sockets have more rectangular socket holes. These are gold
plated sockets and are used for a better conduction pathway to the motor
outputs.


 DIP17{20 pins


 DIP18{16 pins


 DIP19{16 pins


 DIP20{16 pins

5{2 LEDs.

These LEDs are low powered LEDs. Install the LEDs so that the short lead
mounts in the shaded half of the placement marking. Be careful to get polarity
correct.


 LED13{red, indicates motor 4 in reverse direction.


 LED14{green, indicates motor 4 in forward direction.


 LED15{red, indicates motor 5 in reverse direction.


 LED16{green, indicates motor 5 in forward direction.


 LED17{red, indicates LED out 1 is on.


 LED18{red, indicates LED out 0 is on.

6{2 Trimpot.

InstallVR2, 50k
, this is the FROB KNOB. The three pins of the potentiome-
ter are polarized. They should look like they form a triangle. The triangle
should correspond to the triangle of pins on the board.

7{2 Resistors.

These resistors must be mounted in the upright position due to the tight spacing.


 R16, 2.2k
, red, red, red.


 R17, 2.2k
, red, red, red.

8{2 Capacitors.


 C16{0.1�F, non-polarized


 C17{0.1�F, non-polarized


 C18{0.1�F, non-polarized


 C19{0.1�F, non-polarized
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TOP OF BOARD (Component Side)

Insert male header pins
from underside of board;
SOLDER from top of board.

Figure 4.7: Mounting Method for Male Header Pins

9{2 Male Header Pins.

The following steps deal with the interface pins which protrude from the Ex-
pansion Board to the Microprocessor Board.

When mounting these pins, insert upward from the underside of the board so
that the maximal pin lengths protrude downward (see Figure 4.7). These pins
are then soldered from the top, component side of the board.

Be careful to make sure the pins are mounted perfectly normal to the surface of
the Expansion Board, as there are quite a few pins that must all mate properly
with the Microprocessor Board.

For the following instructions, refer to Figure 4.8 for pin placement.


 Motor Battery Pins{a 2-long strip.


 Port D Connector{a 5-long strip


 Analog Port Connector{a 4-long strip


 Expansion Bus Connector{one 14-long and one 8-long strip

10{2 Transistors.

Install transistors Q2 and Q3 (type MPS2222A) where indicated on the Ex-
pansion Board. The transistors mount so that their 
at edge is above the 
at
edge of the placement marking.

These transistors look identical to the DS1233 Econo Reset chip. Be sure you
have the MPS2222A transistors and not the DS1233, or your board will not
work.
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Figure 4.8: Expansion Board Male Header Pin Placement

11{2 C15{220�F, polarized. Be sure to mount with correct polarity.

Leave some spacing between the board and the capacitor so the capacitor can
be bent over. Before soldering the capacitor bend it sideways so it points to the
left side of the board, and then solder.

12{2 Female socket headers.

Refer to Figure 4.9 to be sure of placement of these parts.

When mounting the sockets, pay attention to how well they are lining up verti-
cally. Sometimes reversing the way a strip is mounted will help its connections
to line up better with the others. It may be helpful to insert a strip of male
header (so that the male header connects all three strips, perpendicular to the
length of the female strips) into the socket to hold them at proper horizontal
and vertical placement before soldering.


 Cut three 16-long strips. Before installing the Female header, make sure
that the resistor packs RP5 and RP6 are correctly installed. Once the
female header is in place, it is nearly impossible to replace the resistor
packs. Install the Analog Input Port. A male header strip can be used
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Figure 4.9: Expansion Board Female Header Mounting

at each end to align the vertical and horizontal placement of the female
header. Solder.


 Cut one 14-long strip. Install the LCD Connector. Note: The correct
position for this header is not the location marked LCD CONNECTOR
on the board. The correct position is indicated properly in Figure 4.9, at
the top edge of the board.


 Cut six 2-long strips. InstallMotor Connectors and LED Driver Con-
nectors.

13{2 DIP Switches.

Install SW5, 4-position DIP switch. Install so that numbers are on the outside
edge of the board.

4.3.2 Testing the Expansion Board

As with the Microprocessor Board, run through the following checklist before mount-
ing the chips into the Expansion Board.

1{2 Check the solder side of the board for proper solder connections. Speci�cally:
look for solder bridges and cold solder joints.
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Slide-on Heatsink

L293D

Figure 4.10: Heat Sink on Motor Chip

2{2 Check continuity (resistance) between power and ground of the board. Power
and ground can be located in the prototyping area.

Resistance should increase as the board capacitor charges. There should be a
reading of between one and ten kilo-ohms. If there is a reading of zero ohms,
or near zero ohms, the board has a power short. Do not proceed with testing
until this is corrected.

3{2 Install ICs in the board, observing correct polarity:


 U17{74HC374. This is the output latch used for controlling motor 4 and
5, and the two LED outputs. There are two additional outputs that can
be jumpered to.


 U18{74HC4051. This is the analog multiplexer that controls analog out-
puts 20-27. It feeds the signal to analog 9.


 U19{74HC4051. This is the analog multiplexer that controls analog out-
puts 12-19. It feed the signal to analog 8.


 U20{74HC4051. This is the analog multiplexer that controls the Frob
Knob, the DIP switches, and analog 33-35. It feeds the signal to analog
10.


 U21{L293D. Slide gold heat sink onto chip before installing in socket.
The diagram for the mounting is shown in Figure 4.10. The gold heat sink
slides right onto the chip.
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TOP OF LCD (Display Side)

Insert male header pins from
underside of LCD board;
SOLDER from top of LCD.

Figure 4.11: LCD Connector Mounting

4.4 The LCD Display

The LCD display provided in this year's 6.270 kit can display two rows of 16 char-
acters. The system software makes it easy to write code that prints messages to this
display, for status, debugging, or entertainment purposes.

The display needs to have a 14-pin male header soldered to its interface. Fig-
ure 4.11 shows how these pins should be installed, in a similar fashion to the pins
protruding from the Expansion Board.

Cut a 14-long male header strip and mount and solder to the LCD as indicated
in the �gure.

4.5 The Microprocessor Board

The 6.270 Microprocessor Board is the brains and brawn of the 6.270 Robot Controller
system. It uses a Motorola 6811 microprocessor equipped with 32K of non-volatile
memory. It has outputs to drive four motors, inputs for a variety of sensors, a serial
communications port for downloading programs and user interaction, and a host of
other features.

4.5.1 Assembling the Microprocessor Board

Figure 4.12 illustrates the component placement on the microprocessor board.
In addition to checking o� the boxes and circles after completion of a component,

it may be helpful to �ll in the component location in Figure 4.12.
The component numbering for parts on the microprocessor board increments in

a counter-clockwise fashion around the board for resistors, capacitors, and resistor
packs.

1{2 Get the 6.270 Microprocessor Board, and determine which is the
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Figure 4.12: 6.270 Microprocessor Board Component Placement

\component side." The Microprocessor Board is the largest of the 6.270
boards.

The side of the board that has been printed with component markings is the
\component side." This means that components are mounted by inserting them
down from the printed side; then they are soldered on the obverse, the unprinted
side.

Please make sure that the components are mounted on the proper side of the
board! It would be a terrible mistake to mount everything upside down.

2{2 Check for Power-Ground shorts. Before placing any components, take a
multimeter and test for a short between power and ground. Power and ground
can be found on the LCD connector ports at the top of the board as marked
on the white silkscreen. The resistance between power and ground should be
in�nite. If a resistance of 0 ohms is found, replace the board.

3{2 Flat Resistors

Begin by installing the resistors that lie 
at along the board. Try to get the
body of the resistor very close to the board.

4{2 R1{47k
, yellow, violet, orange, 
at mounting, lower right corner.
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5{2 R11{2.2M
, red, red, green, 
at mounting, next to oscillator.

6{2 R12{47k
, yellow, violet, orange, 
at mounting, top left corner under SW3.

7{2 R13{47k
, yellow, violet, orange, 
at mounting, top left corner under SW4.

8{2 Non-polarized Capacitors.

Next install the non-polarized capacitors. These are the smallest components
on the board. After installing, solder and clip leads close to the board.


 C3{4700 pF, marked \472.", above U8.


 C4{0.1 �F, marked \104.", right edge next to U7.


 C6{0.1 �F, marked \104.", above SW2.


 C7{0.1 �F, marked \104.", top right corner above U9.


 C8{0.1 �F, marked \104.", between U9 and U2.


 C10{0.1 �F, marked \104.", just above 6811.


 C12{0.1 �F, marked \104.", left of U2.

9{2 Resistor Packs.

Most of the resistor packs are polarized: the common terminal end is marked
with a dot or band. On the 6.270 board, �nd a square metal pad at one end
of the area that each resistor pack will mount. Insert the resistor pack such
that the marked end mounts in the square hole. (The square hole is more easily
discernible on the unprinted solder side of the board.)

The \catty-cornering" technique of soldering the two end terminals �rst is help-
ful here. Solder the two ends of the terminals before soldering the middle pins.
This will allow you to align the resistor pack and make it straight before all the
pins are fastened.


 RP1{47k
�9, 10 pins, polarized, marked \E47K
.", located at the bot-
tom of the board.


 RP2{47k
�5, 6 pins, polarized,marked \E47K
.", located at the bottom
of the board. You must cut o� one pin which is the farthest from the
marked end before mounting the component.

RP1 and RP2 are pull-up resistors for the digital inputs and the analog
inputs. Only the analog 10 and 11 pull-up resistors are connected. Since
analog 8 and 9 are multiplexed inputs, a pull-up resistor is connected
to each of the multiplexed inputs. If you use the analogs without the
expansion board, you must jumper the pull-ups to analog 8 and 9.
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 RP3{1k
�3, 6 pins, non-polarized, marked \V1K
," top right corner.


 RP4{1k
�5, 6 pins, polarized, marked \E1K
," bottom left corner.

10{2 IC Sockets.

Mount the DIP sockets such that the notch in the socket lines up with the notch
marking in the rectangular outline printed on the PC board. \DIP4" means
the DIP socket for integrated circuit U4.

The catty-cornering technique should help here too. After inserting a DIP into
the board, solder its two opposite-corner pins �rst. This will hold the chip in
place. Make sure it is pressed down as far as it can go; then solder the other
pins.

The socket used for the �rst two DIPs are di�erent from the other sockets. The
pins are more rounded, and the sockets are circular holes. The other sockets
have more rectangular socket holes. These are gold plated sockets and are used
for a better conduction pathway to the motor outputs.


 DIP13/14{16 pins. There is only one socket for these two ICs. (Use the
gold plated sockets)


 DIP15/16{16 pins. There is only one socket for these two ICs. (Use the
gold plated sockets)


 DIP4{16 pins


 DIP5{20 pins


 DIP6{20 pins


 DIP7{14 pins


 DIP8{16 pins


 DIP9{14 pins


 DIP10{16 pins


 DIP12{14 pins

11{2 Direct Mount Chip.

One chip is soldered directly to the board. Be careful not to apply too much
heat to its pins when soldering. The soldering iron should not be in contact
with any given pin for more than about eight seconds. It's okay to wait for
things to cool down and try again if problems arise.

Mount this chip such that its notch is aligned with the rectangular notch printed
on the PC board.

U3{74HC373.
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12{2 Ceramic Resonator.

Install XTAL1, 8 Mhz. ceramic resonator. This is a heat sensitive device and
the soldering iron should not be in contact with any given pin for more than
about eight seconds.

13{2 Inductor.

Install L1, 1 �H, located below the OFF and ON markings on the board. The
inductor looks like a miniature coil of wire wound about a thin plastic core. It
is about the size of a resistor.

14{2 28-pin Socket.

You must �rst cut out the bar across the middle of the socket. Do this carefully
by scoring the bar and then cutting it with wire cutters. Install on top of U3,
with the notch marking as indicated. Solder.

15{2 LEDs.

These LEDs draw less current than other LEDs in you kit. If you put the wrong
LEDs in, your batteries will die out much faster than you expect.

LEDs must be mounted so that the short lead (the cathode) is inserted into the
shaded half of the LED placement marking.

Be sure to mount LEDs properly as it is very di�cult to desolder them if they
are mounted backward.


 LED1{red, indicates motor 0 in reverse direction.


 LED2{red, indicates motor 1 in reverse direction.


 LED3{red, indicates motor 2 in reverse direction.


 LED4{red, indicates motor 3 in reverse direction.


 LED5{red, indicates IR emitters are on.


 LED6{red, indicates Low Battery.


 LED7{green, Indicates motor 0 in forward direction.


 LED8{green, Indicates motor 1 in forward direction.


 LED9{green, Indicates motor 2 in forward direction.


 LED10{green, Indicates motor 3 in forward direction.


 LED11{green, Indicates serial receive.


 LED12{yellow, Indicates serial transmit, and is o� when the board is in
download mode.
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16{2 Resistors.

These resistors mount vertically: try to mount them perfectly upright, with one
end very close to the board, and the wire lead bent around tightly.

If you have trouble discerning colors, you may wish to have your teammates
handle this task. It is fairly di�cult to read the color bands from 1

8
watt

resistors, even to the trained eye.


 R2{47k
, yellow, violet, orange, upright mounting, above U8.


 R3{100k
, brown, black, yellow, upright mounting, right side above U7.


 R4{10k
, brown, black, orange, upright mounting, right side above U7.


 R5{3.3k
, orange, orange, red, upright mounting, right side of U9.


 R6{2.2k
, red, red, red, upright mounting, top right corner.


 R9{47k
, yellow, violet, orange, upright mounting, above 6811.


 R10{47k
, yellow, violet, orange, upright mounting, above 6811.


 R14{4.7k
, yellow, violet, red, upright mounting, center underneath IR
out. Mislabeled \5k" on silkscreen.


 R15{1k
, brown, black, red, upright mounting, under R14.

17{2 Polarized Capacitors.

All of these capacitors are polarized. Make sure that the lead marked (+) on
the capacitor goes into the hole that is marked (+). Some of the tantalum
capacitors are not marked. If the capacitor leads are not marked (+) or (�),
the lead marked with a dot or bar is the (+) lead. Be careful. The electrolytic
capacitors have a bar with a minus sign in them, and these are the negative
terminals.


 C1{10 �F Tantalum, right side of U8.


 C2{10 �F Tantalum, above U8.


 C5{47 �F Electrolytic, above U7. Fold capacitor 
at to the board before
soldering.


 C9{4.7 �F Tantalum, above 6811.


 C13{470 �F Electrolytic. Fold capacitor 
at to the board before soldering.
You will need to extend the capacitor into the space next to the oscillator.
This is a tight squeeze between the oscillator and the IC sockets.
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Figure 4.13: 6.270 Microprocessor Board Header Placement

18{2 Diodes.

Diodes are polarized. Mount them such that the lead nearer the banded end
goes into the square hole on the circuit board.


 D1{1N4001, right of SW1. This diode has a black epoxy body and fairly
thick leads.


 D2{1N4148, left of SW2. This is a glass-body diode.


 D3{1N4148, under U2.


 D4{1N4148, next to U9.


 D5{1N4148, next to U9.


 D6{1N4148, next to U9.

19{2 Female Socket Headers.

To cut socket headers to length, repeatedly score between two pins using the
utility knife. Score on both sides of one division and then snap the strip in two.
Do not try to snap header pieces before they have been su�ciently scored, or
they will break, destroying one or both of the end pieces in question.
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When mounting the sockets, pay attention to how well they are lining up verti-
cally. Sometimes reversing the way a strip is mounted will help its connections
to line up better with the others. It may be helpful to insert a strip of male
header into the socket to hold them at proper horizontal and vertical placement
before soldering.

Refer to Figure 4.13 for placement of these parts.


 Cut three 8-long strips, Install the Digital Input connector block. Before
placing these header, make sure that RP1 is properly aligned. Once the
female header is in place, removal of RP1 is nearly impossible, You may
wish to solder all three strips simultaneously. The male pins can be put
across the three strips at each end to make sure the female strips are
aligned properly. Solder.


 Cut three 5-long strips. Install the Port D I/O connector block. You
may wish to solder all three strips simultaneously. The male pins can be
put across the three strips at each end to make sure the female strips are
aligned properly. Solder.


 Use three 4-long strips. Install the Analog Input connector block. Before
placing these header, make sure that RP2 is properly aligned. Once the
female header is in place, removal of RP2 is nearly impossible, You may
wish to solder all three strips simultaneously. The male pins can be put
across the three strips at each end to make sure the female strips are
aligned properly. Solder.


 Cut one 12-long strip. Install the Motor Output connectors. Solder.


 Cut one 8-long and one 14-long strip. Install the Expansion Bus con-
nector. Solder.


 Cut three 7-long strips. Install the Motor Power connector. Solder.


 Cut one 2-long strip. Install the Expansion power connectors. Solder.

20{2 PLCC Socket

Install PLCC1, 52-pin square socket for the 6811. The Pin 1 marking is in-
dicated by the numeral \1" and an arrow in the socket; this marking mounts
nearest to U2, the 32K RAM chip. There should be a beveled notch in the
upper-left corner of the chip and the outline printed on the board, with respect
to the pin 1 marking. Be absolutely sure to mount this socket correctly; the
socket is polarized and will only let you mount the chip into it one way. Solder.

21{2 Switches.
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 SW1{DPDT slide switch


 SW2{large red pushbutton switch


 SW3{miniature pushbutton switch. The switch is polarized and will �t
snugly in one direction and not the other. Do not bend the leads too much,
or force the switch in.


 SW4{miniature pushbutton switch. The switch is polarized and will �t
snugly in one direction and not the other. Do not bend the leads too much,
or force the switch in.

22{2 Trimpot.

Install VR1, 50k
.

23{2 U11. Reset Power Regulator { DS1233

This component looks like a transistor and is located with the expansion board
ICs in your parts bin. DS1233 goes here with the rounded part towards the
PLCC socket, as shown on the silk screen on the board.

This part looks a lot like the MPS2222A transistors. Be sure you install the
DS1233 here, or your board will not work.

24{2 Transistor

Install TIP120 such that the metal backing is facing the expansion port power
connector and the plastic is facing the DC power jack. This is a tight squeeze.
Fold the transistor to the left so it lies 
at above the inductor (L1). It is
important that the heat sink on the transistor does not touch the edge of the
Expansion Board.

25{2 Piggy-Backing the L293 Chips.

Motor driver chips U13/14 (L293D plus L293B) and U15/16 (L293D plus
L293B) will be piggy-backed and soldered together before installing in their
socket.

The instructions will be given for one pair and can be repeated for the second
pair. Make sure that each pair consists of one L293D and one L293B chip!

Begin by sliding the gold-colored heat sink over an L293B chip. Then, press
this assembly onto an L293D chip, as indicated in Figure 4.14. Make sure that
the two chips have their notches lined up. Also, be sure to remember where
which way the notches face, as they may be obscured.

Finish by soldering the two chips together, pin by pin. Try to have them pressed
together as close as is possible, so that both press �rmly against the heat sink.
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Slide-on Heatsink

L293B

L293D

Solder is applied to
each pin of the two
           chips.

Figure 4.14: Motor Chip Stacking Technique

Be careful not to apply too much heat to the IC. Soldering the opposite corners
will help secure the ICs in place and will make soldering the remaining pins
easier.

Repeat for the other pair of motor driver chips.

By piggy-backing the two chips, there is a parallel circuit for the motor current
to 
ow through, so the amount of current that can be delivered to the motor is
almost doubled to about 1.2 Amps.

26{2 Power Jack.

Install J1, DC power jack. When soldering, use ample amounts of solder so
that solder completely �lls mounting pads.

27{2 Phone Jack.

Install J2, modular phone jack. The phone jack is polarized, and should pace
outward.

28{2 Piezo Beeper.

Mount the piezo beeper so that it is centered on circular outline. Polarity does
not matter.

29{2 Battery pack.


 Clip connector on the battery pack and about 1/2" of length o� battery
pack leads.
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 From bottom of board, insert leads for battery pack. Note polarization:
black lead goes in hole marked (�), red lead in hole marked (+). Solder
from top of board and clip leads.

4.5.2 Testing the Microprocessor Board

This section explains a few simple tests to be performed before installing the ICs in
the sockets.

Full board testing and debugging will be handled in the laboratory.

1{2 Check the solder side of the board for proper solder connections. Speci�cally:
look for solder bridges and cold solder joints.

Solder bridging is when a piece of solder \bridges" across to adjacent terminals
that should not be connected.

Cold solder joints are recognized by their dull luster. A cold solder joint typically
makes a 
aky electrical connection. Make sure that all of the solder joints are
shiny with a silver color.

Make sure that joints do not have too much solder.

2{2 Check continuity (resistance) between power and ground of your board. Power
may be obtained from the cathode of D1 and ground from the black lead of the
battery pack.

Resistance should increase as the board capacitor charges. The board resistance
should measure greater than 0. If a reading of zero ohms is observed, the board
probably has a power to ground short. Do not proceed with testing until this is
corrected.

3{2 Insert 4 AA batteries into battery holder.

4{2 Turn on board power switch.

5{2 Examine the yellow LED: it should be glowing slightly. If not, turn o� board
power immediately. Check for power short.

6{2 Measure board voltage (as above with continuity check). You should have
approximately 5.5 volts.

7{2 Install ICs in the board. Be careful not to damage the component leads when
installing the chips into their sockets! Make sure to get the orientation correct|
refer to Figure 4.12 if necessary. Remove the 4AA batteries before installing
the ICs.
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 U1{68HC11A0 microprocessor. The brains of the board. A 68HC11A1
microprocessor may be substituted.


 U2{62256LP 32K static RAM where the memory is stored.


 U3{74HC373 (already soldered to board). This is the latch that is used
to access the memory locations.


 U4{74HC138. This is the address decoder for memory mapping input and
output latches


 U5{74HC273. This is the output latch to the motors 1-4. Upon power
up, the latch is cleared so all the motors are turned o� when the board is
turned on.


 U6{74HC244. This is the tristate input latch which drives the bus for
reading the digital inputs.


 U7{74HC132. Schmitt trigger used for the serial communications with the
downloading machine.


 U8{74HC4053. Used to switch the RS232 TxD.


 U9{74HC10. 3-input NAND used in the low-battery indicator.


 U10{74HC390. Dual decade counter that divides the 2MHz clock to a
40kHz signal used in the IR emitters.


 U12{74HC04. An inverter through which the motor outputs to the L293
are inverted. Because the L293s draws less processor current when all the
inputs are high than when all the inputs are low the outputs are inverted
so that when all the motors are o�, all the inputs to the 293 are high.
Another inverter is used to invert the signals in the IR circuitry.


 U13,14{L293D + L293B motor driver assembly with heatsink


 U15,16{L293D + L293B motor driver assembly with heatsink

4.5.3 Board Checko�

You now have the components in place to check your board. Follow the instructions
to check o� your board. If there are any problems along the way, check the debug
chapter or �nd someone to help you.

1{2 Turn the board o�, and plug in the AA batteries. You should also plug the
motor batteries into the board. When the motor batteries are not plugged in,
the motor chips draw power from the processor batteries, and therefore reduce
the lifetime of your AA cells. To extend the lifetime of your AA cells, always
have your motor batteries plugged in.
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2{2 Attach the expansion board on top of the microprocessor board. Be careful
not to bend any pins, and make sure that all the pins go in the correct sockets.
Then put the LCD on the expansion board.

3{2 When you turn on the board, the yellow light should be on. To get the board
into download mode, you must turn the board o�, and while holding down the
escape button, turn the board on. The yellow light should 
icker, and then be
o�. If this does not happen, check the debug section under startup. When the
yellow light is o�, the board is in download mode.

4{2 When you hit the big red reset button, the yellow light should come on per-
manently. If the yellow light does not come on, then check the debug section
under startup.

5{2 In order for your board to work, the pcode must be loaded into the board. You
need to do this only when there are new revisions of the pcode and when the
RAM memory has been corrupted.

There are two types of downloading. The �rst download mode is the mode where
the microprocessor load the pcode. This is done using the init bd command.
When the yellow LED is o�, the processor is ready to accept new assembly
code.

To download the pcode to the board you must:

� Plug the serial cable into the board. The green LED should be on whenever
the board is connected to the host computer. If the green LED is not on,
check the debug section on serial problems.

� Turn on the board. (SW1)

� Hold down the \CHOOSE" button (SW3) while pressing the red reset
button (SW2). Release the reset button. Watch for the yellow serial
transmit light to extinguish. Release the \CHOOSE" button. Your board
is now in pcode download mode.

� You need to download the pcode to the board. The command to download
will be di�erent, depending on the machine you are using. On the Athena
workstations you must add 6.270 and then type init bd at the prompt.
The yellow LED must be o� for downloading to occur.

� You should get the following response, or something similar, when down-
loading the pcode:

6811 .s19 file downloader. Version 6.1 16-Nov-91

Downloading 256 byte bootstrap (229 data)
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and a bunch of dots should appear on the monitor and the yellow and green
LEDs should begin to 
icker. This 
ickering lets you know that there is
communication between the board and the host computer. If the response
is a di�erent, check the debug section, on downloading or serial problems.

� Once the pcode is loaded into the board, press the reset button, and the
board should beep and on the LCD should be the message:

Interactive C

V 2.71 1/4/93

or something similar. You may need to adjust your LCD contrast to see
the messages on the LCD. Do this by turning the variable resistor VR1.

The second download mode is through IC when you download your code or the
IC libraries. The yellow light must be on for this download to occur. When you
press reset, the yellow light should come on.

6{2 When the pcode is loaded into the board, you can use the IC program. This
can be done by simply typing ic at the prompt when the board is connected
to the host computer. The IC program will download several libraries to the
board.

7{2 The next step is to use the test program to make sure that all the outputs and
inputs are working. Before you do this, you must build a simple digital sensor
for testing the input ports.

8{2 After you are in the IC program, you will need to load the test code into the
board. To do this, at the C> prompt type load testboard.c to load in the test
code. This program is designed to help you become familiar with the board,
and where things are located.

9{2 The following tests will be performed:

� Check Motor Outputs.

� Check Digital Inputs.

� Check Analog Inputs.

� Check Dip Switches.

� Check Frob Knob.

� Check LED outputs.
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You can advance through the menu by using the ESC button and the CHOOSE
BUTTON. To advance to the next test push the ESC button. When checking
the analog and digital ports push the CHOOSE button to advance the port
number.

10{2 You should test each of the digital and analog ports using a digital switch.
The analog readings for an open switch should be around 255 since the inputs
are connected to a pull up resistor. When the switch is closed, the analog
reading should yield a low number below 50. The digital ports should show a 1
when the switch is closed and a zero when it is opened.

4.5.4 After Board Checkout

The following �nal assembly step should be done only after the board has been shown
to work properly. It is di�cult to debug a board once the battery pack has been bolted
on.

1{2 Use 2 strips of double sticky tape to attach the AA battery pack to board.
Make sure that the wire in the AA holder does not come in contact with any of
the protruding leads on the underside of the board. Many problems can occur
is the wire in the battery pack shorts adjacent leads on the board.

You should then bring your boards to one of the organizers or a TA to get it
checked o�. The checko� procedure will require that you have some knowledge of the
location of the ports and we expect you to try out the test code before checko�.

4.6 The Infrared Transmitter

The infrared (IR) transmitter board emits modulated infrared light that can be de-
tected by the Sharp IR sensors (of type GP1U52). The board has infrared transmit-
ting LEDs that are driven by a divide by 50 counter (the 74HC390 chip) and a power
transistor (TIP120) on the Microprocessor Board.

Each infrared LED is wired in series with a visible LED, so that if current is 
owing
through the infrared LED, it must also 
ow through the corresponding visible LED.
It should therefore be easy to determine if the IR LEDs are emitting light.

4.6.1 Assembly Instructions

Figure 4.15 illustrates component placement on the infrared transmitter board. Note
that the LED numbering that was printed on the actual boards is incorrect. The
numbering shown in the �gure is correct.
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Figure 4.15: Infrared Transmitter Component Placement

1{2 Resistor Packs.

Both of the resistor packs are polarized. Mount so that the marked end of the
resistor pack is placed into the square pad on circuit board.


 RP8{33
�4


 RP9{33
�4

2{2 Visible LEDs.

The visible LEDs used on the infrared transmitter board have red lenses. They
should look similar to the low powered LEDs. These will be in the bag with
the IR beacon board. Be sure to use this variety of LED here. These LEDs
can handle more current than the LEDs that have been used in other circuitry.
The LEDs will glow red when powered.

Mount LEDs so that the short lead is inserted in the shaded half of the place-
ment marking.


 LED23{red lens, red element


 LED24{red lens, red element


 LED25{red lens, red element


 LED26{red lens, red element


 LED27{red lens, red element


 LED28{red lens, red element


 LED29{red lens, red element


 LED30{red lens, red element

3{2 Infrared LEDs.

The infrared LEDs come in a small rectangular package.
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When mounting, make sure that the face with a small bubble aims outward from
the ring of LEDs. The bubble is the lens in front of the actual emitter element.

The face with the colored stripes must be on the inside of the ring.


 LED31{MLED71 IR LED


 LED32{MLED71 IR LED


 LED33{MLED71 IR LED


 LED34{MLED71 IR LED


 LED35{MLED71 IR LED


 LED36{MLED71 IR LED


 LED37{MLED71 IR LED


 LED38{MLED71 IR LED

4{2 Cable and Connector.


 Cut a 12" length of the twisted-pair red/black cable. Strip 1

4
" of insulation

from the wire on both ends.


 From underside of IR board, insert red wire into hole marked (+) and
black wire into hole marked (�). Solder from top of board.


 Mount other end of red wire to the middle pins of a three-pin male con-
nector and the black wire to one of the outside pins. Use guideline shown
in Section 4.7.

The infrared transmitter plugs into the connector labelled ir out on the Micro-
processor Board (see Figure 4.13), with the red lead inserted into middle (power) strip
and the black lead plugged into the right hand (signal) strip. The transistor acts as a
switch between the signal lead of the IR emitter and ground so no current may 
ow
when the signal to the base of the transistor is o�. If the connector is plugged in
backwards, the IR LED will always be on, and the transmitter will get very hot.

4.7 Cable and Connector Wiring

This section explains how to build reliable cables and connectors for the motors and
sensors that will plug into the robot's controller boards.

Sturdy and reliable connectors are critical to the success of a robot. If a robot's
connectors are built sloppily, hardware problems will occur. Well-built connectors
will help make the robot more reliable overall and will ease development di�culties.
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Bi-Directional Motor

Uni-Directional Motor,
LED, Incandescent Lamp

Sensor, Polarized

Sensor, Non-polarized

Infrared Beacon

Servo, Polarized

Figure 4.16: Standard Connector Plug Con�gurations
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Remove or clip 
one center pin

Cut away nubs
on the sides
of the connector

Solder

Soldering Iron
Tin the wires

Strip a small amount of insulation o� the wire ends. Tin the wire ends by applying
a thin coat of solder to them.

Figure 4.17: Step One of Connector Wiring
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Soldering Iro
n

Clipped Pin

Clipped Pin

Power

Ground

Signal

Heat-shrink Tubing

Heat-shrink Tubing

Cut the male connector to size.This example shows a plug that can be used to wire
a motor and the bottom a polarized sensor. Cut 1

2
inch length pieces of 1/4" heat-

shrink tubing. Solder the wires to the connector, being careful not to let the heat
from the soldering iron shrink the tubing.

Figure 4.18: Step Two of Connector Wiring
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Clipped Pin

Heat-shrink Tubing

Hot Glue Gun

Hot Glue

Use hot glue to strengthen and insulate the connection. Be careful not to use too
much glue, or else the connector will be too fat. While the glue is cooling o�, you
should slide the heat shrink tubing over the glue and 
atten the glue while it is till
soft.

Figure 4.19: Step Three of Connector Wiring
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Clipped Pin

Heat-shrink Tubing

Heat

Slide a piece of heat-shrink tubing over connections. Shrink using heat gun, 
ame
from a match or lighter, or the side of a soldering iron. A heat gun provides by far
the best results, and you may want to come to lab to use one.

Figure 4.20: Step Four of Connector Wiring
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Sensors and motors are built with integral wiring; that is, a sensor or motor will
have a �xed length of wire terminating in a connector. It is possible to build extension
cables, but it is more time-e�cient to build cables that are the proper length already.

The average robot has its control electronics near the physical center of the robot;
hence, motors and sensor cables need to reach from the center of the robot to their
mounting position. Given this geometry, most robots will need sensor and motor
cables between 6 and 12 inches long.

Several di�erent connector styles are used depending on the device which is being
connected to. Figure 4.16 shows the connector con�gurations used for bidirectional
motors, unidirectional motors, sensors, and the infrared beacon.

The ribbon cable provided in the 6.270 kit is best for making sensor and motor
cables.

Figures 4.17 through 4.20 illustrate the recommended method for wiring to a
connector plug. When assembled properly, this method will provide for a sturdy,
well-insulated connector that will be reliable over a long period of use. Too much
glue or heat shrink tubing will make the connector fat, and later you will not be able
to connect several connectors side by side. You will want to keep the connectors small
and sturdy.

The example shows wiring to opposite ends of a three-pin plug, as would commonly
be used when wiring to a motor. The method, however, is suitable for all kinds of
connectors.

4.8 Motor Wiring

This section explains how to wire the Polaroid motors and the servo motor, and how
to prepare the Polaroid motor for mounting on a LEGO device.

4.8.1 The Polaroid Motor

The Polaroid motors are used to eject �lm in their instant cameras and are particu-
larly powerful DC motors. They are manufactured by Mabuchi, a leading Japanese
motor manufacturer. The Polaroid motors have been donated to the 6.270 course by
Polaroid.

These instructions describe how to attach an eight-tooth LEGO gear to a Polaroid
motor. Other con�gurations are possible, but require considerably more work. Speak
to a TA or organizer if you really want to use a di�erent setup.

Attaching a LEGO Gear to the Polaroid Motor


 The motors come with a metal gear that is press-�t onto the shaft of the motor.
The �rst step is to remove this gear.
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The gear is removed using a pair of of wire strippers. Place the jaws of the
strippers between the motor and the gear. When the strippers are closed, the
bevel in the cutters should pry o� the gear.

The cutters should provide a uniform force around the gear so that it does not
get stuck on the shaft when being pried o�.


 Get some small ( 1

16
" and 1

8
") heat-shrink tubing. Shrink a couple of layers of

tubing onto the motor shaft. An eight-tooth LEGO gear should now �t snugly
over the tubing.


 Cut o� any excess tubing which sticks out from the LEGO gear. Place a drop
of super glue around the outer area of the motor shaft farthest away from the
motor housing. Using a paper napkin, pat o� any of the excess super glue.

Attaching the Polaroid Motor to a LEGO Base

The purpose of this step is to a�x the motor to LEGO parts so that it will mesh
properly with gear mechanisms built from other LEGO pieces.

To make sure that the motor is mounted properly, it will be placed on a platform
in the correct orientation to mesh with other LEGO gears.

This platform or jig is shown in Figure 4.21. It is constructed from two 2�8
beams, one 6�8 
at plate, one 2�4 plate, two 24-tooth gears, and two axles.

The motor is placed on a 2�4 
at plate and mounted so that its 8-tooth gear is
nestled between the two 24-tooth gears at the proper horizontal and vertical LEGO
spacing.


 Assemble the jig as shown in Figure 4.21. A second 2�4 plate will be mounted
to the motor.


 Cut o� the LEGO nubs from the second 2�4 plate that will be connected to
the motor. Place a piece of double-sided sticky tape on the plate.


 Position the motor on its plate so that the 8-tooth gear is meshed between the
two 24-tooth gears, and the center line of the motor shaft is parallel with the
axles of the 24-tooth gears. Remove the paper from the tape and secure the
motor onto the tape.


 With a second 2�4 plate, cut o� the bottom ridges so that it is a 
at piece with
just the nubs, or use a 2�4 piece of grey plate. Attach a piece of double-sided
sticky tape to the bottom of the piece.


 Make a second jig as shown in Figure 4.22 out of four 2�4 bricks, two 2�4
plates, and two 6�8 plates that sandwich the motor in place.
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       8-tooth gear
attached to motor shaft

Polaroid motor 2x4 LEGO plate
 taped to motor
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Polaroid motor

LEGO Jig, side view

LEGO Jig, rear view

Figure 4.21: LEGO Jig for Mounting Polaroid Motor
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Polaroid motor

2 X 4 Plate Without Nubs.

2 X 4 Plate Without
Side Bottom Ridges

Figure 4.22: LEGO Jig for Mounting Polaroid Motor


 Attach the piece to the motor such that the motor can be locked into place when
another piece is attached across the top of the motor. It is probably a good
idea to lock in your motors in a similar fashion when building your machine.

Wiring a Cable and Plug to the Polaroid Motor


 Motor cables may be constructed with either two strands of ribbon cable wire or
the twisted pair red/black cable. Cut an 8 inch to 12 inch length of whichever
wire is preferable.


 Strip and tin both ends of the wire.


 On the side of the motor there should be two metal lead/pads. Solder one wire
lead to each pad. After proper soldering, hot glue may be used to hold the wire
to the side of the motor for a stress relief.


 Motor plugs may be wired for bidirectional or unidirectional use, as shown in
Figure 4.16. (For most purposes, motors will need to be operated bidirection-
ally.)

Cut a two- or three-long strip of male socket headers as will be needed.


 Using the connector plug wiring technique shown in Figure 4.17 through Fig-
ure 4.20, wire the motor plug. Polarity does not matter since the plug may be
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Control (white or orange)

Power (red)

Ground (black or brown)

Figure 4.23: Servo Motor and Integral Connector Plug

inserted into a motor power jack in either orientation.

4.8.2 Servo Motor

Figure 4.23 illustrates a typical servo motor similar to the one provided in the 6.270
kit. The servo motor has a short cable that terminates in a three-lead connector, as
illustrated. The functions of these lead are power, ground, and the control signal.
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Sensor Design

Close your eyes. Plug your ears. Hold your nose. Tie your hands behind your back.
Shut your mouth. Tie your shoelaces together. Spin yourself around a few times.
Now walk. How does it feel? That's exactly what your robot feels: nothing{without
sensors. You have been given many types of sensors that can be used in a variety of
ways to give your robot information about the world around it. In this chapter, we'll
explain each of the sensors you have, how it works, what it's good for, and how to
build it.

Before we can teach you what sensors do, we need to make one point very clear.
Sensors are not magical boxes. The phrase \Sensors indicate a large LEGO robot 2
meters o� our port bow, Captain!" will never appear. All information you get from
sensors must be decoded by you, the human builder and programmer.

Sensors convert information about the environment into a form that can be used
by the computer. The sensors that are on the robot can be related to sensors found in
humans. Touch sensors embedded in your skin, visual sensors in your retina, and hair
cells in your ears convert information about the environment into neural code that
your brain can understand. Your brain needs to understand the neural code before
you can react. Since you will be programming the robot, you will need to understand
the output of the sensors before you can program your robot to react to di�erent
stimuli.

Take time to play with each of the sensors you have been given. Figure out how
they work. Look at the range of values they returns, and under what conditions it
gives those values. The time you spend here will greatly ease your integration of
hardware and software later. The better you understand your sensors, the easier it
will be for you to write intelligible control software that will make your robot appear
intelligent. So as you read about the sensors, you should assemble a bunch of sensors
as shown.

Sensors provide feedback to your program about the environment. Feedback is
important in any controlled situation. Rather than using open-loop, or timed pro-

83
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grams that simply follow a pattern but have no real knowledge of the world, sensors
can provide the feedback necessary to let a robot make decisions about how to act in
its environment. The feedback mechanism is very important in an environment that
is continually changing. During the rounds of the contest, the objects on the play-
ing �eld will be changing their location (i.e., the other robot moves, the drawbridge
closes, or you bump into a block). We strongly encourage you to use closed-loop feed-
back design when planning and implementing your strategy. There will be a smaller
chance of random errors completely messing up your game if you use sensors wisely.
See Chapter 8 for more information on the control problems you may encounter.

5.1 Sensor Assembly

You should have read the section on the previous chapter on the types of connectors
used with the 6.270 board. This is an important concept to understand before building
your sensors.

When building your sensors, do not make your wires too long. Excess wiring
has a tendency to get caught in gears and other mechanisms. Start out with sensor
wires no longer than 1 foot long and when your �nally decide on your robot con�gu-
ration, you can modify to length. Just build a few of each type so you can play with
them.

Start out with building simple sensors like one or two switches. The more com-
plicated ones will be the analog sensors that use IR.

5.2 Analog vs. Digital Sensors

The sensors you have can be split into two basic types: analog and digital. Analog
sensors can be plugged into the analog sensor ports, which return values between 0
and 255. Digital sensors can be plugged into either the digital ports or the analog
ports, but will always return either 0 or 1.

ANALOG 0 <= x <= 255
DIGITAL 0 or 1

Each type of sensor has its own unique uses. Digital sensors, such as pushbuttons,
can tell you when you've hit a wall. Digital sensors always answer a question about
the environment with a yes or no. \Have I hit the wall?" Yes if the switch is closed,
or no if the switch is still open.

Analog sensors, such as photoresistors, can tell you how far the sensor has bent, or
how much light is hitting the sensor. They answer questions with more detail. Analog
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sensors, however can be converted to digital sensors using thresholding. Instead of
asking the question How much is the sensor bent? you can ask the question: Is the
sensor bent more than half way? The threshold can be determined by playing around
with the speci�c sensor.

5.3 Location of Digital and Analog Ports

The digital ports on the main board are labeled from 0-7 and are shown in �gure 4.13.
There are also four analog ports on the main board, but when you use the expansion
board, the analog ports get remapped to the connectors on the right side of the
expansion board. The ports are all arranged in the same format. The inner most row
of pins are the signals, followed by a space, then microprocessor power, and �nally
on the outer side is the ground.

5.4 Digital Sensors

Digital inputs all have pull-up resistors connected to them as shown in �gure 5.1.
Digital switches are wired such that the sensor is wired across the signal pin and
ground. This means that when the digital sensors is closed, the signal is grounded or
LOW. When the switch is open, the signal pin outputs +5V, or HIGH. This value is
INVERTED by software, so reading the digital port with the switch open returns 0,
while reading the digital port with the switch closed returns 1. With nothing plugged
in, the value of a digital port should be 0.

Digital sensors can be used in the analog ports on the 6.270 Controller board as
well, relieving any restrictions the small number of digital inputs may cause. Typical
analog values for digital sensors are somewhat above 250 for an open switch, and less
than 20 for a closed switch. When using the IC command, digital(port){where
port is an analog port number (i.e., greater than 7){the sensor value is compared
to a threshold value, and the command returns a 0 if the analog value is above the
threshold or a 1 if the analog value is below it (remember the inversion of the actual
signal that digital does?). This threshold's default value is 127, but it can be changed
(See the section on IC commands for information on this).

A good way to get digital information from an analog sensor is to plug the analog
sensor into a analog port and call it with the digital(port) command. For example,
a re
ectance sensor would return a 0 for black or a 1 for white if read with the
digital command{provided the threshold is properly set. This can reduce some of the
programming complexity by abstracting away the thresholding. You should however
experiment with the sensors to determine the range of thresholds you get and under
what conditions these thresholds are valid.
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Vcc

R1
47k Resistor
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Signal = Vcc if open, 0 if closed
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(already installed on board)

Signal = Vcc if open, 0 if closed

Single Pole Digital Switch
(normally open)

Double Pole Digital Switch

Wired
Normally open

             Wired
Normally closed

Figure 5.1: Generic Digital Sensor Schematics.

It is not recommended to plug analog sensors into digital ports, however, because
the digital ports threshold to conventional logic levels which cannot be adjusted to
suit each analog sensor. The valid analog readings may fall into the invalid range for
digital logic.

Here are some mountings and uses for some digital sensors in the 6.270 kit.

5.4.1 Dip Switches

There are four dip switches on the Expansion Board. They can be used to select user
program options during testing. One dip switch will be used in the starting code for
the contest to determine the side your robot starts on and at which frequencies it
transmits and receives the modulated IR. They can also be useful for outside control
of program parameters, like enabling certain functions or selecting programs to run.
While these switches are connected to the analog port, they are really digital switches.

5.4.2 Micro-Switches

The standard kit includes three types of small switches, two micro switches and
a small push button. These make great object detectors, so long as you are only
interested in answering the question, Am I touching something right now? with a yes
or no. This is often enough for responding to contact with a wall or the other robot or
for actuator position sensing. Using a switch in this manner (called a \limit" switch)
can be a good way to protect drive mechanisms which self destruct when over driven.
This could be handy for limiting the motion of hinged joints or linear actuators by
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Figure 5.2: Microswitch Assemblies
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requiring that a switch be open (or closed, depending upon the situation) before
running the motor and monitoring it while things are moving. They could also be
used for extended user interface for testing and development purposes.

The two micro switches are double pull, which means they can be wired so that
they return a one or a zero when not depressed. The only major di�erence is how you
think about the device in your code. Reading a sensor can be thought of as asking a
question. Here, the question could be, \Are you open?" or \Are you closed?" If you
wire the switch normally open, the answers are yes and no, respectively, where they
would be no and yes for a switch wired normally closed, all for the same situation
where the switch is not depressed.

Touch switches should be wired in a normally open con�guration, so that the
signal line is brought to ground only when the switch is depressed.

In some cases, a slight advantage may result from one arrangement, because there
may be a di�erence between the position where the open side makes contact and
the closed side breaks contact. When this is the case, the choice of normally open
or normally closed will a�ect how sensitive the switch is to outside forces. This can
allow you to make a very touchy sensing device or help block out noise. The small
black switches with the white lever arm respond to a shorter arm movement when
wired normally open and require a little more movement to cause a transition in the
normally closed con�guration.

Bouncing is a problem found in many switches. At the point where the switch
goes from open to close or vice versa, the output from the switch is very glitchy. The
switch may output several transitions. Bounciness occurs especially when the switch
is used in a sensitive mode. One way to debounce the switch is to add a delay between
samples of the digital input. If the sampling is sparse enough, the bouncing section
of the data will not be collected.

5.4.3 Sharp IR Detector

The Sharp GP1U52X sensor detects infrared light that is modulated (i.e., blinking
on and o�) at 40,000 Hz. It has an active low digital output, meaning that when it
detects the infrared light, its output is zero volts.

The metal case of the sensor must be wired to circuit ground, as indicated in the
diagram. This makes the metal case act as a Faraday cage, protecting the sensor
from electromagnetic noise.

While it may not seem like a digital sensor because most of the light sensor we
deal with are analog, it is a bona �de digital sensor because it detects infrared light
modulated at 40kHz. Inside the tin can, there is a IR detector, ampli�er, and a
demodulator. The sensor returns a HIGH when there is no 40kHz light, and is LOW
when it see the 40kHz light.
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Sensor
Aperture

Use 12-15’’ of wire
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         to its case with wire
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+5v

ground

signal

Sharp GP1U52X

Figure 5.3: Sharp IR sensor assembly

There is a lot of infrared light that is ambient in the air. Some components of this
light are at 40kHz, and straight output from the sensor would look very glitchy. The
sun produces a lot of IR light, and in the sun, the sensor output bounces all over the
place. To eliminate the e�ect of the stray IR light, the IR emitters are modulated at
100 or 125 Hz (see section A.7 for more information on the IR transmission) and the
output of the IR Detectors is demodulated to look for these frequencies. The 40kHz
frequency is known as the carrier frequency, and the other frequency is the modulated
frequency.

You can use the IC command ir counts(port) to count the number of successive
detected periods of the modulated frequency. A count larger than 10 indicates a
detection. You may need to play around with what values of the counts are needed
for detection. These sensors can only be used in digital ports 4-7.

5.5 Analog Sensors

The analog ports all have a pull up resistor which is a 47K
 resistor between +5 volts
and the signal input. The analog readings are generated by measuring the amount
of current 
ow through the pull up resistor. If no current 
ows through the resistor,
the voltage at the signal input will be +5 volts and the analog value will be 255. The
voltage at the signal pin can be simply calculated by:

Vsig = 5� 47
� i

Reading the value of an analog port without a sensor will return a value above
250. With the sensor plugged in, the value should be less. This is one good way to
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Figure 5.4: Analog Sensors Schematics

check if one sensor fell out: write a piece of code that checks the values of the analog
ports that you have sensors plugged into. If that value is above 250 or so, have it tell
you to check the sensor.

5.5.1 Resistive Sensors

The resistance of resistive analog sensors, like the bend sensors or potentiometers,
change with changes in the environment, either an increase in light, or a physical
deformation. The change in resistance causes a change in the voltage at the signal
input by the voltage divider relation.

Vsig =
Rsensor

47
 +Rsensor

� 5V

5.5.2 Transistive Analog Sensor

Transitive analog sensors, like the photo transistors and re
ectance sensors, work like
a water faucet. Providing more of what the sensor is looking for opens the setting of
the valve, allowing more current to 
ow. This makes the voltage the voltage at the
signal decrease. A photo transistor reads around 10 in bright light and 240 in the
dark.

One problem that may occur with transitive sensors is that the voltage drop across
the resistor may not be large enough when the transistor is open. Some transitive
devices only allow a small amount of current to 
ow through the transistor. A larger
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range for the sensor can be accomplished by putting a larger pull-up resistor. By hav-
ing a larger resistor, the voltage drop across the pull-up resistor will be proportional
to the resistance.

We will give example uses and mountings for each type of sensor. Keep in mind
that these are only simple examples and are not the only possible uses for them. It's
up to you to make creative use of the sensors you've been given.

5.5.3 Potentiometers

Kits contain several sizes of potentiometers, also known as pots or variable resistors.
There are rotary and linear pots. As the knob is turned or the handle slid, the
resistance increases or decreases. This will produce di�erent analog values.

Potentiometers should be wired with Vcc and ground on the two outside pins,
and the signal wire on the center tap. This will, in e�ect, place the resistance of the
potentiometer in parallel with the 47K
pull-up on the expansion board and is more
stable than just using one side and the center tab to make a plain variable resistor.

Potentiometers have a variety of uses. In the past, they have been used for menuing
programs and angle measurement for various rotating limbs or scanning beacons.
They can be used with a motor to mimic servos, but that's a di�cult task. It is
important to notice that the pots are not designed to turn more than about 270
degrees. Forcing them farther is likely to break them.

A potentiometer can be attached to a LEGO beam such that it can be used in
place of a bend sensor. The rotation of the beam will produce a rotation in the
potentiometer. See if you can come up with an assembly that can be used in place of
a bend sensor. The advantage to such a sensor is that it is much sturdier than the
bend sensor. The disadvantage is that it is bulkier.

Linear Pots

A linear potentiometer can be used to measure precise linear motion, such as a gate
closing, or a cocking mechanism for �ring balls or blocks.

Frob-knob

The frob knob is the small white dial on the lower left corner of the Expansion Board.
It returns values between 0 and 255 and provides a handy user input for adjusting
parameters on the 
y or for menuing routines to select di�erent programs. You may
�nd it useful to glue a small LEGO piece to the frob knob to make turning it easier.
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Figure 5.5: Potentiometer Assemblies
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Vcc
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Photo Cell + 47k Ohms

Figure 5.6: Photocell Light Sensor

5.5.4 Photoresistors

The photocell is a special type of resistor which responds to light. The more light
hitting the photocell, the lower the resistance it has. The output signal of the photo-
cell is an analog voltage corresponding to the amount of light hitting the cell. Higher
values correspond to less light.

A photoresistor changes its resistive value based on the amount of light that strikes
it. As the light hitting it increases, the resistive value decreases. They are somewhat
sensitive to heat, but stand up to abuse well. Try not to overheat when soldering
wires to them.

As with all the light-sensing devices, shielding is very important. A properly
shielded sensor can make the di�erence between valid and invalid values reported by
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that sensor. The idea is simple: restrict the amount of light striking the sensor to the
direction you expect the light to be coming from. You do not want light from external
sources (i.e., camera 
ashes or spot lights) to interfere with your robot. Black heat
shrink tubing often works well to shield the photoresistor from external light sources.

One good way to get a feel for how these sensors work, and how your robot and
software interact, is to make a light-sni�er. With two or more photoresistors, try to
create a simple robot that can move around a room, either avoiding light or avoiding
shadows in a controlled manner. Ambient light conditions play a major role in how to
interpret the data from any light sensors. A combination of photocells, one pointed
up and one pointed down, may be used to adjust for ambient light levels, which may
be useful in some applications.

Photoresistors are probably the only sensor required to be on your robot. A
starting light will be used to start each contest round, and the robot must be able to
sense that light. You must place one photoresistor on the underside of your robot,
probably near the center. Be sure to shield it as much as possible from the overhead
ambient light. We will provide starting code that reads the value of that sensor to
start the match.

Mounting the photoresistors doesn't tend to be di�cult. You can use a small
amount of hot glue to attach the photocell to a LEGO brick, or double-sticky tape
will also work. Be inventive.

5.5.5 Photo Transistors and IR LEDs

Phototransistors are usually tuned to a speci�c wavelength of light. The wavelength is
usually near visible red, or in the infrared spectrum. They have similar properties to
the photoresistors. The main di�erence is that the phototransistors are usually tuned
to a speci�c wavelength. The other important di�erence is that the time delay for a
change in light conditions is much smaller for a phototransistor. This can be useful in
doing fast control looking for polarized light. The time constant for a phototransistor
is much faster than a photoresistor, so it may be used in situations where timing is
critical.

An IR LED is a type of diode which emits radiation in the infrared range. This
part could be used as a component in a breakbeam sensor or a re
ectance sensor.

These instructions are for two kinds of phototransistors, each of which are pack-
aged in cylindrical brass-colored cans with a glass lens. The �rst kind is packaged
individually, with no wires attached, and with three leads. The second is surplus
parts, with wires already attached, and with each phototransistor paired with an
LED. (Note: surplus parts are usually overstocked or obsolete parts that didn't sell
through retail channels. See the book's appendix on ordering electronics parts.) The
individual Phototransistors cost 6.270 about $1 each, about the same as an entire
surplus assembly bundle of wires and phototransistors and LEDs.
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Cut off this lead
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Figure 5.7: The LEDs

How to tell them apart

Be careful to di�erentiate the phototransistors from the LEDs: the phototransistors
have relatively 
at lenses, while the LEDS lenses are more convex. Fig 5.7 shows
one of the LEDs. Also, the two di�erent kinds of phototransistors (surplus vs virgin
manufactured) have very di�erent characteristics, and cannot be used in sensors inter-
changeably. The surplus phototransistors respond almost exclusively to infrared light
and have a \resistance" of approximately 100 k
 when activated and 1 M
 when
not activated. The individual, un-wired phototransistors, on the other hand, respond
to visible light as well as infrared, and have \resistances" about one hundred times
smaller.

Interfacing to the Board

These phototransistors require pull-up resistors, a resistor connected between Vcc and
the signal line, to work properly. In past years, all of these sensors required 47k pull-up
resistors, but that is no longer the case. Each individually packaged phototransistor
now can be used with a 220k pull-up, while the \bundle of wires" phototransistors
work well with 100
pull-ups. This may present A slight problem if you have already
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installed RP6, one of the 47k pull-up resistor packs on your expansion boards. Fear
not! By installing the pull-up resistors on the connector as shown in Fig 5.8. For the
individually packaged phototransistors, the 2.2k resistor on the connector will be in
parallel with the 47k pull-up on the board. Since resistors in parallel add reciprocally,
the combination of the two will electrically look like a 2.2k resistor (approximately).
However, if you have the \bundle of wires" phototransistors, you will have to cut a
trace on the bottom side of the expansion board to disable the 47k pull-up resistor,
since it would otherwise dominate. Warning! Once you cut a trace, that analog port
should be used only for the 220k phototransistors. This means that you will have to
be sure to plug these sensors into the correct analog ports each time you use them.
Ask a TA before you cut this trace!

Visible Light sensor

The phototransistors respond very well to visible (far-red, we hypothesize) light as
well as infrared. They should be wired with a 2k to 4k resistor for best results
(we recommend 2.2k). Because they respond to visible light, they are extremely
susceptible to interference from ambient light. You may be able to use them as 
oor-
color sensors using just ambient light, but if you want to use them for break-beam
sensing, they will have to be very well-shielded.

IR Photo Transistor

The \bundle-of-wires" phototransistors are much more predictable. They should be
wired with a resistor of 100k to 300k (we recommend 220k). They barely respond at
all to visible frequencies of light. They respond particularly well to the LEDs with
which they are bundled, as well as to the grey IR LEDs. Both LEDs are highly
directional, and you should be able to get good break-beam results up to 5 or 6 cm
apart (2 inches). This might prove especially useful in ball-�ring mechanisms, for
example. Note that both LEDs and phototransistors are just the right size to �t in
LEGO axle-holes!

5.5.6 Polarizing Film

Polarized �lm has �ne printed or etched straight lines. The polarizing �lm allows the
light to travel in parallel perpendicular planes rather than in all directions. Assume
for this section that the lines are running up and down, and therefore the light waves
will be traveling up and down. If a second �lm is placed such that the lines are
horizontal, the light traveling past the �rst �lter will not pass through the second
�lter.
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Figure 5.8: Phototransistor body and connector



98 CHAPTER 5. SENSOR DESIGN

Two pieces of �lm which are perpendicular to each other will block out most of
the light. Parallel pieces will allow maximum light to go through.

The Polarizing �lm can be used to enhance the photo transistors and photo re-
sistors. The beacons at each end of the playing �eld are emitting polarized light.
One side is polarized at positive 45 degrees from the vertical and the other side is at
negative 45 degrees. You can detect the di�erence between one side and the other by
placing a piece of polarizing �lm in front of a phototransistor or photoresistor.

5.5.7 Re
ectance Sensors

A re
ectance sensor is made up of a combination of an infrared or red LED and a
phototransistor that is sensitive to the wavelength of light being emitted by the LED.
Over dark surfaces, the light is absorbed, whereas over light surfaces, the light is
re
ected back to the phototransistor.

A re
ectance sensor (�gure 5.9) can be made using discrete components.
The re
ectance sensors are useful for detecting what color the 
oor is. They could

also be used as object detectors, but they are very near sighted and quite responsive
to outside lighting. In any application, good shielding is an absolute requirement if
any reliability is desired. The sensors are very sensitive to distance from the re
ecting
surface. Distances greater than an inch will give very poor reading, and distances that
are too small will not allow the right to be re
ected. The angle at which the light
is re
ected to the surface is important and can produce better or worse results at
di�erent distances.

5.5.8 Motor-Force Sensors

There are four motor force sensors built into the 6.270 Controller board, attached to
motors 0 through 3. These sensors are included to detect when the motors might be
stalled. When the motors stall, they draw a large amount of current, which appears as
a large voltage on the analog inputs to the 6811. When a motor force value increases
sharply, that's a good sign, but not guaranteed, that the motor may be stalled. The
value that it reaches will depend on the load attached to the motor. Experiment
by stalling the motor yourself while printing the values on the LCD to determine a
threshold that's right for your robot.

Motor force values are not very accurate when you are driving the motors at
anything less than 100%. Driving the motors at lower speeds will cause the motor
force value to oscillate wildly, so it is recommended that you only use this information
when you are driving a motor at full speed.

5.5.9 Breakbeam Sensors
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Figure 5.10: Breakbeam Sensor using discrete components.
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Breakbeam sensors are another form of light sensors. Instead of looking for re
ected
light, the photosensor looks for direct light as shown in Figure 5.10.

The sensor is useful in detecting opaque objects that prevent the light beam from
passing through. This can be useful in detecting block between gripper, or when
block passes through a passageway. The sensor does not need to detect the block
very quickly so the phototransistor can be plugged into the analog port.

The breakbeam sensors can also be used for counting holes or slots in a disk
as it rotates (see Figure 5.12), allowing distance traveled to be measured. Since this
requires a very fast sampling, the sampling needs to be done at the assembly language
level. We have implemented shaft-encoder routines to do the fast sampling. But in
order to use these routines the sensors should be plugged into the lower two digital
ports if the rate at which the holes or slots go by is very high.

Before you use the analog sensors in the digital switch you must make sure that
there is a full swing in the analog reading from when the light goes through to when
the light is blocked.
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Chapter 6

IC Manual

Interactive C (IC for short) is a C language consisting of a compiler (with interactive
command-line compilation and debugging) and a run-time machine language module.
IC implements a subset of C including control structures (for, while, if, else), local
and global variables, arrays, pointers, structures, 16-bit and 32-bit integers, and 32-bit

oating point numbers.

IC works by compiling into pseudo-code for a custom stack machine, rather than
compiling directly into native code for a particular processor. This pseudo-code (or
p-code) is then interpreted by the run-time machine language program. This unusual
approach to compiler design allows IC to o�er the following design tradeo�s:

� Interpreted execution that allows run-time error checking. For example, IC
does array bounds checking at run-time to protect against some programming
errors.

� Ease of design. Writing a compiler for a stack machine is signi�cantly eas-
ier than writing one for a typical processor. Since IC's p-code is machine-
independent, porting IC to another processor entails rewriting the p-code inter-
preter, rather than changing the compiler.

� Small object code. Stack machine code tends to be smaller than a native
code representation.

� Multi-tasking. Because the pseudo-code is fully stack-based, a process's state
is de�ned solely by its stack and its program counter. It is thus easy to task-
switch simply by loading a new stack pointer and program counter. This task-
switching is handled by the run-time module, not by the compiler.

Since IC's ultimate performance is limited by the fact that its output p-code is
interpreted, these advantages are taken at the expense of raw execution speed.

105
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The current version of IC was designed and implemented by Randy Sar-
gent, Anne Wright, and Carl Witty, with the assistance of Fred Martin.
As of this writing, there are �ve related 6811 systems in use: the 1991
6.270 Board (the \Revision 2" board), the 1991 Sensor Robot, the Rev.
2.1 6.270 Board (from 1992), the Rev. 2.2 6.270 Board (from 1993), and
the Rev. 2.21 6.270 Board (from 1994). This writing covers the Rev. 2.21
board only; documentation for the other systems is available elsewhere.

6.1 Getting Started

This section describes how to use IC on the 6.270 board using the MIT Athena
computer network. Commands that are typed to the computer are shown underlined
for visibility.

1. Add the 6.270 directory to the execution path. Type the following
command at the Unix prompt:

add 6.270

2. Plug the board into the computer. Connect a modular phone cable between
the board and the host computer. The connection at the host end depends on
the type of the host. Before the board is turned on, check that the board's
green LED (labelled ser rcv) is lit. If it is not lit, there is a problem with the
connection.

3. Initialize the board. The �rst step is using IC is to load the run-time module
(called the \p-code program") into the board. If the p-code is already loaded,
this step may be skipped. If not:

� Switch the board on. Hold down the CHOOSE button while hitting the
reset button. The yellow LED (labelled ser xmit) should turn o�. If the
yellow LED is lit, the board is not ready to be initialized { try again.

� From the Unix prompt, type

init bd

A process should begin that downloads the p-code program to the board.
This will take about 15 to 30 seconds to complete. If the program exits
with an error message, check the connection and try again.

4. Reset the board. Press the reset button on the board to reset it. The following
should happen:

(a) The board will emit a brief beep;
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(b) A version message will be printed on the LCD screen (e.g., \IC vX.XX");

(c) The yellow LED will turn on brightly.

If these things do not happen, repeat step 3 to initialize the board.

5. Begin IC. From the Unix prompt, type:

ic

At this point, IC will boot, ready to load a C program or evaluate expressions
typed to the IC prompt.

6.2 Using IC

IC is started from the Unix shell by typing ic at the prompt. Some Unix systems
(in particular, MIT Athena DECstations) have an unrelated application named ic.
If this application is �rst in the execution path, it will be invoked rather than the
IC compiler. This situation may be remedied by reordering the execution path to
include the path to the IC compiler �rst, or by using the program name icc, which
will also invoke IC.

IC can be started with the name (or names) of a C �le to compile.

When running and attached to a 6811 system, C expressions, function calls, and
IC commands may be typed at the \C>" prompt.

All C expressions must be ended with a semicolon. For example, to evaluate the
arithmetic expression 1 + 2, type the following:

C> 1 + 2;

When this expression is typed, it is compiled by the console computer and then
downloaded to the 6811 system for evaluation. The 6811 then evaluates the compiled
form and returns the result, which is printed on the console computer's screen.

To evaluate a series of expressions, create a C block by beginning with an open
curly brace \{" and ending with a close curly brace \}". The following example
creates a local variable i and prints 10 (the sum of i + 7) to the 6811's LCD screen:

C> fint i=3; printf("%d", i+7);g
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6.2.1 IC Commands

IC responds to the following commands:

� Load �le. The command load <�lename> compiles and loads the named �le.
The board must be attached for this to work. IC looks �rst in the local directory
and then in the IC library path for �les.

Several �les may be loaded into IC at once, allowing programs to be de�ned in
multiple �les.

� Unload �le. The command unload <�lename> unloads the named �le, and
re-downloads remaining �les.

� List �les, functions, globals, or de�nes. The command list files displays
the names of all �les presently loaded into IC. The command list functions

displays the names of presently de�ned C functions. The command list

globals displays the names of all currently de�ned global variables. The com-
mand list defines displays the names and values of all currently de�ned
preprocessor macros.

� Kill all processes. The command kill all kills all currently running pro-
cesses.

� Print process status. The command ps prints the status of currently running
processes.

� Help. The command help displays a help screen of IC commands.

� Quit. The command quit exits IC. ctrl-C can also be used.

6.2.2 Line Editing

IC has a built-in line editor and command history, allowing editing and re-use of
previously typed statements and commands. The mnemonics for these functions are
based on standard Emacs control key assignments.

To scan forward and backward in the command history, type ctrl-P or " for

backward, and ctrl-N or # for forward.
An earlier line in the command history can be retrieved by typing the exclamation

point followed by the �rst few characters of the line to retrieve, and then the space
bar. For example, if you had previously typed the command C> load foo.c, then
typing C>!lo followed by a space would retrieve the line C> load foo.

Figure 6.1 shows the keystroke mappings understood by IC.
IC does parenthesis-balance-highlighting as expressions are typed.
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Keystroke Function
del backward-delete-char
ctrl-A beginning-of-line
ctrl-B backward-char
 backward-char
ctrl-D delete-char
ctrl-E end-of-line
ctrl-F forward-char
! forward-char
ctrl-K kill-line
esc D kill-word
esc del backward-kill-word

" , ctrl-P history-last

# , ctrl-N history-next

Figure 6.1: IC Command-Line Keystroke Mappings

6.2.3 The main() Function

After functions have been downloaded to the board, they can be invoked from the IC
prompt. If one of the functions is named main(), it will automatically be run when
the board is reset.

To reset the board without running the main() function (for instance, when hook-
ing the board back to the computer), hold down the board's ESCAPE button while
pressing reset. The board will reset without running main().

6.3 A Quick C Tutorial

Most C programs consist of function de�nitions and data structures. Here is a simple
C program that de�nes a single function, called main.

void main()
{

printf("Hello, world!\n");
}

All functions must have a return type. Since main does not return a value, it
uses void, the null type, as its return type. Other types include integers (int) and
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oating point numbers (float). This function declaration information must precede
each function de�nition.

Immediately following the function declaration is the function's name (in this case,
main). Next, in parentheses, are any arguments (or inputs) to the function. main has
none, but a empty set of parentheses is still required.

After the function arguments is an open curly-brace \f". This signi�es the start
of the actual function code. Curly-braces signify program blocks, or chunks of code.

Next comes a series of C statements. Statements demand that some action be
taken. Our demonstration program has a single statement, a printf (formatted
print). This will print the message \Hello, world!" to the LCD display. The \n

indicates end-of-line.
The printf statement ends with a semicolon (\;"). All C statements must be

ended by a semicolon. Beginning C programmers commonly make the error of omit-
ting the semicolon that is required at the end of each statement.

The main function is ended by the close curly-brace \g".

Let's look at an another example to learn some more features of C. The following
code de�nes the function square, which returns the mathematical square of a number.

int square(int n)
{

return(n * n);
}

The function is declared as type int, which means that it will return an integer
value. Next comes the function name square, followed by its argument list in paren-
theses. square has one argument, n, which is an integer. Notice how declaring the
type of the argument is done similarly to declaring the type of the function.

When a function has arguments declared, those argument variables are valid
within the \scope" of the function (i.e., they only have meaning within the func-
tion's own code). Other functions may use the same variable names independently.

The code for square is contained within the set of curly braces. In fact, it consists
of a single statement: the return statement. The return statement exits the function
and returns the value of the C expression that follows it (in this case \n * n").

Expressions are evaluated according set of precedence rules depending on the
various operations within the expression. In this case, there is only one operation
(multiplication), signi�ed by the \*", so precedence is not an issue.

Let's look at an example of a function that performs a function call to the square
program.

float hypotenuse(int a, int b)
{
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float h;

h = sqrt((float)(square(a) + square(b)));

return(h);
}

This code demonstrates several more features of C. First, notice that the 
oating
point variable h is de�ned at the beginning of the hypotenuse function. In general,
whenever a new program block (indicated by a set of curly braces) is begun, new local
variables may be de�ned.

The value of h is set to the result of a call to the sqrt function. It turns out that
sqrt is a built-in function that takes a 
oating point number as its argument.

We want to use the square function we de�ned earlier, which returns its result as
an integer. But the sqrt function requires a 
oating point argument. We get around
this type incompatibility by coercing the integer sum (square(a) + square(b)) into
a 
oat by preceding it with the desired type, in parentheses. Thus, the integer sum
is made into a 
oating point number and passed along to sqrt.

The hypotenuse function �nishes by returning the value of h.

This concludes the brief C tutorial.

6.4 Variables, Constants, and Data Types

Variables and constants are the basic data objects in a C program. Declarations list
the variables to be used, state what type they are, and may set their initial value.

6.4.1 Variables

Variable names are case-sensitive. The underscore character is allowed and is often
used to enhance the readability of long variable names. C keywords like if, while,
etc. may not be used as variable names.

Global variables and functions may not have the same name. In addition, local
variables named the same as globals or functions prevent the use of that function
within the scope of the local variable.

Declaration

In C, variables can be declared at the top level (outside of any curly braces) or at the
start of each block (a functional unit of code surrounded by curly braces). In general,
a variable declaration is of the form:
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<type> <variable name>;

or

<type> <variable name>=<initialization data>;

<type> can be int, long, float, char, or struct <struct name>, and de-
termines the primary type of the variable declared. This form changes somewhat when
dealing with pointer and array declarations, which are explained in a later section,
but in general this is the way you declare variables.

Local and Global Scopes

If a variable is declared within a function, or as an argument to a function, its binding
is local, meaning that the variable has existence only within that function de�nition.

If a variable is declared outside of a function, it is a global variable. It is de�ned
for all functions, including functions which are de�ned in �les other than the one in
which the global variable was declared.

Variable Initialization

Local and global variables can be initialized to a value when they are declared. If no
initialization value is given, the variable is initialized to zero.

All global variable declarations must be initialized to constant values. Local vari-
ables may be initialized to the value of arbitrary expressions including any globals,
function calls, function arguments, or locals which have already been initialized.

Here is a small example of how initialized declarations are used.

int i=50; /* declare i as global integer -- initial value 50 */
long j=100L; /* declare j as global long -- initial value 100 */
int foo()
{

int x; /* declare x as local integer with initial value 0 */
long y=j; /* declare y as local integer with initial value j */

}

Local variables are initialized whenever the function containing them runs.
Global variables are initialized whenever a reset condition occurs. Reset conditions

occur when:

1. Code is downloaded;

2. The main() procedure is run;

3. System hardware reset occurs.
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Persistent Global Variables

A special persistent form of global variable, has been implemented for IC . A persistent
global may be initialized just like any other global, but its value is only initialized
when the code is downloaded and not on any other reset conditions. If no initialization
information is included for a persistent its value will be initialized to zero on download,
but left unchanged on all other reset conditions.

To make a persistent global variable, pre�x the type speci�er with the key word
persistent. For example, the statement

persistent int i=500;

creates a global integer called i with the initial value 500.
Persistent variables keep their state when the board is turned o� and on, when

main is run, and when system reset occurs. Persistent variables will lose their state
when code is downloaded as a result of loading or unloading a �le. However, it is
possible to read the values of your persistents in IC if you are still running the same
IC session from which the code was downloaded. In this manner you could read the
�nal values of calibration persistents, for example, and modify the initial values given
to those persistents appropriately.

Persistent variables were created with two applications in mind:

� Calibration and con�guration values that do not need to be re-calculated on
every reset condition.

� Robot learning algorithms that might occur over a period when the robot is
turned on and o�.

6.4.2 Constants

Integers

Integers constants may be de�ned in decimal integer format (e.g., 4053 or -1), hex-
adecimal format using the \0x" pre�x (e.g., 0x1fff), and a non-standard but useful
binary format using the \0b" pre�x (e.g., 0b1001001). Octal constants using the zero
pre�x are not supported.

Long Integers

Long integer constants are created by appending the su�x \l" or \L" (upper- or
lower-case alphabetic L) to a decimal integer. For example, 0L is the long zero.
Either the upper or lower-case \L" may be used, but upper-case is the convention for
readability.
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Floating Point Numbers

Floating point numbers may use exponential notation (e.g., \10e3" or \10E3") or may
contain a decimal period. For example, the 
oating point zero can be given as \0.",
\0.0", or \0E1", but not as just \0". Since the 6811 has no 
oating point hardware,

oating point operations are much slower than integer operations, and should be used
sparingly.

Characters and Character Strings

Quoted characters return their ASCII value (e.g., 'x').

Character string constants are de�ned with quotation marks, e.g., "This is a

character string.".

NULL

The special constant NULL has the value of zero and can be assigned to and compared
to pointer or array variables (which will be described in later sections). In general,
you cannot convert other constants to be of a pointer type, so there are many times
when NULL can be useful.

For example, in order to check if a pointer has been initialized you could compare
its value to NULL and not try to access its contents if it was NULL. Also, if you had
a de�ned a linked list type consisting of a value and a pointer to the next element,
you could look for the end of the list by comparing the next pointer to NULL.

6.4.3 Data Types

IC supports the following data types:

16-bit Integers 16-bit integers are signi�ed by the type indicator int. They are
signed integers, and may be valued from �32,768 to +32,767 decimal.

32-bit Integers 32-bit integers are signi�ed by the type indicator long. They are
signed integers, and may be valued from �2,147,483,648 to +2,147,483,647 decimal.

32-bit Floating Point Numbers Floating point numbers are signi�ed by the type
indicator float. They have approximately seven decimal digits of precision and are
valued from about 10�38 to 1038.
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8-bit Characters Characters are an 8-bit number signi�ed by the type indicator
char. A character's value typically represents a printable symbol using the standard
ASCII character code.

Arrays of characters (character strings) are supported, but individual characters
are not.

Pointers IC pointers are 16-bit numbers which represent locations in memory. Val-
ues in memory can be manipulated by calculating, passing and dereferencing pointers
representing the location where the information is stored.

Arrays Arrays are used to store homogeneous lists of data (meaning that all the
elements of an array have the same type). Every array has a length which is deter-
mined at the time the array is declared. The data stored in the elements of an array
can be set and retrieved in the same manner that other variables can be.

Structures Structures are used to store non-homogeneous but related sets of data.
Elements of a structure are referenced by name instead of number and may be of
any supported type. Structures are useful for organizing related data into a coherent
format, reducing the number of arguments passed to functions, increasing the e�ective
number of values which can be returned by functions, and creating complex data
representations such as directed graphs and linked lists.

6.4.4 Pointers

The address where a value is stored in memory is known as the pointer to that value.
It is often useful to deal with pointers to objects, but great care must be taken
to insure that the pointers used at any point in your code really do point to valid
objects in memory. Attempts to refer to invalid memory locations could corrupt your
memory. Most computing environments that you are probably used to return helpful
messages like \Segmentation Violation" or \Bus Error" on attempts to access illegal
memory. However, no such safety net exists in the 6.270 system and invalid pointer
dereferencing is very likely to go undetected and cause serious damage to your data,
your program, or even the pcode interpreter.

Pointer Safety

In past versions of IC you could not return pointers from functions or have arrays of
pointers. In order to facilitate the use of structures, these features have been added to
the current version. With this change, the number of opportunities to misuse pointers
have increased. However, if you follow a few simple precautions you should do �ne.
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First, you should always check that the value of a pointer is not equal to NULL
(a special zero pointer) before you try to access it. Variables which are declared to be
pointers are initialized to NULL, so many uninitialized values could be caught this
way.

Second, you should never use the pointer to a local variable in a manner which
could cause it to be accessed after the function in which it was declared terminates.
When a function terminates the space where its values were being stored is recy-
cled. Therefore not only may dereferencing such pointers return incorrect values, but
assigning to those addresses could lead to serious data corruption. A good way to
prevent this is to never return the address of a local variable from the function which
declares it and never store those pointers in an object which will live longer than
the function itself (a global pointer, array, or struct). Global variables and variables
local to main will not move once declared and their pointers can be considered to be
secure.

The type checking done by ic will help prevent many mishaps, but it will not catch
all errors, so be careful.

Pointer Declaration and Use

A variable which is a pointer to an object of a given type is declared in the same
manner as a regular object of that type, but with an extra � in front of the variable
name.

The value stored at the location the pointer refers to is accessed by using the �
operator before the expression which calculates the pointer. This process is known
as dereferencing.

The address of a variable is calculated by using the & operator before that variable,
array element, or structure element reference.

There are two main di�erences between how you would use a variable to be a
given type and a variable declared as a pointer to that type.

For the following explanation, consider X and Xptr as de�ned as follows:

long X;

long *Xptr;

� Space Allocation { Declaring an object of a given type, as X is of type long,
allocates the space needed to store that value. Because an IC long takes four
bytes of memory, four bytes are reserved for the value of X to occupy. However,
a pointer like Xptr does not have the same amount of space allocated for it that
is needed for an object of the type it points to. Therefore it can only safely
refer to space which has already been allocated for globals (in a special section
of memory reserved for globals) or locals (temporary storage on the stack).
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� Initial Value { It is always safe to refer to a non-pointer type, even if it hasn't
been initialized. However pointers have to be speci�cally assigned to the address
of legally allocated space or to the value of an already initialized pointer before
they are safe to use.

So, for example, consider what would happen if the �rst two statements after X
and Xptr were declared were the following:

X=50L;

*Xptr=50L;

The �rst statement is valid: it sets the value of X to 50L. The second statement
would be valid if Xptr had been properly initialized, but in this case it is not. There-
fore, this statement would corrupt memory.

Here is a sequence of commands you could try which illustrate how pointers and
the and & operators are used. It also shows that once a pointer has been set to point
at a place in memory, references to it actually share the same memory as the object
it points to:

X=50L; /* set the memory allocated for X to the value 50 */

Xptr=&X; /* set Xptr to point to X */

*Xptr; /* see that the value pointed at by Xptr is 50 */

X=100L; /* set X to the value 100 */

*Xptr; /* see that the value pointed at by Xptr changed to 100 */

*Xptr=200L; /* set the value pointed at by Xptr to 200 */

X; /* see that the value in X changed to 200 */

Passing Pointers as Arguments

Pointers can be passed to functions and functions can change the values of the vari-
ables that are pointed at. This is termed call-by-reference; a reference, or pointer, to
a variable is given to the function that is being called. This is in contrast to call-by-
value, the standard way that functions are called, in which the value of a variable is
given the to function being called.

The following example de�nes an average sensor function which takes a port
number and a pointer to an integer variable. The function will average the sensor
and store the result in the variable pointed at by result.

Function arguments are declared to be pointers by prepending a star to the argu-
ment name, just as is done for other variable declarations.

void average_sensor(int port, int *result)
{
int sum= 0;
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int i;

for (i= 0; i< 10; i++) sum += analog(port);

*result= sum/10;
}

Notice that the function itself is declared as a void. It does not need to return
anything, because it instead stores its answer in the pointer variable that is passed
to it.

The pointer variable is used in the last line of the function. In this statement,
the answer sum/10 is stored at the location pointed at by result. Notice that the
asterisk is used to get assign a value to the location pointed by result.

Returning Pointers from Functions

Pointers can also be returned from functions. Functions are de�ned to return pointers
by preceding the name of the function with a star, just like any other type of pointer
declaration.

int right,left;

int *dirptr(int dir)

{

if(dir==0) {

return(&right);

}

if(dir==1) {

return(&left);

}

return(NULL);

}

The function dirptr returns a pointer to the global right when its argument dir
is 0, a pointer to left when its argument is 1, and NULL if its argument is other
than 0 or 1.

6.4.5 Arrays

IC supports arrays of characters, integers, long integers, 
oating-point numbers, struc-
tures, pointers, and array pointers (multi-dimensional arrays). While unlike regular
C arrays in a number of respects, they can be used in a similar manner. The main
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reasons that arrays are useful are that they allow you to allocate space for many in-
stances of a given type, send an arbitrary number of values to functions, and iterate
over a set of values.

Arrays in IC are di�erent and incompatible with arrays in other versions of C.
This incompatibility is caused by the fact that references to ic arrays are checked
to insure that the reference is truly within the bounds of that array. In order to
accomplish this checking in the general case, it is necessary that the size of the array
be stored with the contents of the array. It is important to remember that an array
of a given type and a pointer to the same type are incompatible types in IC whereas
they are largely interchangeable in regular C.

Declaring and Initializing Arrays

Arrays are declared using square brackets. The following statement declares an array
of ten integers:

int foo[10];

In this array, elements are numbered from 0 to 9. Elements are accessed by enclosing
the index number within square brackets: foo[4] denotes the �fth element of the
array foo (since counting begins at zero).

Arrays are initialized by default to contain all zero values. Arrays may also be
initialized at declaration by specifying the array elements, separated by commas,
within curly braces. If no size value is speci�ed within the square brackets when
the array is declared but initialization information is given, the size of the array is
determined by the number of elements given in the declaration. For example,

int foo[]= {0, 4, 5, -8, 17, 301};

creates an array of six integers, with foo[0] equaling 0, foo[1] equaling 4, etc.
If a size is speci�ed and initialization data is given, the length of the initialization

data may not exceed the speci�ed length of the array or an error results. If, on the
other hand, you specify the size and provide fewer initialization elements than the
total length of the array, the remaining elements are padded with zeros.

Character arrays are typically text strings. There is a special syntax for initializing
arrays of characters. The character values of the array are enclosed in quotation
marks:

char string[]= "Hello there";

This form creates a character array called string with the ASCII values of the spec-
i�ed characters. In addition, the character array is terminated by a zero. Because
of this zero-termination, the character array can be treated as a string for purposes
of printing (for example). Character arrays can be initialized using the curly braces
syntax, but they will not be automatically null-terminated in that case. In general,
printing of character arrays that are not null-terminated will cause problems.
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Passing Arrays as Arguments

When an array is passed to a function as an argument, the array's pointer is actually
passed, rather than the elements of the array. If the function modi�es the array values,
the array will be modi�ed, since there is only one copy of the array in memory.

In normal C, there are two ways of declaring an array argument: as an array or as
a pointer to the type of the array's elements. In IC array pointers are incompatible
with pointers to the elements of an array so such arguments can only be declared as
arrays.

As an example, the following function takes an index and an array, and returns
the array element speci�ed by the index:

int retrieve_element(int index, int array[])
{

return array[index];
}

Notice the use of the square brackets to declare the argument array as a pointer to
an array of integers.

When passing an array variable to a function, you are actually passing the value
of the array pointer itself and not one of its elements, so no square brackets are used.

{
int array[10];

retrieve_element(3, array);
}

Multi-dimensional Arrays

A two-dimensional array is just like a single dimensional array whose elements are
one-dimensional arrays. Declaration of a two-dimensional array is as follows:

int k[2][3];

The number in the �rst set of brackets is the number of 1-D arrays of int. The
number in the second set of brackets is the length of each of the 1-D arrays of int.
In this example, k is an array containing two 1-D arrays; k[0] is a 1-D array of int
of length 3; k[0][1] is an int. Arrays of with any number of dimensions can be
generalized from this example by adding more brackets in the declaration.
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Determining the size of Arrays at Runtime

An advantage of the way IC deals with arrays is that you can determine the size of
arrays at runtime. This allows you to do size checking on an array if you are uncertain
of its dimensions and possibly prevent your program from crashing.

Since array size is not a standard C feature, code written using this primitive
will only be able to be compiled with IC .

The array size primitive returns the size of the array given to it regardless of
the dimension or type of the array. Here is an example of declarations and interaction
with the array size primitive (don't worry about the multi dimensional arrays, they
will be explained next section):

int i[4]={10,20,30};

int j[3][2]={{1,2},{2,4},{15}};

int k[2][2][2];

_array_size(i); /* returns 4 */

_array_size(j); /* returns 3 */

_array_size(j[0]); /* returns 2 */

_array_size(k); /* returns 2 */

_array_size(k[0]); /* returns 2 */

6.4.6 Structures

Structures are used to store non-homogeneous but related sets of data. Elements of a
structure are referenced by name instead of number and may be of any supported type.
Structures are useful for organizing related data into a coherent format, reducing the
number of arguments passed to functions, increasing the e�ective number of values
which can be returned by functions, and creating complex data representations such
as directed graphs and linked lists.

The following example shows how to de�ne a structure, declare a variable of
structure type, and access its elements.

struct foo {

int i;

int j;

};

struct foo f1;

void set_f1(int i,int j)

{
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f1.i=i;

f1.j=j;

}

void get_f1(int *i,int *j)

{

*i=f1.i;

*j=f1.j;

}

The �rst part is the structure de�nition. It consists of the keyword struct,
followed by the name of the structure (which can be any valid identi�er), followed by
a list of named elements in curly braces. This de�nition speci�es the structure of the
type struct foo.

Once there is a de�nition of this form, you can use the type struct foo just
like any other type. The line struct foo f1; is a global variable declaration which
declares the variable f1 to be of type struct foo.

The dot operator is used to access the elements of a variable of structure type. In
this case, f1.i and f1.j refer to the two elements of f1. You can treat the quantities
f1.i and f1.j just as you would treat any variables of type int (the type of the
elements was de�ned in the structure declaration at the top to be int).

Pointers to structure types can also be used, just like pointers to any other type.
However, with structures, there is a special short-cut for referring to the elements of
the structure pointed to.

struct foo *fptr;

void main()

{

fptr=&f1;

fptr->i=10;

fptr->j=20;

}

In this example, fptr is declared to be a pointer type type struct foo. In main,
it is set to point to the global f1 de�ned above. Then the elements of the structure
pointed to by fptr (in this case these are the same as the elements of f1), are set.
The arrow operator is used instead of the dot operator because fptr is a pointer to a
variable of type struct foo. Note that (*fptr).i would have worked just as well
as fptr->i, but it would have been clumsier.

Note that only pointers to structures, not the structures themselves, can be passed
to or returned from functions.
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6.4.7 Complex Initialization examples

Complex types { arrays and structures { may be initialized upon declaration with a
sequence of constant values contained within curly braces and separated by commas.
Arrays of character may also be initialized with a quoted string of characters.

For initialized declarations of single dimensional arrays, the length can be left
blank and a suitable length based on the initialization data will be assigned to it.
Multi-dimensional arrays must have the size of all dimensions speci�ed when the array
is declared. If a length is speci�ed, the initialization data may not over
ow that
length in any dimension or an error will result. However, the initialization data may
be shorter than the speci�ed size and the remaining entries will be initialized to 0.

Following is an example of legal global and local variable initializations:

/* declare many globals of various types */
int i=50;

int *ptr=NULL;

float farr[3]={ 1.2, 3.6, 7.4 };
int tarr[2][4]={ { 1, 2, 3, 4 }, { 2, 4, 6, 8} };

char c[]=''Hi there how are you?'';
char carr[5][10]={``Hi'',''there'',''how'',''are'',''you''};

struct bar {
int i;
int *p;
long j;} b={5, NULL, 10L};

struct bar barr[2] = { { 1, NULL, 2L }, { 3 } };

/* declare locals of various types */
int foo()
{
int x; /* create local variable x

with initial value 0 */
int y= tarr[0][2]; /* create local variable y

with initial value 3 */
int *iptr=&i; /* create a local pointer to integer

which points to the global i */
int larr[2]={10,20}; /* create a local array larr

with elements 10 and 20 */
struct bar lb={5,NULL,10L}; /* create a local variable of type

struct bar with i=5 and j=10 */
char lc[]=carr[2]; /* create a local string lc with

initial value ``how'' */
...

}
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6.5 Operators, Expressions, and Statements

Operators act upon objects of a certain type or types and specify what is to be done to
them. Expressions combine variables and constants to create new values. Statements
are expressions, assignments, function calls, or control 
ow statements which make
up C programs.

6.5.1 Operators

Each of the data types has its own set of operators that determine which operations
may be performed on them.

Integers

The following operations are supported on integers:

� Arithmetic. addition +, subtraction -, multiplication *, division /.

� Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=,
less-than-equal <=.

� Bitwise Arithmetic. bitwise-OR |, bitwise-AND &, bitwise-exclusive-OR ^,
bitwise-NOT ~.

� Boolean Arithmetic. logical-OR ||, logical-AND &&, logical-NOT !.

When a C statement uses a boolean value (for example, if), it takes the integer
zero as meaning false, and any integer other than zero as meaning true. The
boolean operators return zero for false and one for true.

Boolean operators && and || may stop executing as soon as the truth of the
�nal expression is determined. For example, in the expression a && b, if a is
false, then b does not need to be evaluated because the result must be false.
The && operator therefore may not evaluate b.

Long Integers

A subset of the operations implemented for integers are implemented for long integers:
arithmetic addition +, subtraction -, and multiplication *, and the integer comparison
operations. Bitwise and boolean operations and division are not supported.



6.5. OPERATORS, EXPRESSIONS, AND STATEMENTS 125

Floating Point Numbers

IC uses a package of public-domain 
oating point routines distributed by Motorola.
This package includes arithmetic, trigonometric, and logarithmic functions.

The following operations are supported on 
oating point numbers:

� Arithmetic. addition +, subtraction -, multiplication *, division /.

� Comparison. greater-than >, less-than <, equality ==, greater-than-equal >=,
less-than-equal <=.

� Built-in Math Functions. A set of trigonometric, logarithmic, and exponen-
tial functions is supported, as discussed in Section 6.11 of this document.

Characters

Characters are only allowed in character arrays. When a cell of the array is refer-
enced, it is automatically coerced into a integer representation for manipulation by
the integer operations. When a value is stored into a character array, it is coerced
from a standard 16-bit integer into an 8-bit character (by truncating the upper eight
bits).

6.5.2 Assignment Operators and Expressions

The basic assignment operator is =. The following statement adds 2 to the value of
a.

a = a + 2;

The abbreviated form

a += 2;

could also be used to perform the same operation.

All of the following binary operators can be used in this fashion:

+ - * / % << >> & ^ |
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6.5.3 Increment and Decrement Operators

The increment operator \++" increments the named variable. For example, the state-
ment \a++" is equivalent to \a= a+1" or \a+= 1".

A statement that uses an increment operator has a value. For example, the
statement

a= 3;
printf("a=%d a+1=%d\n", a, ++a);

will display the text \a=3 a+1=4."
If the increment operator comes after the named variable, then the value of the

statement is calculated after the increment occurs. So the statement

a= 3;
printf("a=%d a+1=%d\n", a, a++);

would display \a=3 a+1=3" but would �nish with a set to 4.

The decrement operator \--" is used in the same fashion as the increment oper-
ator.

6.5.4 Data Access Operators

� &: A single ampersand preceding a variable, an array reference, or a structure
element reference returns a pointer to the location in memory where that in-
formation is being stored. This should not be used on arbitrary expressions as
they do not have a stable place in memory where they are being stored.

� *: A single star preceding an expression which evaluates to a pointer returns
the value which is stored at that address. This process of accessing the value
stored within a pointer is known as dereferencing.

� [expr]: an expression in square braces following an expression which evaluates
to an array (an array variable, the result of a function which returns an array
pointer, etc.) checks that the value of the expression falls within the bounds of
the array and references that element.

� .: A dot between a structure variable and the name of one of its �elds returns
the value stored in that �eld.

� ->: An arrow between a pointer to a structure and the name of one of its �elds
in that structure acts the same as a dot does, except it acts on the structure
pointed at by it's left hand side. Where f is a structure of a type with e as an
element name, the two expressions f.i and (&f)->i are equivalent.
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6.5.5 Precedence and Order of Evaluation

The following table summarizes the rules for precedence and associativity for the C
operators. Operators listed earlier in the table have higher precedence; operators on
the same line of the table have equal precedence.

Operator Associativity

() [] left to right
! ~ ++ -- - ( type ) right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| right to left
= += -= etc. right to left
, left to right

6.6 Control Flow

IC supports most of the standard C control structures. One notable exception is the
switch statement, which is not supported.

6.6.1 Statements and Blocks

A single C statement is ended by a semicolon. A series of statements may be grouped
together into a block using curly braces. Inside a block, local variables may be de�ned.

6.6.2 If-Else

The if else statement is used to make decisions. The syntax is:

if ( expression )

statement-1
else

statement-2
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expression is evaluated; if it is not equal to zero (e.g., logic true), then statement-1
is executed.

The else clause is optional. If the if part of the statement did not execute, and
the else is present, then statement-2 executes.

6.6.3 While

The syntax of a while loop is the following:

while ( expression )

statement

while begins by evaluating expression. If it is false, then statement is skipped. If
it is true, then statement is evaluated. Then the expression is evaluated again, and
the same check is performed. The loop exits when expression becomes zero.

One can easily create an in�nite loop in C using the while statement:

while (1)

statement

6.6.4 For

The syntax of a for loop is the following:

for ( expr-1 ; expr-2 ; expr-3 )

statement

This is equivalent to the following construct using while:

expr-1 ;

while ( expr-2 ) {

statement
expr-3 ;

}

Typically, expr-1 is an assignment, expr-2 is a relational expression, and expr-3 is
an increment or decrement of some manner. For example, the following code counts
from 0 to 99, printing each number along the way:

int i;
for (i= 0; i < 100; i++)
printf("%d\n", i);
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6.6.5 Break

Use of the break provides an early exit from a while or a for loop.

6.7 LCD Screen Printing

IC has a version of the C function printf for formatted printing to the LCD screen.

The syntax of printf is the following:

printf( format-string , [ arg-1 ] , : : : , [ arg-N ] )

This is best illustrated by some examples.

6.7.1 Printing Examples

Example 1: Printing a message. The following statement prints a text string to
the screen.

printf("Hello, world!\n");

In this example, the format string is simply printed to the screen.
The character \\n" at the end of the string signi�es end-of-line. When an end-of-

line character is printed, the LCD screen will be cleared when a subsequent character
is printed. Thus, most printf statements are terminated by a \n.

Example 2: Printing a number. The following statement prints the value of the
integer variable x with a brief message.

printf("Value is %d\n", x);

The special form %d is used to format the printing of an integer in decimal format.

Example 3: Printing a number in binary. The following statement prints the
value of the integer variable x as a binary number.

printf("Value is %b\n", x);

The special form %b is used to format the printing of an integer in binary format.
Only the low byte of the number is printed.

Example 4: Printing a 
oating point number. The following statement prints
the value of the 
oating point variable n as a 
oating point number.
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printf("Value is %f\n", n);

The special form %f is used to format the printing of 
oating point number.

Example 5: Printing two numbers in hexadecimal format.

printf("A=%x B=%x\n", a, b);

The form %x formats an integer to print in hexadecimal.

6.7.2 Formatting Command Summary

Format Command Data Type Description

%d int decimal number
%x int hexadecimal number
%b int low byte as binary number
%c int low byte as ASCII character
%f float 
oating point number
%s char array char array (string)

6.7.3 Special Notes

� The �nal character position of the LCD screen is used as a system \heartbeat."
This character continuously blinks back and forth when the board is operating
properly. If the character stops blinking, the board has failed.

� Characters that would be printed beyond the �nal character position are trun-
cated.

� When using a two-line display, the printf() command treats the display as a
single longer line.

� Printing of long integers is not presently supported.

6.8 Preprocessor

The preprocessor processes a �le before it is sent to the compiler. The IC prepro-
cessor allows de�nition of macros, and conditional compilation of sections of code.
Using preprocessor macros for constants and function macros can make IC code more
e�cient as well as easier to read. Using #if to conditionally compile code can be
very useful, for instance, for debugging purposes.
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6.8.1 Preprocessor Macros

Preprocessor macros are de�ned by using the #define preprocessor directive at the
start of a line. The scope of IC macros is to globals and functions. If a macro is
de�ned anywhere in any of the �les loaded into IC it can be used anywhere in any
�le. The following example shows how to de�ne preprocessor macros.

#define RIGHT_MOTOR 0

#define LEFT_MOTOR 1

#define GO_RIGHT(power) (motor(RIGHT_MOTOR,(power)))

#define GO_LEFT(power) (motor(LEFT_MOTOR,(power)))

#define GO(left,right) {GO_LEFT(left); GO_RIGHT(right);}

void main()

{

GO(0,0);

}

Preprocessor macro de�nitions start with the #define directive at the start of a
line, and continue to the end of the line. After #define is the name of the macro,
such as RIGHT MOTOR. If there is a parenthesis directly after the name of the macro,
such as the GO RIGHT macro has above, then the macro has arguments. The GO RIGHT

and GO LEFT macros each take one argument. The GO macro takes two arguments.
After the name and the optional argument list is the body of the macro.

Each time a macro is invoked, it is replaced with its body. If the macro has
arguments, then each place the argument appears in the body is replaced with the
actual argument provided.

Invocations of macros without arguments look like global variable references. In-
vocations of macros with arguments look like calls to functions. To an extent, this
is how they act. However, macro replacement happens before compilation, whereas
global references and function calls happen at run time. Also, function calls evaluate
their arguments before they are called, whereas macros simply perform text replace-
ment. For example, if the actual argument given to a macro contains a function call,
and the macro instantiates its argument more than once in its body, then the function
would be called multiple times, whereas it would only be called once if it were being
passed as a function argument instead.

Appropriate use of macros can make IC programs more e�cient and easier to read.
It allows constants to be given symbolic names without requiring storage and access
time as a global would. It also allows macros with arguments to be used in cases
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when a function call is desirable for abstraction, without the performance penalty of
calling a function.

Macros de�ned in �les can be used at the command line. Macros can also be
de�ned at the command line to be used in interactively, but these will not a�ect
loads or compilation. To obtain a list of the currently de�ned macros, type list

defines at the IC prompt.

6.8.2 Conditional compilation

It is sometimes desirable to conditionally compile code. The primary example of
this is that you may want to perform debugging output sometimes, and disable it
at others. The IC preprocessor provides a convenient way of doing this by using the
#ifdef directive.

void go_left(int power)

{

GO_LEFT(power);

#ifdef DEBUG

printf(``Going Left\n'');

beep();

#endif

}

In this example, when the macro DEBUG is de�ned, the debugging message \Going
Left" will be printed and the board will beep each time go left is called. If the
macro is not de�ned, the message and beep will not happen. Each #ifdef must be
followed by an #endif at the end of the code which is being conditionally compiled.
The macro to be checked can be anything, and #ifdef blocks may be nested.

Unlike regular C preprocessors, macros cannot be conditionally de�ned. If a macro
de�nition occurs inside an #ifdef block, it will be de�ned regardless of whether the
#ifdef evaluates to true or false. The compiler will generate a warning if macro
de�nitions occur within an #ifdef block.

The #if, #else, and #elif directives are also available, but are outside the scope
of this document. Refer to a C reference manual for how to use them.

6.8.3 Comparison with regular C preprocessors

The way in which IC deals with loading multiple �les is fundamentally di�erent from
the way in which it is done in standard C. In particular, when using standard C, �les
are compiled completely independently of each other, then linked together. In IC on
the other hand, all �les are compiled together. This is why standard C needs function
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prototypes and extern global de�nitions in order for multiple �les to share functions
and globals, while IC does not.

In a standard C preprocessor, preprocessor macros de�ned in one C �le cannot be
used in another C �le unless de�ned again. Also, the scope of macros is only from the
point of de�nition to the end of the �le. The solution then is to have the prototypes,
extern declarations, and macros in header �les which are then included at the top of
each C �le using the #include directive. This style interacts well with the fact that
each �le is compiled independent of all the others.

However, since declarations in IC do not �le scope, it would be inconsistent to
have a preprocessor with �le scope. Therefore, for consistency it was desirable to
give IC macros the same behavior as globals and functions. Therefore, preprocessor
macros have global scope. If a macro is de�ned anywhere in the �les loaded into IC it
is de�ned everywhere. Therefore, the #include and #undef directives did not seem
to have any appropriate purpose, and were accordingly left out.

The fact that #define directives contained within #if blocks are de�ned regard-
less of whether the #if evaluates to be true or false is a side e�ect of making the
preprocessor macros have global scope.

Other than these modi�cations, the IC preprocessor should be compatible with
regular C preprocessors.

6.9 The IC Library File

Library �les provide standard C functions for interfacing with hardware on the robot
controller board. These functions are written either in C or as assembly language
drivers. Library �les provide functions to do things like control motors, make tones,
and input sensors values.

IC automatically loads the library �le every time it is invoked. Depending on
which 6811 board is being used, a di�erent library �le will be required. IC may be
con�gured to load di�erent library �les as its default; for the purpose of the 6.270
contest, the on-line version of IC will be con�gured appropriately for the board that
is in use.

As of this writing, there are �ve related 6811 systems in use: the 1991
6.270 Board (the \Revision 2" board), the 1991 Sensor Robot, the Rev.
2.1 6.270 Board (from 1992), the Rev. 2.2 6.270 Board (from 1993), and
the Rev. 2.21 6.270 Board (from 1994). This writing covers the Rev. 2.21
board only; documentation for the other systems is available elsewhere.

On the MIT Athena system, IC library �les are located in the following directory:

/mit/6.270/lib/ic
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To understand better how the library functions work, study of the library �le
source code is recommended. The main library �le for the Rev. 2.2 6.270 Board is
named lib r22.lis.

6.9.1 Output Control

DC Motors

Motor ports are numbered from 0 to 5; ports for motors 0 to 3 are located on the
Microprocessor Board while motors 4 and 5 are located on the Expansion Board.

Motor may be set in a \forward" direction (corresponding to the green motor LED
being lit) and a \backward" direction (corresponding to the motor red LED being
lit).

The functions fd(int m) and bk(int m) turn motor m on forward or backward,
respectively, at full power. The function off(int m) turns motor m o�.

The power level of motors may also be controlled. This is done in software by a
motor on and o� rapidly (a technique called pulse-width modulation. The motor(int
m, int p) function allows control of a motor's power level. Powers range from 100

(full on in the forward direction) to -100 (full on the the backward direction). The
system software actually only controls motors to seven degrees of power, but argument
bounds of �100 and +100 are used.

void fd(int m)

Turns motor m on in the forward direction. Example: fd(3);

void bk(int m)

Turns motor m on in the backward direction. Example: bk(1);

void off(int m)

Turns o� motor m. Example: off(1);

void alloff()

void ao()

Turns o� all motors. ao is a short form for alloff.

void motor(int m, int p)

Turns on motor m at power level p. Power levels range from 100 for full on forward
to -100 for full on backward.
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Servo Motor

Servos are motors with internal position feedback which you can accurately command
to a given orientation. Servos will actively seek to move to and remain at the orien-
tation they are commanded to go to. Servos are useful for aiming sensors or moving
actuators through a limited arc. They are generally able to sweep through about 180
degrees and no more.

Library routines allows control of a single servo motor. The servo motor has a
three-wire connection: power, ground, and control. There is a dedicated connection
for the servo on the main board at the top of the bank of connectors which are above
and to the left of the main power switch. A three prong connector with ground on
the left, power in the middle, and control on the right should be used to plug the
servo into its connector. So long as you are sure to get power in the middle, the servo
will not be damaged by plugging it in backwards, but will simply not work until it is
plugged in properly.

The position of the servo motor shaft is controlled by a rectangular waveform
that is generated on the A7 pin. The duration of the positive pulse of the waveform
determines the position of the shaft. The acceptable width of the pulse varies for
di�erent models of servos, but is approximately 700 timer cycles minimum and 4000
timer cycles maximum, where the 6811's timer runs at 2MHz. The pulse is repeated
approximately every 20 milliseconds.

void servo on()

Turns the servo signal on. You must call this function before the servo will move.

void servo off()

Turns servo signal o�. The servo will no longer try to move to any particular
position and will move freely. When you are not actively using the servo, turning it
o� will save power and processor cycles.

int servo(int period)

Sets the high time of the servo signal to period timer cycles so long as that falls
within the acceptable range for the servo. Otherwise it truncates the value to the
closest the servo is physically able to go to. It returns the thresholded version of the
period you gave it. Remember that servos have a �nite reaction time which, while
very fast to human senses of time, is very slow to a processor. If you are resetting
the servo angle in a tight loop it may well never catch up with you.

int servo rad(float angle)

Sets the commanded orientation of the servo to approximately the angle in radians
that it is given and returns the pulse width in timer counts which the servo was
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actually commanded with. The minimum pulse width is de�ned to be zero radians
and the maximum is de�ned to be � radians.

int servo deg(float angle)

Sets the commanded orientation of the servo to approximately the angle in degrees
that it is given and returns the pulse width in timer counts which the servo was
actually commanded with. The minimum pulse width is de�ned to be zero degrees
and the maximum is de�ned to be 180 degrees.

int radian to pulse(float angle)

Converts the angle given in radians to the corresponding pulse width in timer
counts. Input range is 0.0 to 3.14.

int degree to pulse(float angle)

Converts the angle given in degrees to the corresponding pulse width in timer
counts. Input range is 0.0 to 180.0.

Unidirectional Drivers

LED Drivers There are two output ports located on the Expansion Board that are
suitable for driving LEDs or other small loads. These ports draw their power from
the motor battery and hence will only work when that battery is connected.

The following commands are used to control the LED ports:

void led out0(int s)

Turns on LED0 port if s is non-zero; turns it o� otherwise.

void led out1(int s)

Turns on LED1 port if s is non-zero; turns it o� otherwise.

Expansion Board Motor Ports Motor ports 4 and 5, located on the Expansion
Board, may also be used to control unidirectional devices, such as a solenoid, lamp,
or a motor that needs to be driven in one direction only. Each of the two motor ports,
when used in this fashion, can independently control two such devices.

To use the ports unidirectionally, the two-pin header directly beneath the motor
4 and 5 LEDs is used.

void motor4 left(int s)

Turns on left side of motor 4 port if s is non-zero; turns it o� otherwise.
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void motor4 right(int s)

Turns on right side of motor 4 port if s is non-zero; turns it o� otherwise.

void motor5 left(int s)

Turns on left side of motor 5 port if s is non-zero; turns it o� otherwise.

void motor5 right(int s)

Turns on right side of motor 5 port if s is non-zero; turns it o� otherwise.

6.9.2 Sensor Input

Digital Input

int digital(int p)

Returns the value of the sensor in sensor port p, as a true/false value (1 for true
and 0 for false).

Sensors are expected to be active low, meaning that they are valued at zero volts
in the active, or true, state. Thus the library function returns the inverse of the
actual reading from the digital hardware: if the reading is zero volts or logic zero, the
digital() function will return true.

int dip switch(int sw)

Returns value of DIP switch sw on interface board. Switches are numbered from
1 to 4 as per labelling on actual switch. Result is 1 if the switch is in the position
labelled \on," and 0 if not.

int dip switches()

Returns value on DIP switches as a four-bit binary number. Left-most switch is
most signi�cant binary digit. \On" position is binary one.

int choose button()

Returns value of button labelled Choose: 1 if pressed and 0 if released.
Example:

/* wait until choose button pressed */
while (!choose_button()) {}

int escape button()

Returns value of button labelled Escape.
Example:
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/* wait for button to be pressed; then
wait for it to be released so that
button press is debounced */

while (!escape_button()) {}
while (escape_button()) {}

6.9.3 Analog Inputs

int analog(int p)

Returns value of sensor port numbered p. Result is integer between 0 and 255.
If the analog() function is applied to a port that is implemented digitally in

hardware, then the value 255 is returned if the hardware digital reading is 1 (as if a
digital switch is open, and the pull up resistors are causing a high reading), and the
value 0 is returned if the hardware digital reading is 0 (as if a digital switch is closed
and pulling the reading near ground).

Ports are numbered as marked on the Microprocessor Board and Expansion Board.

int frob knob()

Returns a value from 0 to 255 based on the position of the potentiometer labeled
frob knob.

int motor force(int m)

Returns value of analog input sensing current level through motor m. Result is
integer between 0 and 255, but typical readings range from about 40 (low force) to
100 (high force).

The force-sensing circuitry functions properly only when motors are operated at
full speed. The circuit returns invalid results when motors are pulse-width modulated
because of spikes that occur in the feedback path.

The force-sensing circuitry is implemented for motors 0 through 3.

Infrared Subsystem

The infrared subsystem is composed of two parts: an infrared transmitter, and in-
frared receivers. Software is provided to control transmission frequency and detection
of infrared light at two frequencies.

Infrared Transmission

void ir transmit on()

Enables transmission of infrared light through ir out port.
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void ir transmit off()

Disables transmission of infrared light through ir out port.

void set ir transmit period(int period)

Sets infrared transmission period. period determines the delay in half-micro-
seconds between transitions of the infrared waveform. If period is set to 10,000, a
frequency of 100 Hz. will be generated. If period is set to 8,000, a frequency of 125
Hz. will be generated. The decoding software is capable of detecting transmissions
on either of these two frequencies only.

void set ir transmit frequency(int frequency)

Sets infrared transmission frequency. frequency is measured in hertz.

Upon a reset condition, the infrared transmission frequency is set for 100 Hz. and
is disabled.

Infrared Reception In a typical 6.270 application, one robot will be broadcasting
infrared at 100 Hz. and will set its detection system for 125 Hz. The other robot will
do the opposite. Each robot must physically shield its IR sensors from its own light;
then each robot can detect the emissions of the other.

The infrared reception software employs a phase-locked loop to detect infrared
signals modulated at a particular frequency. This program generates an internal
squarewave at the desired reception frequency and attempts to lock this squarewave
into synchronization with a waveform received by an infrared sensor. If the error
between the internal wave and the external wave is below some threshold, the exter-
nal wave is considered \detected." The software returns as a result the number of
consecutive detections for each of the infrared sensor inputs.

While enabled, the infrared reception software requires a great deal of processor
time. Therefore, it is desirable to disable the IR reception whenever it is not being
actively used.

Up to four infrared sensors may be used. These are plugged into positions 4
through 7 of the digital input port. These ports and the remainder of the digital
input port may be used without con
ict for standard digital input while the infrared
detection software is operating.

The following library functions control the infrared detection system:

void ir receive on()

Enables the infrared reception software. The default is disabled. When the soft-
ware is enabled, between 20% and 30% of the 6811 processor time will be spent
performing the detection function; therefore it should only be enabled if it is being
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used. You must wait at least 100 milliseconds after starting the reception before the
data is valid.

void ir receive off()

Disables the infrared reception software.

void set ir receive frequency(int f)

Sets the operating frequency for the infrared reception software. f should be 100
for 100 Hz. or 125 for 125 Hz. Default is 100.

int ir counts(int p)

Returns number of consecutive squarewaves at operating frequency detected from
port p of the digital input port. Result is number from 0 to 255. p must be 4, 5, 6,
or 7

Random noise can cause spurious readings of 1 or 2 detections. The return value
of ir counts() should be greater than three before it is considered the result of a
valid detection. You must wait at least 100 milliseconds after starting the reception
before the ir counts() data is valid.

Shaft Encoders

Shaft encoders can be used to count the number of times a wheel spins, or in general
the number of digital pulses seen by an input. Two types of shaft encoders can be
made using 6.270 sensors: optical encoders which use optical switches whose beam
is periodically broken by a slotted wheel, or magnetic encoders which uses hall e�ect
sensors which change state when a magnet on a shaft rotates past.

Shaft encoders are implemented using the input timer capture feature on the 6811.
Therefore processing time is only used when a pulse is actually being recorded, and
even very fast pulses can be counted. Because digital ports 0 and 1 are the only
two input capture channels available for use on the 6.270 board, only two channels
of shaft encoding work well. It is possible to use ports 2 and 3 as well, but doing so
uses a lot of CPU time.

The encoding software for the 6.270 board keeps a running count of the number
of pulses each enabled encoder has seen. The number of counts is set to 0 when a
channel is �rst enabled and when a user resets that channel. Because the counters are
only 16-bits wide, they will over
ow and the value will appear negative after 32,767
counts have been accumulated without a reset.

Shaft Encoder Files As shaft encoders are an optional feature and not part of
the standard hardware of the 6.270 board, the library routines which read them are
not loaded on start up.
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In order to load the following routines for use in your programs, load the �le
encoders.lis. This �le is in the standard 6.270 library directory so IC will �nd it
by this name.

Shaft Encoder Routines The actions of the shaft encoders are commanded and
the results are read using the following routines. The argument encoder to each
of the routines speci�es which shaft encoder the function should a�ect. This value
should be 0 for digital port 0 or one for digital port 1. Arguments out of the range 0
to 1 have no useful e�ect.

void enable encoder(int encoder)

Enables the given encoder to start counting pulses and resets its counter to zero.
By default encoders start in the disabled state and must be enabled before they start
counting.

void disable encoder(int encoder)

Disables the given encoder and prevents it from counting. Each shaft encoder
uses processing time every time it receives a pulse while enabled, so they should be
disabled when you no longer need the encoder's data.

void reset encoder(int encoder)

Resets the counter of the given encoder to zero. For an enabled encoder, it is
more e�cient to reset its value than to use enable encoder() to clear it.

int read encoder(int encoder)

Returns the number of pulses counted by the given encoder since it was enabled
or since the last reset, whichever was more recent.

6.9.4 Time Commands

System code keeps track of time passage in milliseconds. Library functions are pro-
vided to allow dealing with time in milliseconds (using long integers), or seconds
(using 
oating point numbers).

void reset system time()

Resets the count of system time to zero milliseconds.
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long mseconds()

Returns the count of system time in milliseconds. Time count is reset by hardware
reset (i.e., pressing reset switch on board) or the function reset system time().
mseconds() is implemented as a C primitive (not as a library function).

float seconds()

Returns the count of system time in seconds, as a 
oating point number. Reso-
lution is one millisecond.

void sleep(float sec)

Waits for an amount of time equal to or slightly greater than sec seconds. sec

is a 
oating point number.
Example:

/* wait for 1.5 seconds */
sleep(1.5);

void msleep(long msec)

Waits for an amount of time equal to or greater than msec milliseconds. msec is
a long integer.

Example:

/* wait for 1.5 seconds */
msleep(1500L);

6.9.5 Tone Functions

Two simple commands are provided for producing tones on the standard beeper.

void beep()

Produces a tone of 500 Hertz for a period of 0.3 seconds. Returns when the tone
is �nished.

void tone(float frequency, float length)

Produces a tone at pitch frequency Hertz for length seconds. Returns when the
tone is �nished. Both frequency and length are 
oats.

In addition to the simple tone commands, the following functions can be used
asynchronously to control the beeper driver.

void set beeper pitch(float frequency)

Sets the beeper tone to be frequency Hz. The subsequent function is then used
to turn the beeper on.
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void beeper on()

Turns on the beeper at last frequency selected by the former function. The beeper
remains on until the beeper off function is executed.

void beeper off()

Turns o� the beeper.

6.9.6 Menuing and Diagnostics Functions

These functions are not loaded automatically, but they are available for you to use if
you wish in the standard 6.270 library directory. They provide a standardized user
interface for prompting users for input using the choose and select buttons and the
frob knob. You may wish to use this library for debugging the state of your robot
while away from the terminal or for changing thresholds or gains on the 
y.

menu.c

Load menu.c to be able to use these functions.

int select string(char choices[][],int n)

Interactively selects a string from an array of string (two-dimensional array of
characters) of length n and returns an integer when a button is pressed. If the button
pressed was the choose button, it returns the index into the array of the selected
string, otherwise it returns -1. Example of use:

char a[3][14]={"Analog Port ","Digital Port ","Quit"};

int port,index=select_string(a,3);

if(index>-1 && index<2)

port=select_int_value(a[index],0,27);

int select int value(char s[],int min val,int max val)

float select float value(char s[],float min val,float max val)

Interactively selects and returns a number between min val and max val which
is selected by adjusting the frob knob until the appropriate value is displayed then
pressing a button. If the escape button was pressed, returns -1 (or -1.0) regardless of
the value chosen. Otherwise returns the chosen value. Remember that the frob knob
only returns one of 255 values, so if the range is greater than that not all values will
be possible choices.
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int chosen button()

Checks the user buttons and returns CHOOSE B if the choose button is pressed,
ESCAPE B if the escape button is pressed, and NEITHER B if neither button is
pressed. If both buttons are pressed, the choose button has priority.

int wait button(int mode)

Waits for either user button to execute the action appropriate to mode then returns
which button was pressed. The choices for mode are: DOWN B { wait until either
button is pressed; UP B { wait until no buttons are pressed; CYCLE B { wait until
a button is depressed and then all depressed buttons are released before returning.

diagnostic.c

Load menu.c and diagnostic.c to be able to use these functions. You can easily copy
diagnostic.c and modify the control panel function to call your own routines.

void control panel()

General purpose control panel to let you view inputs, frob outputs, or set A to D
thresholds. Pressing the escape button from the main menu or selecting \Quit" exits
the control panel.

int view average port(int port,int samples)

Displays the analog reading of the given port until a button is pressed. If the
button is the choose button, it then samples the reading at the given port, averages
samples readings together, then prints and returns the average result. If the button
pushed was the escape button, it returns -1.

void view inputs()

General purpose input status viewer using the standard menuing routines to
show digital inputs, analog inputs, frob knob, dip switches, and motor force inputs.
Pressing escape at any time exits the viewer.

void frob outputs()

General purpose output frobber. Uses the standard menuing routines to let you
control the motors, led outputs, ir output, and the servo. Pressing escape from the
main menu or selecting \Quit" exits the frobber.
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6.10 Multi-Tasking

6.10.1 Overview

One of the most powerful features of IC is its multi-tasking facility. Processes can be
created and destroyed dynamically during run-time.

Any C function can be spawned as a separate task. Multiple tasks running the
same code, but with their own local variables, can be created.

Processes communicate through global variables: one process can set a global to
some value, and another process can read the value of that global.

Each time a process runs, it executes for a certain number of ticks, de�ned in
milliseconds. This value is determined for each process at the time it is created. The
default number of ticks is �ve; therefore, a default process will run for 5 milliseconds
until its \turn" ends and the next process is run. All processes are kept track of in a
process table; each time through the table, each process runs once (for an amount of
time equal to its number of ticks).

Each process has its own program stack. The stack is used to pass arguments for
function calls, store local variables, and store return addresses from function calls.
The size of this stack is de�ned at the time a process is created. The default size of
a process stack is 256 bytes.

Processes that make extensive use of recursion or use large local arrays will prob-
ably require a stack size larger than the default. Each function call requires two stack
bytes (for the return address) plus the number of argument bytes; if the function that
is called creates local variables, then they also use up stack space. In addition, C
expressions create intermediate values that are stored on the stack.

It is up to the programmer to determine if a particular process requires a stack
size larger than the default. A process may also be created with a stack size smaller
than the default, in order to save stack memory space, if it is known that the process
will not require the full default amount.

When a process is created, it is assigned a unique process identi�cation number or
pid. This number can be used to kill a process.

6.10.2 Creating New Processes

The function to create a new process is start process. start process takes one
mandatory argument|the function call to be started as a process. There are two
optional arguments: the process's number of ticks and stack size. (If only one optional
argument is given, it is assumed to be the ticks number, and the default stack size is
used.)

start process has the following syntax:

int start process( function-call( : : : ) , [TICKS] , [STACK-SIZE] )
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start process returns an integer, which is the process ID assigned to the new pro-
cess.

The function call may be any valid call of the function used. The following code
shows the function main creating a process:

void check_sensor(int n)
{
while (1)

printf("Sensor %d is %d\n", n, digital(n));
}

void main()
{
start_process(check_sensor(2));

}

Normally when a C functions ends, it exits with a return value or the \void" value.
If a function invoked as a process ends, it \dies," letting its return value (if there was
one) disappear. (This is okay, because processes communicate results by storing them
in globals, not by returning them as return values.) Hence in the above example, the
check sensor function is de�ned as an in�nite loop, so as to run forever (until the
board is reset or a kill process is executed).

Creating a process with a non-default number of ticks or a non-default stack size
is simply a matter of using start process with optional arguments; e.g.

start_process(check_sensor(2), 1, 50);

will create a check sensor process that runs for 1 milliseconds per invocation and
has a stack size of 50 bytes (for the given de�nition of check sensor, a small stack
space would be su�cient).

6.10.3 Destroying Processes

The kill process function is used to destroy processes. Processes are destroyed by
passing their process ID number to kill process, according to the following syntax:

int kill process(int pid)

kill process returns a value indicating if the operation was successful. If the return
value is 0, then the process was destroyed. If the return value is 1, then the process
was not found.

The following code shows the main process creating a check sensor process, and
then destroying it one second later:
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void main()
{
int pid;

pid= start_process(check_sensor(2));
sleep(1.0);
kill_process(pid);

}

6.10.4 Process Management Commands

IC has two commands to help with process management. The commands only work
when used at the IC command line. They are not C functions that can be used in
code.

kill all

kills all currently running processes.

ps

prints out a list of the process status.

The following information is presented: process ID, status code, program counter,
stack pointer, stack pointer origin, number of ticks, and name of function that is
currently executing.

6.10.5 Process Management Library Functions

The following functions are implemented in the standard C library.

void hog processor()

Allocates an additional 256 milliseconds of execution to the currently running
process. If this function is called repeatedly, the system will wedge and only execute
the process that is calling hog processor(). Only a system reset will unwedge from
this state. Needless to say, this function should be used with extreme care, and should
not be placed in a loop, unless wedging the machine is the desired outcome.

void defer()

Makes a process swap out immediately after the function is called. Useful if a
process knows that it will not need to do any work until the next time around the
scheduler loop. defer() is implemented as a C built-in function.
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6.11 Floating Point Functions

In addition to basic 
oating point arithmetic (addition, subtraction, multiplication,
and division) and 
oating point comparisons, a number of exponential and transcen-
dental functions are built in to IC:

float sin(float angle)

Returns sine of angle. Angle is speci�ed in radians; result is in radians.

float cos(float angle)

Returns cosine of angle. Angle is speci�ed in radians; result is in radians.

float tan(float angle)

Returns tangent of angle. Angle is speci�ed in radians; result is in radians.

float atan(float angle)

Returns arc tangent of angle. Angle is speci�ed in radians; result is in radians.

float sqrt(float num)

Returns square root of num.

float log10(float num)

Returns logarithm of num to the base 10.

float log(float num)

Returns natural logarithm of num.

float exp10(float num)

Returns 10 to the num power.

float exp(float num)

Returns e to the num power.

(float) a ^ (float) b

Returns a to the b power.

6.12 Memory Access Functions

IC has primitives for directly examining and modifying memory contents. These
should be used with care as it is easy to corrupt memory and crash the system using
these functions.
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int peek(int loc)

Returns the byte located at address loc.

int peekword(int loc)

Returns the 16-bit value located at address loc and loc+1. loc has the most
signi�cant byte, as per the 6811 16-bit addressing standard.

void poke(int loc, int byte)

Stores the 8-bit value byte at memory address loc.

void pokeword(int loc, int word)

Stores the 16-bit value word at memory addresses loc and loc+1.

void bit set(int loc, int mask)

Sets bits that are set in mask at memory address loc.

void bit clear(int loc, int mask)

Clears bits that are set in mask at memory address loc.

6.13 Error Handling

There are two types of errors that can happen when working with IC: compile-time
errors and run-time errors.

Compile-time errors occur during the compilation of the source �le. They are
indicative of mistakes in the C source code. Typical compile-time errors result from
incorrect syntax or mismatching of data types.

Run-time errors occur while a program is running on the board. They indicate
problems with a valid C form when it is running. A simple example would be a divide-
by-zero error. Another example might be running out of stack space, if a recursive
procedure goes too deep in recursion.

These types of errors are handled di�erently, as is explained below.

6.13.1 Compile-Time Errors

When compiler errors occur, an error message is printed to the screen. All compile-
time errors must be �xed before a �le can be downloaded to the board.



150 CHAPTER 6. IC MANUAL

6.13.2 Run-Time Errors

When a run-time error occurs, an error message is displayed on the LCD screen
indicating the error number. If the board is hooked up to IC when the error occurs,
a more verbose error message is printed on the terminal.

Here is a list of the run-time error codes:

Error Code Description

1 no stack space for start process()

2 no process slots remaining
3 array reference out of bounds
4 stack over
ow error in running process
5 operation with invalid pointer
6 
oating point under
ow
7 
oating point over
ow
8 
oating point divide-by-zero
9 number too small or large to convert to integer
10 tried to take square root of negative number
11 tangent of 90 degrees attempted
12 log or ln of negative number or zero
15 
oating point format error in printf
16 integer divide-by-zero

6.14 Binary Programs

With the use of a customized 6811 assembler program, IC allows the use of machine
language programs within the C environment. There are two ways that machine
language programs may be incorporated:

1. Programs may be called from C as if they were C functions.

2. Programs may install themselves into the interrupt structure of the 6811, run-
ning repetitiously or when invoked due to a hardware or software interrupt.

When operating as a function, the interface between C and a binary program is
limited: a binary program must be given one integer as an argument, and will return
an integer as its return value. However, programs in a binary �le can declare any
number of global integer variables in the C environment. Also, the binary program
can use its argument as a pointer to a C data structure.
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6.14.1 The Binary Source File

Special keywords in the source assembly language �le (or module) are used to establish
the following features of the binary program:

Entry point. The entry point for calls to each program de�ned in the binary �le.

Initialization entry point. Each �le may have one routine that is called automati-
cally upon a reset condition. (The reset conditions are explained in Section 6.4.1,
which discusses global variable initialization.) This initialization routine par-
ticularly useful for programs which will function as interrupt routines.

C variable de�nitions. Any number of two-byte C integer variables may be de-
clared within a binary �le. When the module is loaded into IC, these variables
become de�ned as globals in C.

To explain how these features work, let's look at a sample IC binary source pro-
gram, listed in Figure 6.2.

The �rst statement of the �le (\ORG MAIN START") declares the start of the binary
programs. This line must precede the code itself itself.

The entry point for a program to be called from C is declared with a special form
beginning with the text subroutine . In this case, the name of the binary program
is double, so the label is named subroutine double. As the comment indicates, this
is a program that will double the value of the argument passed to it.

When the binary program is called from C, it is passed one integer argument. This
argument is placed in the 6811's D register (also known as the \Double Accumulator")
before the binary code is called.

The double program doubles the number in the D register. The ASLD instruction
( \Arithmetic Shift Left Double [Accumulator]") is equivalent to multiplying by 2;
hence this doubles the number in the D register.

The RTS instruction is \Return from Subroutine." All binary programs must exit
using this instruction. When a binary program exits, the value in the D register is
the return value to C. Thus, the double program doubles its C argument and returns
it to C.

Declaring Variables in Binary Files

The label variable foo is an example of a special form to declare the name and loca-
tion of a variable accessible from C. The special label pre�x \variable " is followed
the name of the variable, in this case, \foo."

This label must be immediately followed by the statement FDB <number>. This
is an assembler directive that creates a two-byte value (which is the initial value of
the variable).
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/* Sample icb file */

/* origin for module and variables */
ORG MAIN_START

/* program to return twice the argument passed to us */
subroutine_double:

ASLD
RTS

/* declaration for the variable "foo" */
variable_foo:

FDB 55

/* program to set the C variable "foo" */
subroutine_set_foo:

STD variable_foo
RTS

/* program to retrieve the variable "foo" */
subroutine_get_foo:

LDD variable_foo
RTS

/* code that runs on reset conditions */
subroutine_initialize_module:

LDD #69
STD variable_foo
RTS

Figure 6.2: Sample IC Binary Source File: testicb.asm
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Variables used by binary programs must be declared in the binary �le. These
variables then become C globals when the binary �le is loaded into C.

The next binary program in the �le is named \set foo." It performs the action of
setting the value of the variable foo, which is de�ned later in the �le. It does this by
storing the D register into the memory contents reserved for foo, and then returning.

The next binary program is named \get foo." It loads the D register from the
memory reserved for foo and then returns.

Declaring an Initialization Program

The label subroutine initialize module is a special form used to indicate the entry
point for code that should be run to initialize the binary programs. This code is run
upon standard reset conditions: program download, hardware reset, or running of the
main() function.

In the example shown, the initialization code stores the value 69 into the location
reserved for the variable foo. This then overwrites the 55 which would otherwise be
the default value for that variable.

Initialization of globals variables de�ned in an binary module is done di�erently
than globals de�ned in C. In a binary module, the globals are initialized to the value
declared by the FDB statement only when the code is downloaded to the 6811 board
(not upon reset or running of main, like normal globals).

However, the initialization routine is run upon standard reset conditions, and can
be used to initialize globals, as this example has illustrated.

6.14.2 Interrupt-Driven Binary Programs

Interrupt-driven binary programs use the initialization sequence of the binary module
to install a piece of code into the interrupt structure of the 6811.

The 6811 has a number of di�erent interrupts, mostly dealing with its on-chip
hardware such as timers and counters. One of these interrupts is used by the 6.270
software to implement time-keeping and other periodic functions (such as LCD screen
management). This interrupt, dubbed the \System Interrupt," runs at 1000 Hertz.

Instead of using another 6811 interrupt to run user binary programs, additional
programs (that need to run at 1000 Hz. or less) may install themselves into the
System Interrupt. User programs would be then become part of the 1000 Hz interrupt
sequence.

This is accomplished by having the user program \intercept" the original 6811
interrupt vector that points to 6.270 interrupt code. This vector is made to point
at the user program. When user program �nishes, it jumps to the start of the 6.270
interrupt code.
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         6811 interrupt vector
(dedicated RAM position)

   6.270 system
          software
interrupt driver

RTI
Return from Interrupt
                  instruction

Before User Program Installation

Figure 6.3: Interrupt Structure Before User Program Installation

Figure 6.3 depicts the interrupt structure before user program installation. The
6811 vector location points to system software code, which terminates in a \return
from interrupt" instruction.

Figure 6.4 illustrates the result after the user program is installed. The 6811
vector points to the user program, which exits by jumping to the system software
driver. This driver exits as before, with the RTI instruction.

Multiple user programs could be installed in this fashion. Each one would install
itself ahead of the previous one. Some standard 6.270 library functions, such as the
shaft encoder software, is implemented in this fashion.

Figure 6.5 shows an example program that installs itself into the System Interrupt.
This program toggles the signal line controlling the piezo beeper every time it is run;
since the System Interrupt runs at 1000 Hz., this program will create a continuous
tone of 500 Hz.

The �rst line after the comment header includes a �le named \6811regs.asm".
This �le contains equates for all 6811 registers and interrupt vectors; most binary
programs will need at least a few of these. It is simplest to keep them all in one �le
that can be easily included. (This and other �les included by the as11 assembler are
located in the assembler's default library directory, which is /mit/6.270/lib/as11/
on the MIT Athena system.)

The subroutine initialize module declaration begins the initialization portion
of the program. The �le \ldxibase.asm" is then included. This �le contains a few
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Figure 6.4: Interrupt Structure After User Program Installation
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* icb file: "sysibeep.asm"

*
* example of code installing itself into
* SystemInt 1000 Hz interrupt
*
* Fred Martin
* Thu Oct 10 21:12:13 1991
*

#include <6811regs.asm>

ORG MAIN_START

subroutine_initialize_module:

#include <ldxibase.asm>
* X now has base pointer to interrupt vectors ($FF00 or $BF00)

* get current vector; poke such that when we finish, we go there
LDD TOC4INT,X ; SystemInt on TOC4
STD interrupt_code_exit+1

* install ourself as new vector
LDD #interrupt_code_start
STD TOC4INT,X

RTS

* interrupt program begins here
interrupt_code_start:
* frob the beeper every time called

LDAA PORTA
EORA #%00001000 ; beeper bit
STAA PORTA

interrupt_code_exit:
JMP $0000 ; this value poked in by init routine

Figure 6.5: sysibeep.asm: Binary Program that Installs into System Interrupt
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lines of 6811 assembler code that perform the function of determining the base pointer
to the 6811 interrupt vector area, and loading this pointer into the 6811 X register.

The following four lines of code install the interrupt program (beginning with
the label interrupt code start) according to the method that was illustrated in
Figure 6.4.

First, the existing interrupt pointer is fetched. As indicated by the comment, the
6811's TOC4 timer is used to implement the System Interrupt. The vector is poked
into the JMP instruction that will conclude the interrupt code itself.

Next, the 6811 interrupt pointer is replaced with a pointer to the new code. These
two steps complete the initialization sequence.

The actual interrupt code is quite short. It toggles bit 3 of the 6811's PORTA
register. The PORTA register controls the eight pins of Port A that connect to
external hardware; bit 3 is connected to the piezo beeper.

The interrupt code exits with a jump instruction. The argument for this jump is
poked in by the initialization program.

The method allows any number of programs located in separate �les to attach
themselves to the System Interrupt. Because these �les can be loaded from the C
environment, this system a�ords maximal 
exibility to the user, with small overhead
in terms of code e�ciency.

6.14.3 The Binary Object File

The source �le for a binary program must be named with the .asm su�x. Once
the .asm �le is created, a special version of the 6811 assembler program is used to
construct the binary object code. This program creates a �le containing the assembled
machine code plus label de�nitions of entry points and C variables.

S116802005390037FD802239FC802239CC0045FD8022393C
S9030000FC
S116872B05390037FD872D39FC872D39CC0045FD872D39F4
S9030000FC
6811 assembler version 2.1 10-Aug-91
please send bugs to Randy Sargent (rsargent@athena.mit.edu)
original program by Motorola.

subroutine_double 872b *0007
subroutine_get_foo 8733 *0021
subroutine_initialize_module 8737 *0026
subroutine_set_foo 872f *0016
variable_foo 872d *0012 0017 0022 0028

Figure 6.6: Sample IC Binary Object File: testicb.icb
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The program as11 ic is used to assemble the source code and create a binary
object �le. It is given the �lename of the source �le as an argument. The resulting
object �le is automatically given the su�x .icb (for IC Binary). Figure 6.6 shows
the binary object �le that is created from the testicb.asm example �le.

6.14.4 Loading an icb File

Once the .icb �le is created, it can be loaded into IC just like any other C �le. If
there are C functions that are to be used in conjunction with the binary programs,
it is customary to put them into a �le with the same name as the .icb �le, and then
use a .lis �le to loads the two �les together.

6.14.5 Passing Array Pointers to a Binary Program

A pointer to an array is a 16-bit integer address. To coerce an array pointer to an
integer, use the following form:

array ptr= (int) array;

where array ptr is an integer and array is an array.
When compiling code that performs this type of pointer conversion, IC must

be used in a special mode. Normally, IC does not allow certain types of pointer
manipulation that may crash the system. To compile this type of code, use the
following invocation:

ic -wizard

Arrays are internally represented with a two-byte length value followed by the
array contents.

6.15 IC File Formats and Management

This section explains how IC deals with multiple source �les.

6.15.1 C Programs

All �les containing C code must be named with the \.c" su�x.
Loading functions from more than one C �le can be done by issuing commands

at the IC prompt to load each of the �les. For example, to load the C �les named
foo.c and bar.c:
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C> load foo.c

C> load bar.c

Alternatively, the �les could be loaded with a single command:

C> load foo.c bar.c

If the �les to be loaded contain dependencies (for example, if one �le has a function
that references a variable or function de�ned in the other �le), then the second method
(multiple �le names to one load command) or the following approach must be used.

6.15.2 List Files

If the program is separated into multiple �les that are always loaded together, a \list
�le" may be created. This �le tells IC to load a set of named �les. Continuing the
previous example, a �le called gnu.lis can be created:

Listing of gnu.lis:

foo.c

bar.c

Then typing the command load gnu.lis from the C prompt would cause both
foo.c and bar.c to be loaded.

6.15.3 File and Function Management

Unloading Files

When �les are loaded into IC, they stay loaded until they are explicitly unloaded.
This is usually the functionality that is desired. If one of the program �les is being
worked on, the other ones will remain in memory so that they don't have to be
explicitly re-loaded each time the one undergoing development is reloaded.

However, suppose the �le foo.c is loaded, which contains a de�nition for the func-
tion main. Then the �le bar.c is loaded, which happens to also contain a de�nition
for main. There will be an error message, because both �les contain a main. IC will
unload bar.c, due to the error, and re-download foo.c and any other �les that are
presently loaded.

The solution is to �rst unload the �le containing the main that is not desired, and
then load the �le that contains the new main:

C> unload foo.c

C> load bar.c
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6.16 Con�guring IC

IC has a multitude of command-line switches that allow control of a number of things.
Explanations for these switches can be gotten by issuing the command \ic -help".

IC stores the search path for and name of the library �les internally; theses may
be changed by executing the command \ic -config". When this command is run,
IC will prompt for a new path and library �le name, and will create a new executable
copy of itself with these changes.
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LEGO Design

When you're �rst introduced to the LEGO Technic system, you may be amazed at
the number of di�erent kinds of parts you see. There are parts for making moving
things | gears, pulleys, axles | as well as parts for making structures. And, at �rst
glance, the function of some of the parts won't be clear.

Once you get into using the LEGO parts, you'll �nd that they are a powerful
way to experiment and play with the design of structures and mechanisms. Unlike
the machinist who cuts and drills metal parts, you'll be able to \undo" the things
you try out. This means that, also unlike the machinist, you won't have to draw out
detailed plans of the �nished product before you start trying to make it. You'll learn
lots about mechanisms and structures as you play with the LEGO pieces. And you'll
learn lots about the LEGO pieces themselves.

In fact, playing with the LEGO pieces is really the best way to learn how to use
them. So why should you read this document about using LEGO pieces? Well, quite
honestly, if you're the sort of person who likes to learn by exploring things on your
own, you might not want to read this document at all. This document might be
useful if you're pressed for time and want a shortcut to some of the insights that
would otherwise take you a while. It might also be useful if you're a bit intimidated
by all the di�erent LEGO parts and would like to see examples of how to use them.
This manual isn't a replacement for playing with the LEGO parts though!

If you're not already familiar with the LEGO parts you have, play with them.
Make something small. Make something silly. Learning ways to use all the di�erent
parts can be fun. Don't worry too much about �guring out what a certain part is
\supposed" to be used for { most parts can be used in lots of di�erent ways.

Don't be disheartened if things don't work at your �rst attempt. Things rarely
will, but LEGO parts make it easy to try again in a few di�erent ways.
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7.1 The Magic LEGO Dimension

You probably already know that most LEGO bricks come in one of two heights. The
short bricks are one third the height of the tall bricks. See Fig. 7.1. But the curse of

Figure 7.1: LEGO Spacing

LEGO is that neither of these heights is the same the unit of width for the LEGO
brick. The curse thwarts e�orts to make vertical structures, or geartrains where gears
are vertically adjacent.

But armed with the magic LEGO dimension, you can �ght back. The ratio of
height to width of a tall LEGO piece is 6:5, and, with some creative stacking of LEGO
pieces, you can make vertical spacings that are integral multiples of the horizontal
spacings. See Fig. 7.2.

7.2 LEGO Gears

Besides the fact that they're just plain cool, why would you want to use gears in your
LEGO creation?

You can use gears to translate rotational motion to linear motion (or vice versa),
or to transfer motion from one place to another. The main reason for gears, though,
is to reduce the speed (thus increasing the torque) of the electric motors.
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Figure 7.2: Magic LEGO Dimensions
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7.2.1 It's all the motor's fault

The little electric motors are really lacking in torque, or, in other words, they can't
push very hard. If you try connecting one up directly to a wheel driving your robot
around, you'd �nd the motor too weak to turn the wheel and get your robot to budge
one little bit.

But, luckily, even though the motors don't have much torque, they have lots and
lots of speed. When you turn your motor on and let the shaft run freely, it probably
spins in the neighborhood of 100 to 150 revolutions per second (or 6000-9000 RPM).
That's a lot faster than you'd want to drive your robot, anyway! (If your drive wheel
is 4 inches in diameter and spins at 9000 RPM, your robot would go

60� 9000� 4� 3:14
12

5280

= 107 (7.1)

miles per hour).
Enter gears. Gears provide you a way to trade speed for torque. You will need to

make a gear train to translate a high speed, low torque input into a low speed, high
torque output.

Geartrains aren't all that hard to make. But making a really e�cient geartrain
is an art that takes a while to master. If you're in a hurry and don't have time to
discover all the ins and outs of making e�cient geartrains on your own, you might be
able to make use of the following list of pointers for making geartrains.

7.2.2 Pointers for an e�cient geartrain

Use the following gears show in Fig 7.3.
Considerations:

� 16 tooth gear: The 16 tooth gear has a diameter such that it only meshes
straightforwardly with other 16 tooth gears. Avoid it.

� 24 tooth crown gear You can make a pretty good right-angle with this gear if
you do it right, but it is less e�cient than the three good gears. Avoid it.

� Worm gear: I know the worm gear probably seems like the coolest gear you have,
but resist the urge to use them if you're trying to make an e�cient geartrain!
Worm gears are by far the least e�cient of the gears you have. Depending on
how they are used, they can sap a factor of two or three in energy.

� Pulleys: Pulleys and rubber bands tend to slip when large forces are involved,
so if you don't want to lose much e�ciency, use them only in the fast-moving
parts of the geartrain (since the fast-moving part has the least force). If you
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8 tooth gear 24 tooth gear 40 tooth gear

Figure 7.3: Gear Sizing

want your device to be very reliable, you might want to avoid pulleys and rubber
bands because the rubber bands can break at inopportune times.

� Chain drive: The chain drive is a little ine�cient, but not too bad in the slower
stages of a geartrain. There are times when it's invaluable for transferring
motion from one place to another. You have to be patient, though { it requires
a bit of trial and error to �nd gear spacing that will work for the chain. If your
chain is too loose, it may skip under heavy load, and if it is too tight, you may
lose power. Experiment with it. The chains tend to work better on the larger
gears.

� Spacing: Try to space the gears from each other by a perfect LEGO horizontal
spacing. This is easy to do if you mount the axles horizontally adjacent on a
beam. You can also mount gears vertically adjacent if you remember the magic
LEGO dimension (1 2/3 vertical = 2 horizontal). Sometimes it is possible to
�nd good meshing distances when the gears are at diagonals, but beware: if the
gears are just a little to close together or a little too far apart, the e�ciency
goes way down.

� Axle supports: Try to have each axle supported by at least two girders as
unsupported axles may bend. It's best if the two supporting girders are spaced
apart from each other a little bit, but �rmly attached to each other by more
than one cross-support.

� Try not to have a gear dangling at the end of an unsupported axle. The axles
can bend. Either put gears between the girders supporting the axles, or on the
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outside very close to the girders. If the gear is two or more LEGO units away
from the outside of the girders, you may have problems.

� Make sure the axles can slide back and forth a tiny bit. Otherwise, the gears and
spacers on the axle are probably pushing up against the girder. This results in
surprising amounts of friction which causes the most problem for the geartrain,
especially on axles that spin more quickly.

� Gear ratios: Experiment with di�erent gear ratios. The gear ratio determines
the important tradeo� between speed and torque.

� Err on the side of too much torque and too little speed. Lots of things can make
your geartrain less e�cient than when you �rst tested it. Your batteries might
be a bit lower, or a LEGO piece might move slightly to create more friction.
And LEGO gears age slightly over time { little bits of plastic wear away and
create more friction. So you might choose to design a bit of overkill in the gear
train.

7.2.3 How to know if your geartrain is really good

Try backdriving your geartrain. Take o� the motor (if it's on), place a wheel on the
slow output shaft, and try to turn the wheel. You should be able to make all the
gears spin freely from this slow axle. If your gear down is really really good, the gears
should continue spinning for a second or two after you let go.

If your geartrain doesn't backdrive, check the following things �rst:

� Can each axle in the geartrain slide back and forth just a little bit?

� Are the two girders supporting the axles �rmly attached to each other by more
than one cross-support?

7.2.4 You don't always need an e�cient geartrain!

All geartrains don't necessarily need to be e�cient! While you may care a lot how
e�cient your robot drive train is because it has to move the entire mass of the robot,
you might not care how e�ciently the robot closes its claw or rotates its sensor array
to track the opponent.

If you don't care at all about the e�ciency of a geartrain, the worm gear allows
you to make a more compact geartrain because it gives a faster geardown than do the
other gears. (Treat it like having a single tooth in gear ratio calculations! Hooking
one up to a 24 tooth gear gives a 24:1 ratio, or a 40 tooth gear gives a 40:1 ratio.)



7.3. MAKING EXTREMELY STRONG STRUCTURES 167

7.3 Making extremely strong structures

One objection many people have to making things out of LEGO pieces is that LEGO
pieces can fall apart. And I think they must fall apart more easily on contest night,
too.

Well, believe it or not, it's possible to make a LEGO creations which don't fall
apart. Just make use of the Magic LEGO Dimension to brace your structures
vertically. See Fig 7.4.

Figure 7.4: Bracing for Success

7.3.1 How to know if your structure is extremely strong

Drop it. If it breaks into a thousand tiny pieces, sorry, it wasn't extremely strong.
Advanced LEGO builders can try sledgehammers (just kidding).

7.4 LEGO Challenges

Choose one (or more!) of the following to try and make:

� Make a geartrain with the ratio 135:1

� Make a device to convert rotary motion into a back and forth motion

� What's the largest thing you can build that doesn't fall apart when dropped
from waist-level? From shoulder-level?
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� Make a car powered by a stretched rubber band. How far can you make the car
go?

� Make a ratchet to allow a shaft to turn in only one direction

� Make a catapult or gun capable of shooting a LEGO piece. How can you store
the energy to throw the piece? Bonus points if you can hit an organizer or T.A.



Chapter 8

Robot Control

To the uninitiated, the term \robot" conjures up images of a self-contained intelligent
machine that completes tasks and makes decisions about its environment. Unfortu-
nately, technology has not quite caught up to society's far seeing prophets. The 6.270
robots that you are constructing are capable of ful�lling some of the requirements
mentioned above, given some clever programming and some manner of sensors with
the environment. The topic of control deals with how the robot is programmed to
allow it to deal intelligently with the immediate environment.

8.1 Types of Control

The most obvious way of controlling a robot is to give it tasks to do, without any
concern about the environment around it. This form of control is called open loop
and consists of a simple signal being given and an action being carried out. The robot
does not make any sort of \check" as to whether the correct action was completed,
rather it mechanically follows the steps in a prescribed pattern. Closed loop control
involves giving the robot feedback on the task as it progresses to allow it to ascertain
whether the task is actually being completed. Consider the example of a car: open
loop control would consist of placing a brick on the accelerator pedal and locking the
steering wheel, whereas closed loop control may have a driver making corrections for
disturbances like curving roads and stop signs (not to mention other vehicles).

8.2 Open Loop Control

A control 
ow diagram of open loop control consists of some signal (\turn left") being
interpreted by the microprocessor (\6811") to drive some actuators (\motors") and
create some output (\moved robot").
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SIGNAL

MICROPROCESSOR

ACTUATOR OUTPUT

Figure 8.1: Open loop control diagram

Note that there is no link between the output and the moved robot: the micropro-
cessor has no idea of where the robot actually is. This is often what leads to robots
getting caught doing silly things at inopportune times. Pattern followers | robots
that only use open loop control | often work extremely well in situations that vary
little and are readily reproducible. However, the 6.270 tables (during a contest) �t
neither of these speci�cations.

There are a number of reasons that open loop control is used rarely in the real
world. The biggest one is the lack of robustness: any small change in the robot or
the environment is not corrected for. Consider our hapless automobile, in its current
incarnation it is not capable of negotiating turns. Let's create a slightly smarter
open loop controller { a 6.270 board hooked up to the relevant control, perhaps the
accelerator pedal, brake, and steering wheel. Sending it to the store to pick up some
milk would consist of programming a series of commands that negotiate the path.

backwards for 10 seconds (exit driveway)
left for 5 seconds (get parallel to the road)
straight for 30 seconds (to the stop sign)
wait for 5 seconds (a pretense of waiting for the route to be clear)
.
.
.
left for 5 seconds (pull into parking space)

There are several major problems apparent in this �ctional trip, even ignoring the
possibility of other vehicles on the road. If the tire pressure was low (or the wheels
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were of a di�erent size than expected) or the fuel was low (or batteries were at low
power) the vehicle would start each of the tasks out of the correct position. The left
hand turn may place it onto the lawn instead of the street. Even disregarding the fact
that the 6.270 board is too short to see over the dashboard, our car-robot is running
a blind pattern.

6.270 contest robots run into similar problems when they are controlled in an open
loop manner: when they physically stray from the location the microprocessor thinks
they are in, they are lost. Changes in the friction of the gear mechanisms, or friction
with the table can seriously a�ect the performance of the robot. Timing for the open
loop control will vary with battery power. The frictional and electrical variable will
always be di�erent, so the timings will be di�erent for every instance.

However, there are some instances when open loop control is useful. When the
robot has no way of sensing how far it is from the desired position, relying on open
loop control is the only recourse. For the novice programmer, open loop algorithms
are much easier to construct than their closed loop counterparts, and are all that is
required for actions which change little from run to run. It might be good to try
writing a simple open loop program to determine its limitations before going on to
more advanced control.

8.3 Closed Loop Control

Much research has been done on how to \properly" control vehicles and processes
using the least power and getting a close as possible to the desired orientation. For
this class, the bulk of the knowledge gained in 16.30 and 6.302 is dismissed; the
microprocessor allows greater 
exibility for the 
edgling controls programmer.

The only change to the control 
ow diagram is the addition of a feedback signal
from a sensor shown in Figure 8.2.

The sensor is used to provide information on the current orientation of the robot.
This information is used to modify the control input to the robot to correct for the
errors in orientation.

A concrete example is a wall following algorithm. The ideal sensors to use are the
bend sensors which provide (if interpreted cleverly) the distance the robot is away
from the wall. We could place one of these sensors (if we had them | unfortunately,
we have not been able to acquire any this year) on the front right side of a robot and
bend it slightly so that it always bends in the same direction.

Now if the robot is too close to the wall, we would like it to move away; if it is too
far it needs to move closer. Perhaps there is also some ideal range of distances from
the wall in which the robot will merrily travel straight. The code to implement this
algorithm is fairly straightforward, of more concern is how to determine the necessary
values: CLOSE and FAR. In most cases, trial and error is easiest, placing the robot
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SIGNAL

MICROPROCESSOR

ACTUATOR OUTPUT

SENSOR

Figure 8.2: Closed loop control diagram
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Figure 8.3: Robot with a Bend Sensor
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Go Straight Turn Right Turn Left

Figure 8.4: Robot moving

the correct distance from the wall, checking the sensor value, then selecting some
values nearby for CLOSE and FAR. If the value of the bend sensor drops below
the FAR threshold, the robot needs to move closer to the wall, perhaps by running
the left motors slightly faster than the right motors. The opposite should occur if
the sensor value climbs above CLOSE. If the value is in the \dead zone," the robot
should continue straight.

There is one problem that we've overlooked in creating this wall following algo-
rithm. The robot does not simply translate towards the wall when asked to move
closer; it also rotates. This can lead to the robot jamming into the wall by over-
rotating shown in Figure 8.5. The reason that this particular con�guration can jam
is that we have no feedback as to the orientation of the robot relative to the wall.
It may be wiser to measure no only the distance from the wall, but also the angle
relative to the wall. Placing another sensor on the back end of the robot is su�cient.
Now the distance from the wall can be determined by averaging the two values from
the sensors and the orientation of the robot is some function of the di�erence of the
two sensor values. The angle of the robot with respect to the wall can be used to
determine if it is running towards or away from the wall.

Note also that the code needs to be modi�ed to handle this extra information
coming in. One easy way is to have three steps to wall following:
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Figure 8.5: Jammed robot
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Figure 8.6: Robot with two bend sensors
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� Approach the wall with the front sensor until the front sensor is detected.

� Align the robot so that it is parallel to the wall. This step may be very oscillatory
where the robot is moving back and forth towards and away from the wall. This
is a typical problem in control if the system is not designed carefully.

� Once the machine is aligned it should proceed forward while correcting small
deviations in alignment.

A very simple way of implementing this is through a group of IF-THEN state-
ments. Since each sensor can be in three possible states: not touching, too close, just
right, there will be a total of nine possible states. Try to make simple code using nine
if statements to drive your machine along a wall.

These are only suggestions, however, since many people come up with much more
clever ways of following walls. You may wish to use previous information, e.g., the
angle with respect to the wall, to add more intelligence to your code.

8.4 Closed Loop Control with Coarser Sensors

The bend sensors available in the 6.270 kit are relatively sensitive analog devices;
the values correspond to the degree of bend along the length of the strip. Other
available sensors are digital in nature, either because of inherent digital attributes
(touch switches) or because of the manner in which they are used (breakbeam sensors).

Touch switches are very useful in situations where the optimal orientation either
easily obtainable, or only required for a short time. For instance, a gate that needs
to be raised to a speci�c height could be stopped by a touch sensor limit switch. The
exact height of the gate is not of too much importance.

Re
ectance sensors are inherently analog, however the thresholding done on them
to determine the surface color renders them virtually digital. Most code is not con-
cerned with the actual shade of the surface, only whether it is white or some other
color (usually black). Setting the values that are considered white and black is a sim-
ilar process to determining how close or far the robot should travel from the wall; the
robot samples values of table surface (both white and white), places them in persis-
tent variable and uses these for reference during the run. The di�erence is that these
values are much more suspect to outside disturbance. Let's �nd out what problems
may arise.

8.4.1 Analog Sensor Problems

Sensors are susceptible to a host of problems, but the somewhat controlled run situ-
ations of the 6.270 contest help to compensate for these errors. Below is a diagram
of a few of the di�erent sorts of poor data that can be read o� of a sensor.
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GLITCHY

NOISY

DRIFTING

INCORRECT RANGE

Figure 8.7: Sensor Problems that can arise.



8.5. FEED FORWARD CONTROL 177

The �rst problem, that of glitchy data is often inherent in the sensor itself, and
must be �xed in software. Throwing out values that are out of the usable range, or
looking for unlikely transitions (for instance, the robot suddenly moving too far away
from the wall) is a good way to �lter out unusable data.

Noisy data also caused by the sensor itself, perhaps due to oversensitivity or due
to spurious input from the sensor stimuli. Time averaging the values often leads to
cleaner data, and it is reasonable given how much faster the robot electronics run
than the mechanical systems.

Drifting data can be caused by sensors retaining some sort of memory. Slowly
changing light sources may interfere with color tracking if the sensor is not well
shielded. An option is to have the robot capable of changing it's own threshold values
during the course of a run. If the robot know it is not touching anything, it could
use that value as the un
exed reference for the bend sensor. Or it could recalibrate
colors based on what values are sensed over known surfaces. The important thing to
note here is that the robot must be certain of being on a calibration surface before
changing the threshold values.

Incorrect range is seldom a problem, because the ranges are easy to change in
software. If the values are simply too small to show up on the analog robot input
it may be necessary to change the input signal from the sensor itself. In the case
of a resistive type sensors, simply placing a resistor in parallel or series as necessary
can move and amplify the input signal from the sensor. In the case of other types
of sensors, more complex ampli�cation electronics may be required. The expansion
board on the robot is suitable for mounting an op-amp or transistor to amplify small
signals.

8.5 Feed Forward Control

If it is the case that we know some of the disturbances that will appear to the robot,
we can correct for them before they a�ect performance. Consider dropping battery
power: if we had some way to sense the energy left in the battery, we could compensate
when it was low by having routines run for longer periods of time (since the robot
will be moving slower). If the drive train of the robot was changed late in the course
(an unwise thing to do), the distance traveled in the same time may change. Rather
than changing all of the values, perhaps a few key ones could be changed to allow for
a correction factor.

However, feed forward control is not especially useful unless there is no time to
correct for the known disturbance beforehand.
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8.6 Sensor Integration

There are three major concerns that must be addressed when integrating sensors to
a robot: modularity, structural integrity and ease of disassembly.

Modularity refers to how easy it is to move the mounting location of a sensor. If
several special LEGO bricks are required to place the sensor in the correct position,
it will be di�cult to experiment with optimal sensor placement.

Structural integrity is necessary to prevent the sensor from falling o� the robot
under contest conditions. Precariously mounted bump sensors may knock themselves
loose and render themselves useless if not well mounted. Try running the robot over
a few bumps and into a few walls to judge the integrity of the sensor mounts.

When a small gear deep in the heart of the robot manages to strip itself, it is
helpful to have the entire robot easily �xable. This ideology extends to sensors as
well; they are more susceptible to failure than most LEGO pieces.

Finally, please realize that writing control programs for an autonomous robot is
no small task. One way to both get an idea of the complexity of the task and some
handle on how to solve it, is to play out the code written for the robot. Have one
person reading the code, making decisions based on sensor values. Another person
reads the current sensor values and a third person (blind-folded perhaps) actuates
the robot based on the output of the code. Note that this is analogous to the control

ow diagram described early. Though it sounds simplistic, it is useful to have an idea
of how limited the robot really is, and how dependent it is on intelligently written
control software.

In the past, most successful robots have been mechanically completed early in
the course and had over a week devoted solely to creating robust, well written code
to control their behavior. Many mechanical de�ciencies can be overcome in clever
software, but the converse is not necessarily true.



Appendix A

6.270 Hardware

This chapter is partly tutorial and partly technical reference: in additional to doc-
umenting the 6.270 hardware, it explains the design in a way that would be under-
standable to the beginner. The discussion does however assume familiarity with some
ideas of digital electronics.

The information presented here should be considered optional, as it is not strictly
necessary to know it to build a robot. Hopefully though, this chapter will satisfy
most readers' curiosity about how the 6.270 hardware works.

This chapter was revised by Matt Domsch '94 in his \Advanced Undergraduate
Project" to re
ect changes in the Rev. 2.21 hardware and to provide better schemat-
ics.

A.1 The Microprocessor and Memory

At the most primitive level, a computer consists of a microprocessor, which executes
instructions, and a memory, in which those instructions (and other data) is stored.

Figure A.1 shows a block diagram of these two components. The diagram shows
four types of wires that connect the microprocessor and the memory:

Address Bus. These wires are controlled by the microprocessor to select a particular
location in memory for reading or writing.

The 6.270 board uses a memory chip that has 15 address wires. Since each
wire has two states (it can be a digital one or a zero), 2 to the 15th power
locations are possible. 215 is precisely 32,768 locations; thus, the system has
32K of memory.

Data Bus. These wires are used to pass data between the microprocessor and the
memory. When data is written to the memory, the microprocessor drives these
wires; when data is read from the memory, the memory drives the wires.

179
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Microprocessor Memory

Address Bus (15 bits)

Data bus (8 bits)

(Motorola 6811) (32K static RAM)

Read/Write control line

A0:14 A0:14

D0:7 D0:7

R/~W

R/~W

Enable

Enable

E

Figure A.1: Block Diagram of Microprocessor and Memory
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In our example (and in the 6.270 board), there are eight data wires (or bits).
These wires can transfer 28 or 256 di�erent values per transaction. This data
word of 8 bits is commonly referred to as a byte.

Read/Write Control Line. This single wire is driven by the microprocessor to
control the function of the memory. If the wire is logic true, then the memory
performs a \read" operation. If the wire is logic zero, then the memory performs
a \write operation."

Memory Enable Control Line. This wire, also called the E clock, connects to the
enable circuitry of the memory. When the memory is enabled, it performs either
a read or write operation as determined by the read/write line.

A.1.1 Multiplexing Data and Address Signals

Microprocessor
Memory

Address Bus (upper 7 bits)

       Multiplexed
Address/Data bus (8 bits)

(Motorola 6811)
(32K static RAM)

Read/Write control line

Latch

(’HC373)

Addres Bus (lower 8 bits)

‘‘Address Strobe’’ signal

A8:14 A8:14

A0:7

R/~W

R/~W

AS

AS

AD0:7
D0:7

E

Enable

Enable

Figure A.2: Block Diagram of Microprocessor and Memory with Latch
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Things are a little more complex with the particular microprocessor that is used in
the 6.270 board, the Motorola 6811. On the 6811, The eight data bus wires take
turns functioning as address wires as well.

When a memory location is needed (for reading or writing), �rst the data wires
function as address wires, transmitting the eight lower-order bits of the address.
Then they function as data wires, either transmitting a data byte (for a write cycle)
or receiving a data byte (for a read cycle). All this happens very fast; 2 million times
per second to be exact.

The memory needs help to deal with the split-personality data/address bus. This
help comes in the form of an 8-bit latch. This chip (the 74HC373) performs the
function of latching, or storing, the 8 address values so that the memory will have
the full 15-bit address available for reading or writing data.

Figure A.2 shows how the latch is wired. The upper 7 address bits are normal,
and run directly from the microprocessor to the memory. The lower 8 bits are the
split-personality, or, more technically, multiplexed address and data bus. These wires
connect to the inputs of the latch and also to the data inputs of the memory.

An additional signal, the Address Strobe output of the microprocessor, tells the
latch when to grab hold of the address values from the address/data bus.

When the full 15-bit address is available to the memory (7 bits direct from the
microprocessor and 8 bits from the latch), the read or write transaction can occur.
Because the address/data bus is also wired directly to the memory, data can 
ow in
either direction between the memory and the microprocessor.

This whole process|the transmitting of the lower address bits, the latching of
these bits, and then a read or write transaction with the memory|is orchestrated by
the microprocessor. The E clock, the Read/Write line, and the Address Strobe line
perform in tight synchronization to make sure these operations happen in the correct
sequence and within the timing capacities of the actual chip hardware.

A.2 Memory Mapping

So far we have seen how a memory can be connected to the address space of a
microprocessor. In a circuit like the one of the 6.270 board, the microprocessor must
interact with other devices than the memory|for example, motors and sensors.

A typical solution uses 8-bit latches for input and output. These latches are
connected to the data bus of the microprocessor so that they appear like a location
in memory. Then, the act of reading or writing from one of these memory locations
causes data to be read from or written to a latch|to which the external devices are
connected.

Figure A.3 is a block diagram of the 6.270 Robot Controller Board system. Fol-
lowing the present discussion that concerns how the motors and sensors are addressed
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by the microprocessor, notice that a chip labelled \273" is connected to the data bus.
The '273 has outputs that control the motors (through chips labelled \L293," which
will be discussed later). The digital sensors are driven into the data bus by a chip
labelled \244." On the expansion board, a 374 chip, another output latch, is used for
eight bits of digital output.

These interface latch chips are used in a technique called memory mapping. The
chips are \mapped" to a particular address in the microprocessor's memory.

The following discussion will show how both the 32k RAM memory and the digital
input and output latch chips share the address space of the microprocessor.

A.2.1 Memory-Mapping the RAM

32K Memory Chip

R/~W read/write line

~CE chip enable line

Microprocessor R/~W

A15

E Clock

AND gate NOT gate

Figure A.4: Enabling the Memory

The 6811 has a total of 16 address bits, yielding 64K bytes of addressable locations
(65536, to be exact). Half of this space will be taken up by the 32K memory chip
(also known as a RAM chip, for \random access memory").

The 6811 has a bank of interrupt vectors, which are hardware-de�ned locations in
the address space that the microprocessor expects to �nd pointers to driver routines.
When the microprocessor is reset, it �nds the reset vector to determine where it
should begin running a program.

These vectors are located in the upper 32K of the address space. Thus, it is logical
to map the RAM into this upper block, so that the RAM may be used to store these
vectors.

The technique used to map the memory to the upper 32K block is fairly simple.
Whenever the 6811's A15 (the highest-order address bit) is logic one, an address in
the upper 32K is being selected. The other �fteen address bits (A0 through A14)
determine that address.
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A logic gate is used to enable the memory when A15 is logic one and when the E
clock is high (since the E clock must control the timing of the enable). Figure A.4
shows a block diagram of this circuit. (The actual circuit to enable the RAM, shown
in Figure A.8, is slightly more complex due to considerations of battery-protecting
the memory, as explained later.)

Memory chips are part of a class of chips that have negative true enable inputs.
This means that they are enabled when the enable input is logic zero, not logic one.

There are two methods for denoting an input that is negative true. As shown in
Figure A.4, the chip enable input is shown with connecting to a circle. This circle
indicates a negative true input. Also, the name for the signal, CE is pre�xed with a
~ symbol.

The function of the NOT gate shown in the diagram is to convert the positive-true
enable produced by the AND gate into the negative-true signal required by the ~CE
input. (Often these two gates are collapsed into a single NAND gate.)

A.2.2 Memory-Mapping with the 74HC138 Chip

Select
Inputs

Enable
Inputs

Control
Outputs

A

B

C

G1

G2-A

G2-B

’HC138

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

R/W line

A12

A13

E clock

~A14

A15

Motor ’273 chip

Digital inputs ’244 chip

Expansion board ’374 chip

E
xp

an
si

on
 B

us

Figure A.5: Wiring the 'HC138 Address Decoder

Figure A.5 shows the 74HC138 chip, which is commonly used in circuits that map
devices onto an address space. This chip is a 3-to-8 decoder: a binary number of
three digits (the select inputs) causes one of eight possible outputs to be selected (the
control outputs). The chip also has three enable inputs, all of which must be enabled
to make the chip become active.
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The outputs of the '138 chip control the input and output latches shown in the
system block diagram. The '138 determines when these latches are activated, either
to read data from the data bus (in the case of the '273 output latch), or to write data
onto the data bus (in the case of the '244 input latch).

Enable Inputs

The enable inputs of the '138 determine when the chip will become active, and thereby
turn on one of the input or output latches. These enables inputs are critical because
the '138 must not become active at the same time as the RAM chip. If it did, then
two devices (the RAM and perhaps a '244) would attempt to drive the data bus
simultaneously, causing a problematic situation called bus contention.

As shown in Figure A.5, A15, the highest order address bit, is connected to a
negative enable of the '138. Thus A15 must be zero to enable the chip. Since the
RAM is enabled only when A15 is one (as was explained earlier), there is no chance
that the '138 and the RAM could be active at the same time.

~A14, which is the logical inverse of A14, is connected to a second negative enable
of the '138. Thus when A14 is one, ~A14 is zero, and the G2-A enable is true. So
A14 must be one in order to active the '138.

The �nal enable input is positive true, and is connected to the 6811 E clock. When
A15 is zero and A14 is one, the E clock will turn on the '138 at the appropriate time
for standard 6811 read/write cycles.

Select Inputs

Given that the '138 is enabled, the A, B, and C inputs determine which device
connected to its outputs will be activated. A, B, and C form a binary number (C is
the most signi�cant bit) to determine the selected output.

The A13 and A12 address bits and the 6811 read/write line make the selection.
Suppose A13 and A12 are one. The read/write line makes the �nal choice. This line
is one for a read and zero for a write. If a read operation is in progress, then the ABC
inputs will form the number 7, and the Y7 output will be activated. As shown in
Figure A.5, this output connects to the digital input '244 chip. So, the '244 chip will
turn on and will drive a byte onto the data bus. The read operation will complete
with this byte having been read from the location in 6811 address space that was
selected.

Notice that address bits A0 through A11 have no e�ect on the operation just
described. As long as A15 is zero, A14, A13, and A12 are one, a read operation will
cause the '138 to turn on the digital input '244 chip to write a byte onto the data
bus. Thus, the digital input chip is selected by a read from any address from $7000
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to $7FFF1. This is fairly wasteful of the address space of the 6811, but keep in mind
that the only circuitry required to arrange this solution was the '138 chip.

Suppose a write operation were to occur in that same range of memory. The
relevant upper four address bits would have the same values, but the read/write line
would be zero (indicating the write operation). Thus the '138 ABC inputs would
form the number 6, and output Y6 would be activated. Y6 is connected to the '273
chip that controls the motors; thus, the '273 would latch the value present on the
data bus during the write operation.

As shown in Figure A.5, most of the '138 outputs are still available for future ex-
pansion. The 6.270 Expansion Board includes a circuit with one '374 chip, connected
to the Y0 output. Outputs Y1 through Y5 are left free for further expansion use.

A.2.3 System Memory Map

Figure A.6 summarizes the memory map solution that has been implemented for the
6.270 Board.

The 32K RAM takes up half of the total address space of the microprocessor. As
indicated in the map, it is located in the upper 32K of the microprocessor's memory,
from addresses $8000 to $FFFF.

The four digital input and output ports are mapped at locations starting at $4000,
$5000, $6000, and $7000.

There is small area of memory that is internal to the 6811 chip itself. This memory
consists of 256 bytes located at the start of the address space, from locations $00 to
$FF.

The 6811 also has a bank of 64 internal special function registers, located at
addresses $1000 to $103F. These registers control various hardware features of the
6811 (the analog inputs and serial communications are two examples).

The remainder of this section presents details on the digital input and output
circuit wiring.

A.2.4 Digital Inputs

Figure A.7 shows the digital input circuitry. U6, a 74HC244 chip, is used to latch an
eight-bit word of sensor inputs and drive the 6811 data bus with that value when the
chip is selected.

The '244 chip has two halves which may be separately enabled. The Y7 select is
connected to both enable inputs, so that both halves of the chip are always selected
simultaneously.

1These numbers are expressed in the hexadecimal numbering system, in which each digit repre-
sents a four-bit value from zero (0) to �fteen (F)



188 APPENDIX A. 6.270 HARDWARE

E
xt

er
na

l R
A

M
 (

32
K

 b
yt

es
)

6811 Internal RAM
$0000

$00FF 6811 Internal Registers
$1000

$103F

Digital I/O Port 3

Digital I/O Port 2

Digital I/O Port 1

Digital I/O Port 0
$4000

$4FFF

$5000

$5FFF

$6000

$6FFF

$7000

$7FFF

$8000

$FFFF

                  Memory Map
                        of the
6.270 Board and 6811 Microprocessor

Total Address Space = 65536 bytes (64K)

Figure A.6: 6811 System Memory Map



A
.2
.
M
E
M
O
R
Y
M
A
P
P
IN
G

18
9

1

6811
Data Bus

1
0

Digital
Input Port

2A2
2A3
2A4

2A1

1A4
1A3
1A2
1A1

244 1G

2G

1Y4
1Y3
1Y2
1Y1

2Y4
2Y3
2Y2
2Y1

19

2
4
6
8

18
16
14
12

11
13
15
17

9
7
5
3

’138 Y7 Select

RP1  E47k x 9

6811 Port A0

6811 Port A1

SW3

R12  47k

+5V

+5V

D1
D3
D5
D7

D6
D4
D2
D0

4
5

3

6
7

2

3 4 5 6 7 8 9

1
1
02

SW4

"Choose"

R13  47k

+5V

"Escape"

F
ig
u
re

A
.7
:
D
ig
it
al
In
p
u
t
C
ir
cu
it



190 APPENDIX A. 6.270 HARDWARE

The lower two bits of the '244 are connected to the two user buttons (which have
been dubbed Choose and Escape). The upper six bits are connected to the digital
input header.

The lower two bits of the input header are connected to two timer inputs inputs of
the 6811. These inputs can be used to precisely measure waveforms, or can simply be
used for digital input. If shaft encoding is used, it is the input capture functions on
these two input ports which are used for the encoding. The library functions written
to perform digital inputs insulate the user from the fact that the eight pins on the
input header are not mapped contiguously to one location in memory.

RP1, a 47K resistor pack, acts as pull-up resistors to the inputs of the '244 chip,
making the default values of the inputs one.

A.2.5 Digital Outputs

Figure A.13 shows the complete schematic for the '273 output latch controlling the
motors. For the purpose of the discussion to this point, notice that the data inputs
of the '273 are connected to the 6811 data bus. The Y6 select signal connects to the
clock input of the '273; when Y6 is activated, the '273 latches the value present on
the data bus.

The outputs of the '273 connect to the motor driver chips. This circuitry is
explained in the following section.

Figure A.15 is the schematic of the motor circuit present on the 6.270 Expansion
Board.

A.2.6 6811 and Memory Schematic

Figure A.8 presents the schematic of the 6811, memory, address decoding, and sup-
porting main circuitry on the 6.270 Processor Board. By the end of this chapter,
most of the circuitry depicted here will be explained.

A.3 The Motor Drivers

Motors are high-powered devices in the world of digital electronics. A typical digital
output can supply about 10 to 20 milliamperes (mA) of current; a small permanent-
magnet motor requires anywhere from 500 to 4000 mA of current. It should not come
as a surprise that special circuitry is required to drive motors.

A.3.1 The H-Bridge Circuit
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Figure A.9: The H-Bridge Circuit

A circuit known as the H-bridge (named for its topological similarity to the letter
\H") is commonly used to drive motors. In this circuit (depicted in Figure A.9), two
of four transistors are selectively enabled to control current 
ow through a motor.

As shown in Figure A.10, an opposite pair of transistors (Transistor One and
Transistor Three) is enabled, allowing current to 
ow through the motor. The other
pair is disabled, and can be thought of as out of the circuit.

By determining which pair of transistors is enabled, current can be made to 
ow
in either of the two directions through the motor. Because permanent-magnet motors
reverse their direction of turn when the current 
ow is reversed, this circuit allows
bidirectional control of the motor.

A.3.2 The H-Bridge with Enable Circuitry

It should be clear that one would never want to enable Transistors One and Two or
Transistors Three and Four simultaneously. This would cause current to 
ow from
Power+ to Power� through the transistors, and not the motors, at the maximum
current-handling capacity of either the power supply or the transistors.

To facilitate control of the H-bridge circuit, enable circuitry as depicted in Fig-
ure A.11 is typically used.
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Figure A.10: The H-Bridge with Left-to-Right Current Flow

In this circuit, the inverters ensure that the vertical pairs of transistors are never
enabled simultaneously. The Enable input determines whether or not the whole
circuit is operational. If this input is false, then none of the transistors are enabled,
and the motor is free to coast to a stop.

By turning on the Enable input and controlling the two Direction inputs, the
motor can be made to turn in either direction.

Note that if both direction inputs are the same state (either true or false) and
the circuit is enabled, both terminals will be brought to the same voltage (Power+
or Power�, respectively). This operation will actively brake the motor, due to a
property of motors known as back emf, in which a motor that is turning generates a
voltage counter to its rotation. When both terminals of the motor are brought to the
same electrical potential, the back emf causes resistance to the motor's rotation.

A.3.3 The SGS-Thomson Motor Driver Chip

A company named SGS-Thomson makes a series of chip called the L293 that in-
corporates two H-bridge motor-driving circuits into a single 16-pin DIP package.
Figure A.12 shows a block diagram of this incredibly useful integrated circuit.

The schematic of the motor circuit (Figure A.13) shows how the L293 chips are
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used in the 6.270 board design. Eight bits are used to control four motors. Four of
the bits determine the direction of the motors (with the assistance of inverters) and
four bits determine the when the motors are on or o�.

Notice that braking a motor is not possible with this circuit con�guration, because
the inverters do not allow both direction inputs of a given motor to be the same state.

The speed of a motor may be controlled by pulsing its enable bit on and o�. This
technique, called pulse width modulation, is explained in the chapter on motors.

A.3.4 Power Considerations

Current Handling and Spike Protection

In the 6.270 circuit design, two L293 chips are used in parallel to control each motor.
This is an unconventional circuit hack to add to the current-handling capacity of the
motor drivers.

Two di�erent L293 chips are used in this circuit. One chip, the L293D, has internal
spike-protecting diodes on the motor outputs. These diodes protect the motor chip
and the rest of the circuit from electrical noise generated by the motors. The other
chip, the L293B, does not have these diodes, but has a greater current handling ability
than the 'D chip.

The L293D can supply 600 mA of current per channel; the L293B, 1000 mA. Used
in parallel, the circuit can supply 1600 mA per channel. Because of the spike-killing
diodes contained in the 'D chip, the overall circuit is safe to use.

Power Supply Isolation

The electrical noise generated by motor can be hazardous to a microprocessor circuit
even with the use of the diodes. For this reason, separate power supplies are used for
the motors and the rest of the microprocessor electronics.

Figure A.14 shows the power-supply circuitry. Notice that Logic Power, for the
microprocessor circuitry, is a con�guration of four AA cells, while + Motor, power
for the motors, is supplied through the J1 connector.

The motor ground and the logic ground must be kept at the same potential so
that the control signals from the '273 chip shown in Figure A.13 can communicate
with the L293 chips. These grounds are kept at the same potential by the inductor
L1.

The inductor is used to provide reactance (frequency-dependent resistance) to
trap spikes that might travel from the motors, through the L293 chips, and into the
microprocessor circuit.
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A.3.5 Expansion Board Motor and LED Circuitry

The 6.270 Expansion Board plugs into the Expansion Bus header depicted in Fig-
ure A.8. This header connects to the 6811 data bus and to the six '138 select signals
that are not used on the main board.

Figure A.15 illustrates how a single L293D chip is used on the Expansion Board
to provide outputs for two additional motors. Because six outputs of the '374 chip
are wired to control all four direction inputs and the two enable inputs of the L293D,
the motors can be braked if desired. Or, four unidirectional devices may be powered.

The remaining two bits of the '374 are connected to transistor drivers. These
transistor circuits are well-suited for powering light-load devices, such as LEDs.

A.4 Analog Inputs

The 6811 has on-chip circuitry to perform an analog-to-digital signal conversion. In
this operation, a voltage from 0 to 5 volts is linearly converted into an 8-bit number
(a range of 0 to 255). This feature is one of the many that make the 6811 very well
suited for control applications.

The 6811 has eight of these analog inputs. In the 6.270 board design, four of these
pins are wired to a motor current monitoring circuit, and four of them are wired to
input connectors.
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Figure A.15: Expansion Board Motor and LED Circuitry

A.4.1 Motor Current Monitoring Circuit

When the L293 chips drive a motor, there is a voltage drop across the transistors that
form the H-bridge. The transistor connected to motor ground (0 volt potential) might
drive the motor at some voltage between .2 and .8 volts; the transistor connected to
the positive terminal of the battery (say it's at 6 volts) might drive the motor between
5.2 and 5.8 volts.

The amount of this voltage drop is proportional to the amount of current being
supplied by the motor-driving transistor. When more current is being supplied, the
transistor drops more voltage.

This undesirable property of the L293 transistors is exploited to give a crude mea-
surement of the amount of current being driven through the motor. A fundamental
property of motors is that as the amount of work they are performing increases, the
amount of current they draw also increases. So the current measurement yields data
on how hard the motor is working|if it is turning freely, if it is stalled, or if it is
working somewhere in between.

As indicated in Figure A.13, the voltage feedback point is tapped from the indica-
tor LEDs that are connected to the motor outputs. The voltage across the LEDs will
decrease as a result of increased current draw of the motor (and the corresponding
decreased performance of the L293's). This voltage is fed to a 6811 analog input and
can be measured by the 6811 analog-to-digital conversion hardware.

Each of the four motor circuits is wired in this way to a 6811 analog input.
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Figure A.16: Expansion Board Analog Input Circuitry

A.4.2 Analog Input Multiplexing on the Expansion Board

The Expansion Board has three eight-to-one analog multiplexer ICs. These chips (the
74HC4051) have eight inputs and one output; depending on the state of three selector
inputs, one of the eight input lines is connected to the output.2

The outputs of the '4051 chips are wired into the 6811 analog inputs when the
6.270 Expansion Board plugs into the main board. Three signals from the 6811 are
used to control the multiplexers and select which analog input is mapped to the 6811
analog input3.

Figure A.16 is a schematic of the analog input circuitry on the 6.270 Expansion
Board. It is easy to see how the use of the analog multiplexer chips greatly expands
the analog input capability of the 6.270 hardware:

� Two of the '4051 chips have their inputs wired to a bank of sixteen open sensor
inputs.

� The other chip is wired from the Frob Knob, a general-purpose analog input
knob, and four DIP switches (for user con�guration input).

2Actually, the chip's signals are bidirectional, but for the purpose of this discussion, it is conve-
nient to think of the chip as having eight inputs and one output.

3These signals are taken from the 6811's High Speed Serial Port, a special sub-system of the
6811 that allows it to communicate at high speeds with other 6811's. In the 6.270 application, this
functionality is not needed; instead, the signals are used as simple digital outputs.
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� Three of the inputs to this third chip are open, as is one of the 6811's analog
inputs.

A.5 The Serial Line Circuit

Host ComputerRobot Board

signal ground

Robot receive data

Robot transmit data

Figure A.17: Host and Board Communications over 3-Wire Serial Link

The 6.270 Board communicates with a host computer over an RS-232 serial line.
\RS-232" refers to a standard protocol for communications over a three-wire system,
as depicted in Figure A.17. Nearly all of today's computers have serial ports that
conform to the RS-232 standard.4

In the RS-232 system, a \logic zero" is indicated by a +15 volt signal with respect
to ground, and a \logic one" is indicated by a �15 volt signal. Note that this is
di�erent from standard digital logic levels in several ways. Negative voltages are
used, higher voltages are used, and negative voltages connote a logic one value.

The 6811 chip includes circuitry to generate waveforms compatible with the RS-
232 systems, but requires external circuitry to convert its own signals, which obey
the digital logic norms, to RS-232 signals as described.

There exist o�-the-shelf single-chip solutions to this problem (most notably, the
MAX232 and MAX233 chips made by Maxim, Inc.), but these chips are typically
expensive and consume a fair bit of power. The solution implemented on the 6.270
board requires a few more components, but is signi�cantly cheaper and less power-
hungry.

4The actual RS-232 standard involves quite a few more wires for conveying various status infor-
mation, but the data itself is transmitted on two uni-directional wires.



202 APPENDIX A. 6.270 HARDWARE

RJ-11 Serial Jack
(front view)

Receive Data

+5V

4053
12

13

2

1

5

3

7

11

14

10

15

9

4

6

U8

4

3

RP3/1k

2

1

RP3/1k

R4/10k

R3/100k

R6/2.2k

R2/47k

LED11
(Green)

+

C3  4700pF

1
2

3

U7/74HC132

13
1211

U7/74HC132

6811 Port D0

RS232 TxD

RS232 RxD

AX

AY

BX

BY

CX

CY

Vee

ctlA

A

ctlB

B

ctlC

C

INH

C2  10 µF

+

C1  10 µF

Serial Receive

+5V

Transmit Data
6811 Port D1

LED12
(Yellow)

Serial Transmit

Figure A.18: Serial Line Circuit

A.5.1 Serial Output

One of the di�culties in generating RS-232 signals is obtaining the negative voltage
required to transmit a logic one. However, it turns out that the speci�ed �15 volts
is not required: �5 volts will do for most applications.

A circuit called a charge pump is used to generate this negative voltage. A charge
pump consists of two capacitors and a switch. One of the capacitors is charged to
a positive voltage by the main power supply. Then the terminals of this capacitor
are switched to the terminals of the second capacitor. The �rst capacitor discharges
rapidly into the second, charging it negatively with respect to system ground. This
process is switched rapidly, and a steady negative voltage supply is produced in the
second capacitor.

The schematic for this circuit and the rest of the serial line circuitry is shown in
Figure A.18. The heart of the circuit is a 74HC4053 chip, which is a triple analog
SPDT switch that can be controlled digitally.

The charge pump is built from switches A and B of the '4053 chip. Capacitor C1 is
charged from system voltage when the switches are in the X position (as is illustrated
in the diagram). When the switches are 
ipped to the Y position, C1 discharges into
capacitor C2, creating a negative voltage on C2 with respect to system ground.

The C switch is used to switch either the �5 volts from C2 or +5 volts from



A.6. BATTERY-BACKING THE STATIC RAM 203

system power out over the serial line. This is done by wiring the 6811's logic-level
\Transmit Data" signal to the control input of switch C.

Switches A and B are repeatedly alternated between the X and Y positions by an
oscillator built from a schmitt-trigger NAND gate wired as an inverter (U7) and an
RC delay (R2 and C3). This oscillator is tuned to about 10,000 Hertz, a frequency
that has been experimentally determined to yield good results.

The commercially-available single-chip solutions mentioned earlier implement a
similar circuit. In fact, they use two charge pumps. The �rst is used to double the
system voltage of +5 volts to obtain a +10 volt supply that more closely matches the
RS-232 standard. The second charge pump inverts this +10 volts to obtain a �10
volt supply.

A.5.2 Serial Input

A schmitt-trigger NAND gate is wired as an inverter to convert the negative-true RS-
232 standard to the positive-true logic level serial standard. Resistor R3 limits the
current that can 
ow into the gate when the serial line voltage is negative, preventing
the possibility of damage from a high negative voltage.

The RS-232 standard dictates that a serial line should be in the logic true (negative
voltage) state when it is not transmitting data. LED11, the serial receive indicator, is
wired such that it will light in this state, being powered directly by the serial voltage
generated by the host computer. This LED serves as an indicator that the 6.270
board is properly hooked up to the host.

A.6 Battery-Backing the Static RAM

The static RAM used in the 6.270 board is a special low power device, a relatively
recent innovation in widely-available memory technology. This memory chip requires
only an in�nitesimal amount of current to store its contents when it is not being used.

The actual amount of current|less than one microampere|is so small that a
standard alkaline battery does not notice it. That is, the battery will last as long
as its shelf life, whether or not it is supplying one microamp to a circuit. (Alkaline
batteries have a shelf life of several years.)

Having a battery-backed static memory greatly increases the usability of the 6.270
board. A robot can simply be turned on and operated immediately, without having
to be connected to a computer �rst.

Unfortunately, implementing a battery-backed RAM can be complicated. The
di�culty arises from unpredictabilities in microprocessor behavior when system power
is either switched on or o�. During these transition periods, the microprocessor is
powered by illegal voltages, and its behavior is not de�ned. In order to make sure that
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the microprocessor does not corrupt the contents of the memory, orderly transitions
from the powered-o� to power-on states, and vice-versa, must be implemented.

A.6.1 Powering the Memory Chip

Figure A.14 illustrates how power is always provided to the memory (through diode
D2) even when microprocessor and motor power is turned o�. Capacitors C5 and
C8 help to smooth the power supply of the memory, and also can provide power to
the memory while batteries are being changed. Because the current draw is so small,
capacitor C5 will actually keep the memory \alive" for periods of up to thirty minutes
when the system is powered o� and batteries are removed.

A.6.2 The Power-O� Interrupt

Diodes D1, D2, and D3 provide isolation amongst the three parts of the circuit:

� the memory's power supply

� the microprocessor's power supply

� the power-o� interrupt circuit

This isolation is necessary to ensure clean transition of the power-o� interrupt
circuit when power is shut o�. The power-smoothing capacitors (both for the memory
and for the microprocessor circuit) retain charge for a brief period after power is
switched o�. The diodes prevent this charge from \
owing backward," and allowing
one part of the circuit to power another.

When power is switched o�, the power-o� interrupt signal immediately goes low.
However, system capacitors (mostly, C13) will keep the microprocessor powered up
for a short while (about about one-tenth of a second).

The interrupt signal generates a hardware-level interrupt to the 6811. A special-
purpose software driver is activated, which has the job of shutting down the 6811 in
an orderly fashion before the capacitor power supply runs down.

Sometimes, a brief physical jolt to the microprocessor board will dislodge a battery
momentarily, causing the interrupt to be triggered. It would be incorrect for the
software to shut down the system in this case. So, the interrupt software waits for a
short while to see if the interrupt line goes high (indicating that power has returned).
If power does return, the interrupt exits without taking action.

If power does not return after about one-hundredth of a second, the software
routine executes a machine-language HALT instruction, which shuts o� the micro-
processor. This sequence of actions implements an orderly shutdown sequence.



A.6. BATTERY-BACKING THE STATIC RAM 205

A.6.3 The Power-Up Delays

The Dallas Reset Chip (U11) holds the reset line low for 350 ms after the logic power
reaches a level of at least 4.25 Volts. This prevents the 6811 from trying to operate
with indeterminate voltages at its inputs, and it safeguards the SRAM while power
levels settle.

Once power has normalized, the Dallas chip allows the reset line to rise. The
MODA pin has reached a valid logic 1, and the microprocessor comes up in the \run"
state. This circuit is shown in Figure A.19.

Mode Select
+5V +5V

+5V

Reset

U11
SW2

C6

R10R9

D3

SW3

Figure A.19: Reset Circuitry

A second mode is used to download the operating system software to the micro-
processor when initializing the board. To bring the processor up in this mode, the
MODA must be a logic zero when the processor comes out of the reset state. This
happens when the choose button is depressed while the reset occurs. This will put the
6811 into a bootstrap download mode in which a program is executed from internal
ROM rather than external RAM.

Diode D3 allows the choose button to pull MODA low without forcing MODA to
follow the state of the choose button at all times. Resistor R10 pulls MODA to high
when nothing else is going on, so normal run mode is the default after a reset.

If the user presses reset without the choose button, the Dallas chip will pull the
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reset line low and MODA will remain high. The 6811 will go into the normal run
mode, executing a program in external memory.

In order to ensure that the 6811 does not access external memory until the reset
conditon is clear, the reset line is also an input to the RAM enable logic.

A.7 The Infrared Transmission Circuit

0.01 seconds 
  (100 Hz.)

Bursts of 40 KHz light
(each lasting .005 sec)

Figure A.20: Square Wave Consisting of Bursts of 40 Khz Signals

The Sharp GP1U52 sensor, and others like it commonly used in TVs, VCRs, and other
devices controlled by infrared, is sensitive to modulated infrared light. It detects the
presence of infrared light that is blinking on and o� at a particular rate. The GP1U52
sensor is tuned to 40,000 Hertz (40 KHz).

In TV remote applications, a data stream is then generated around the 40 KHz
carrier frequency. The signal consists of bursts and gaps of the 40 KHz transmissions.

For the 6.270 application, the 40 KHz carrier is used to transmit a square wave of
relatively low frequency (100 or 125 Hz), as shown in Figure A.20. When the Sharp
IR sensor decodes this signal, it removes the 40 KHz carrier, yielding a copy of the
square wave that was originally transmitted (Figure A.21).

Software can continuously check the Sharp sensors for square waves of the speci�ed
frequency. It can lock on to the square wave when it is present and count the number
of consecutive cycles that have been detected.

A special circuit is used to generate infrared emissions modulated at the 40 KHz
frequency. A block diagram of this circuit is shown in Figure A.22.

The diagram shows that the '390 chip, wired in a divide-by-�fty con�guration, is
used to generate a 40 Khz signal from the 6811 E clock, a 2 Mhz signal. In actuality,
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Figure A.22: Block Diagram of Infrared Circuitry
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the '390 chip contains two decade counters. Each these consists of a separate divide-
by-�ve counter and a 
ip-
op (a divide-by-two device). The '390 is wired in the
divide-by-�fty function by ganging two of the divide-by-�ve counters and one of the

ip-
ops.

The IR control signal is wired to the clear input of the '390 chip; when this signal
is low, the counters will reset and will be prevented from counting. By modulating
this signal, the 6811 can generate the low-frequency square wave that ends up being
transmitted to the Sharp sensor.
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Figure A.23: Infrared Transmission Circuit

Figure A.23 shows the full circuit schematic for the IR subsystem.

The TIP120, a power transistor, is used to drive the infrared LEDs. The output
of the '390 chip is driven into the base of the TIP120. When this signal is high there
is a positive di�erential between the base and the emitter of the TIP120 and current
is allowed to 
ow from the collector to the emitter, thus driving current through the
IR emitter. When this signal is low, the base and emitter are at the same di�erential
and no current 
ows. This causes no current to be allowed to 
ow from the collector
to the emitter and the IR LEDs have no current 
owing through them so they turn
o�.
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A.7.1 The IR Beacon
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Figure A.24: Infrared Beacon Circuit

Figure A.24 shows the schematic for the IR beacon. Each infrared LED has a visible
LED in series with it so it should be easy to ascertain that the device is transmitting
infrared light properly. The resistors act as current-limiters, limiting the amount of
current that can travel through any branch of the circuit to between 10 to 20 mA.

A.8 The LCD Display

The �rst fourteen pins of the 6.270 Board's Expansion Bus are designed to be com-
patible with a 14-pin standard LCD bus. A variety of character-based LCD devices
with di�erent screen sizes use this standard bus.

The LCD bus standard is fairly simple, consisting of the following signals:

� an 8-bit data bidirectional bus

� two mode select input signals

� a clock line

� a voltage reference for contrast adjustment

� +5 volt logic power

� signal ground

In fact, reading and writing data to an LCD is much like reading and writing data
to latches or to memory. There is one problem, however: LCDs only work at data
transfer rates up to 1 MHz. The 6811 in the 6.270 board operates at 2 MHz|too
fast for most LCDs.

One straight-forward solution to the speed problem would be to use a '374-type
latch between the 6811 and the LCD. The '374 could be written to at the full bus
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rate of the 6811; its outputs would drive the data bus of the LCD. A separate signal
could be used to toggle the LCDs clock line, causing it to latch the data that had
been written to the '3745.

An unconventional, zero-additional-hardware solution has been implemented in
the 6.270 system, which takes advantage of an obscure feature of the 6811 micropro-
cessor.

The 6811 has two main operating modes, known as single chip mode and expanded
multiplexed mode. The discussion of memory read and write cycles that has been
presented in this chapter has been based on the expanded multiplexed mode, which
is the 6811 mode that is used when external memory is part of the 6811 circuit.

When the 6811 is operated in single-chip mode, the upper-eight-bit address bus
and multiplexed address/data bus become general purpose inputs and outputs of the
6811, controllable by system software. Thus, in single-chip mode, the 6811 could
communicate with the LCD with a software driver, rather than the too-fast hardware
communication.

There is a problem with this, however: when the 6811 is placed into single-chip
mode, it can no longer execute a program from its external RAM. In fact, as far as
the 6811 is concerned, there is no external memory anymore.

Fortunately, the 6811 has 256 bytes of internal RAM, from which it can exe-
cute a program when in single-chip mode. Thus, a software driver could execute
out of internal RAM, perform a transaction with the LCD, and then switch back
to expanded-multiplexed mode and return control to the main program in external
memory.

The obscure feature mentioned is not the fact that the 6811 has both of these
modes, but the idea of dynamically switching between them. Here is the solution
that has been implemented:

1. Start by copying a software driver from external system memory into the 256
bytes of internal 6811 memory.

2. Begin execution of the driver program located in internal memory:

� Place the 6811 into single-chip mode; external memory disappears.

� Execute a low-speed transaction with the LCD by directly controlling the
data bus via software.

� Place the 6811 into expanded-multiplexed mode.

� Return to the main program in external memory.

3. Continue normal program execution.

5This solution assumes that one does not need to read status data back from the LCD.
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The actual LCD driver routine bu�ers characters to be printed to the LCD; one
thousand times per second, an interrupt routine calls the internal memory driver
as described, writing a single character to the LCD. The whole process operates
transparently to the 6.270 system user.

A.9 The Low-Battery Indicator
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Figure A.25: Low Battery Indicator Circuit

A spare gate on U9 has been used to implement a low-battery indicator. The
schematic is shown in Figure A.25.

The transition point for determining if a digital input is logic one or logic zero is
normally one-half of the supply voltage. Assuming a 5 volt supply, signals greater
than 2.5 volts will be interpreted as logic ones, and signals less than 2.5 volts will be
interpreted as logic zeros.

Diodes have the interesting property that they drop exactly 0.6 volts when current
travels through them. Thus the input voltage to the gate U9b will be about 1.8 volts,
over a wide range of system supply voltages.

Assuming a 5 volt supply, this input would to be interpreted as logic zero. U9b
is wired as an inverter, so it will output a logic one. Since the LED is wired from
supply voltage, it will be o� in this state.

Suppose supply voltage falls to 3.5 volts. Now the transition point is around 1.75
volts. The input to the gate is 1.8 volts, so it becomes a logic one. U9b inverts this
to obtain a logic zero, and drives zero volts on its output, lighting the LED.

The actual transition point in the circuit is closer to 4 volts, because the diodes
tend to drop a bit more than 0.6 volts that are usually speci�ed. Surprisingly, nearly
all of the 6.270 electronics, including the 6811 microprocessor, work �ne at voltages as
low as 4 volts. One notably exception is the Sharp GP1U52 sensor: its performance
decreases sharply at supply voltages less than 4.5 volts.
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A.10 Fun Hacks

Many people have created clever hardware hacks to the 6.270 board. Hopefully this
section will grow as more and more features are found to further develop the board.

A.10.1 Adding a Loudspeaker

There are two rather simple ways to add an external loudspeaker to the 6.270 board.
Teams have done this to play music loudly. However, it requires some minor hardware
modi�cations, in particular, the loss of at least one unidirectional motor port on the
Expansion Board. The �rst version of this hack uses both sides of Motor 5. The
second version uses only the right unidirectional side of Motor 5.

Speaker Hack, v1.0
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Figure A.26: Speaker Hack, v1.0

Steps for Speaker Hack v1.0:


 Find Component Side of Expansion Board.


 Find trace under the 74HC374 socket, from pin 19 of the '374 to pin 15 of the
L293D. This trace extends underneath the '374 socket left toward the VR2 pot,
then up through the false LCD Connector. There is an unused hole, immediately
left and slightly above pin 20 of the '374 socket that this trace runs through.


 Cut the trace between the unused hole and the '374 socket with a sharp knife.
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Figure A.27: Speaker Hack, v2.0


 Place a single Female Header pin into the unused hole. This pin should now
connect with pin 15 of the L293D.


 Run a wire from the + signal of the Piezo on the Controller Board into the
Female Header you placed on the expansion board. There are several unused
holes on the Controller Board for the piezo that you can solder to. Use Male
Header on this signal wire so you can disconnect the Expansion Board from the
Controller Board.


 Plug your 8
 external speaker into the bidirectional Motor 5 port. You may
wish to put a 100
-200
 pot in series with the 8
 speaker as a volume control.


 In IC, use the command:

fd(5);

to turn on the speaker. Use the command:

off(5);

to turn o� the speaker.
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Speaker Hack, v2.0

Steps for Speaker Hack v2.0


 Find Component Side of Expansion Board.


 Cut the trace from pin 16 of the '374 to pin 10 of the L293D. This trace should
be cut immediately above the '374 socket at pin 16.


 Find the column of holes on the bottom right corner of the prototyping area,
immediately to the left of the U19 label. Look one column left of that, directly
above pin 10 of the L293D. Solder a single Female Header pin there.


 Make a solder bridge between the Female Header pin you just placed and pin
10 of the L293D immediately below it.


 Run a wire from the + signal of the Piezo on the Controller Board into the
Female Header you placed on the expansion board. There are several unused
holes on the Controller Board for the piezo that you can solder to. Use Male
Header on this signal wire so you can disconnect the Expansion Board from the
Controller Board.


 Plug your 8
 external speaker into the bidirectional Motor 5 port. You may
wish to put a 100
-200
 pot in series with the 8
 speaker as a volume control.

The right unidirectional motor port of Motor 5 is now wired to drive the speaker.
The left unidirectional motor port of Motor 5 may still be used as normal.


 In IC, use the command:

motor5_right(1);

to turn on the speaker. Use the command:

motor_right(0);

to turn o� the speaker.



Appendix B

Printed Circuit Layouts

This section has the printed circuit board artwork patterns for the 6.270 Rev. 2.21
boards:

� the Microprocessor Board

� the Expansion Board

� the Battery Charger Board

� the Motor Switch Board

� the Infrared Beacon Board

The board artworks are provided to facilitate debugging; they are not intended to
serve as master artworks for fabricating new printed circuit boards. The layouts are
reproduced at actual size given the limits of reproduction technology.
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B.1 Microprocessor Board

Figure B.1: Microprocessor Board, Component Side

Figure B.2: Microprocessor Board, Solder Side
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B.2 Expansion Board

Figure B.3: Expansion Board, Component Side

Figure B.4: Expansion Board, Solder Side
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B.3 Battery Charger Board

Figure B.5: Battery Charger Board, Component and Solder Sides

B.4 Motor Switch Board

Figure B.6: Motor Switch Board, Component and Solder Sides
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B.5 Infrared Beacon Board

Figure B.7: Infrared Beacon Board, Component and Solder Sides
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Appendix C

Batteries

Robots may be powered by a variety of methods. Some large robots use internal
combustion engines to generate electricity or power hydraulic or pneumatic actuators.

For a small robot, however, battery power o�ers a number of advantages over
any other method. Batteries are cheap, relatively safe, small, and easy to use. Also,
motors convert electrical power into mechanical power with relative e�ciency.

There are many di�erent types of batteries, each with its own tradeo�s. This
chapter introduces a variety of batteries, explains standard ways of rating batteries,
and discusses the design of the 6.270 battery charger.

C.1 Cell Characteristics

Two terms that are often used interchangeably, but actually have a di�erent meaning,
are the words battery and cell. Technically, a cell is the unit that houses a single
chemical reaction to produce electricity. A battery is a bank of cells.

C.1.1 Voltage

Cells use chemical reactions to produce electricity. Depending on what materials are
used to create the reaction, a di�erent voltage will be produced. This voltage is called
the nominal cell voltage and is di�erent for di�erent battery technologies.

For example, a standard 
ashlight cell uses a carbon-zinc reaction and has a cell
voltage of 1.5 volts. Car batteries have six lead-acid cells, each with a cell voltage of
2.0 volts (yielding the 12 volt battery).

C.1.2 Capacity

In general, the larger a cell is, the more electricity it can supply. This cell capacity is
measured in ampere-hours, which are the number of hours that the cell can supply a
certain amount of current before its voltage drops below a predetermined threshold
value.

For example, 9 volt alkaline batteries (which consist internally of six 1.5 volt
alkaline cells) are generally rated at about 1 ampere hour. This means that the
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battery can continuously supply one ampere of current for one hour before \dying."
In the capacity measurement, the 9 volt alkaline battery \dies" when the battery
voltage drops below 5.4 volts.

However, the amp-hour measurement is usually taken to assume a twenty hour
discharge time. Then the 9 volt battery would need to be tested by having it supply
1=20th of its rated capacity|this would be 50 milliamps|for twenty hours. If it were
drained more quickly, as in the one-hour test, the capacity would turn out to be quite
a bit less.

C.1.3 Power Density

There are large di�erences in capacity per unit weight|the cell's power density|
across battery types. This is one of the cell's most important rating.

Inexpensive carbon-zinc cells have the lowest power density of all cell types. Alka-
line cells have about ten times the power density of carbon-zinc cells. Nickel-cadmium
cells have less power density than alkalines, but they are rechargeable.

C.1.4 Discharge Curve

When a cell discharges, its voltage lessens over the course of the cell life. The char-
acteristic discharge curve varies considerably over di�erent types of cells.

For example, alkaline cells have a fairly linear drop from full cell voltage to zero
volts. This makes it easy to tell when the cell is weakening.

Nickel cadmium cells have a linear voltage drop region that then drops o� sharply
at some point. For this reason, when consumer products use nickel cadmium cells,
the device will suddenly \die" with no warning from the cells. One minute, they are
�ne, the next, they are dead. For a ni-cad cell, this is normal, but it can be annoying.

C.1.5 Internal Resistance

A cell can be modeled as a perfect voltage source in series with a resistor. When
current is drawn out of the cell, its output voltage drops as voltage is lost across the
resistor.

This cell characteristic, called the internal resistance, is important because it
determines the maximum rate at which power can be drawn out of the cell.

For example, lead acid cells have very low internal resistance. This makes them
well suited for the application of being a car battery, because huge amounts of current
can be drawn from the cells to operate the car's starter motor.

Another example comes from a consumer photography 
ash. During the recycle
time of a standard 
ash unit, the 
ash's cells are supplying charge as quickly as they
can. The rate is limited largely by the cells' internal resistance. Alkaline cells have
higher internal resistance than nickel-cadmium cells. Thus, the 
ash unit takes longer
to recycle when alkaline cells are used.

Cells that have low internal resistance, in particular, lead acid and nickel cadmium
cells, can be dangerous to work with, because if the cell is shorted, huge currents can
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ow. These currents will heat the metal wire they are 
owing through to very high
temperatures, easily melting the insulation from them. The cells will also become
very hot and potentially may explode.

For this reason it is very important not to short a lead acid or nickel cadmium
cell. Alkaline cells and carbon zinc cells, with their high internal resistances, will still
deliver quite a bit of current when shorted, but nowhere near the amounts of the
other two types of cells.

C.1.6 Rechargeability

Another important characteristic of a cell is whether or not it is rechargeable, and
if so, how many times. Because cells are quite toxic to the environment, use of
rechargeable cells is an important issue.

Unfortunately, the cells with the highest power densities|alkaline and lithium|
are not rechargeable. But advances in rechargeable technologies are catching up.

The Memory E�ect

The term \memory e�ect" refers to a phenomenon observed in rechargeable nickel
cadmium cells in which cells that are only partially discharged before being recharged
have a tendency to \remember" the level of discharge, and, over time, only become
usable to that discharge level.

There is disagreement amongst cell manufacturers as to whether or not this phe-
nomenon actually exists, but most concur that nickel cadmium cells should be dis-
charged fully before being recharged.

Some cell technologies, such as lead acid cells and the new nickel hydride, do not
exhibit this e�ect. Lead acid cells typically last for several hundred cycles of full
discharge, and a thousand cycles of partial discharge.

C.1.7 Cost

Last but not least is cost. It would be wonderful if the best cells did not cost sub-
stantially more than the cells with worst performance, but this is not the case.

For consumer purposes, it is generally agreed that nickel cadmium cells, which
cost several times as much as alkaline cells, are much less expensive over the cells'
lifetimes. Nickel cadmium cells can be recharged several hundred times while alkaline
cells are disposed of after one use. On the other hand, nickel cadmium cells exhibit
the \sudden death" property mentioned earlier.

Some new battery technologies, like the very high capacity, rechargeable nickel
hydride cells, are very expensive, but o�er twice the capacity of either lead acid or
nickel cadmium cells.

Figure C.1 summarizes the characteristics of commonly available cell technologies.
Probably the worst thing one can say about all types of battery is that \it doesn't

last long enough." Unfortunately this is more or less true, but things in the battery
technology �eld are improving. The advent of laptop computers and the need for
convenient electric cars have created a real market need for improved batteries.
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Power Internal
Cell Type Voltage Density Resistance Rechargeable Cost

Carbon-Zinc 1.5 volts low high no low
Alkaline 1.5 volts high high no moderate
Lithium 1.5 volts very high low no high
Nickel-Cadmium 1.2 volts moderate low yes moderate
Lead-Acid 2.0 volts moderate low yes moderate
Nickel-Hydride 1.2 volts high low yes very high

Figure C.1: Table of Cell Characteristics
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Figure C.2: Battery Charger Schematic Diagram

C.2 Battery Packs

There are two ways that cells may be combined to make batteries: series connections
and parallel connections.

When cells are connected in series, their voltages add but their amp-hour capacity
does not. Series batteries should be composed of cells of equal capacities.

When cells are connected in parallel, their voltages remain the same, but their
capacities add.

C.3 6.270 Battery Charger

The rule of thumb for charging batteries is to charge them at a rate equal to one-tenth
of the amp-hour capacity of the battery. For example, if a battery is rated for 2.5
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amp-hours (as are the Hawker cells included in the 6.270 kit), then it would normally
be charged at a rate of 250 milliamps.

Figure C.2 shows the schematic diagram of the battery recharger. The essence of
the charger is simply a resistor in series with the battery hooked up to a regulated
voltage power supply.

The resistor limits the amount of current that can be delivered to the battery as
a function of the battery voltage. Suppose that the battery is at its nominal 6 volt
level. Then the voltage across the resistor is the voltage supply minus 6 volts. The
current can be calculated as V=R, where V is the voltage drop and R is the resistor's
value.

The 6.270 battery charger allows switching between two resistors for each of the
two battery charge circuits. The 15
 resistor limits current to about 250 to 300
milliamps for a six volt battery. This is the normal charge rate. The 7.5
 resistor
limits current to about 500 to 600 milliamps. This is a quick charge rate and should
not be maintained after the battery is fully charged.

The resistors dissipate a fair bit of energy as heat and hence must be physically
large. The amount of power dissipated is measured in watts and is calculated by the
law W = V � I, where V is voltage across the resistor and I is the current traveling
through it. Since I = V=R, the power dissipation rate is W = V 2=R.

Assume a 4.8 volt drop across either resistor (12 volt supply minus 6 volt battery
level minus 1.2 volts diode drop). For the 7.5
 resistor, the power dissipation is then
4:82=7:5, which is approximately 3 watts. A 5 watt resistor was selected for use so as
to allow a margin of error and to provide better heat dissipation.

A similar calculation can be made for the 15
 resistor, for which a 2 watt rating
was chosen.

The status LEDs are lit by the voltage drop across the resistor in use.
The bridge recti�er acts to polarize the voltage input, so that either an AC or

DC supply can be used. It also drops about 1.2 volts from the supply as per normal
diode characteristics.


