A Modular Manipulator System (MMS),

Architecture and Implementation

William J. Schonlau

Hughes Aircraft Company

800 Apollo, MS E51/B282, El Segundo, CA 90245

schonlau@computer.org

�

�
Abstract

MMS is a general purpose user configurable manipulator system that provides rapid design and inexpensive implementation of customized (simple or complex) manipulator geometries tailored to the needs of individual researchers or application engineers. Structures of arbitrary complexity are configured from self contained 1-DOF rotary or linear JOINT modules, including on-board joint control processor, power amplifier, etc., connected together by passive rigid LINKS. The supporting software environment provides easy teaching of locations, hierarchical programming of complex tasks, sophisticated tool trajectory control and integrated workspace I/O, including vision. The system architecture, many recent improvements, including model-based control software, and various economic advantages of the approach are presented.

Keywords:	Modular, robot, model-based control, reconfigurable, virtual operation

1	Introduction

MMS is a general purpose user configurable manipulator system that integrates a modular hardware strategy with a hierarchical model-based software strategy. The hardware strategy emphasizes a simple and uniform mechanical and electrical interface among components, competitive performance parameters and flexibility of configuration. The software strategy emphasizes multi-subsystem coordination, including non-MMS components of the workspace, and an intuitive graphic user interface that provides easy manipulator configuration, programming, simulation and control.

2	Application Development

In practice, the user envisions a manipulator system, commensurate with MMS module capabilities, that will perform some desired function in a real world workspace environment. Possible target configurations might range from special purpose vehicles, multi-legged walkers or

���

�

�

��

�

Figure 1a. MMS JOINT module types.

�

�

�

�

�

Figure 1b. MMS LINK module types.

bifurcated arms to standard PUMA or SCARA arm geometries to a simple camera or antenna gimbal. Then, interacting with the Model Manager software on the system control computer, the user configures the manipulator (as a virtual entity) from the available module types, examples of which are shown in Figure 1. Modules are provided with 7, 10, 14 and 20 cm diameters.

After evaluating the configuration (a newly developed simulation capability is discussed below), the user may choose to assemble the manipulator from real modules, generate the arm solution functions, install and operate the system. An example of how MMS 7 cm and 10 cm units could be assembled into a simple arm is shown in Figure 2. The difficulty of system installation can range from minimal, i.e. autonomous vehicle with no site requirements, to very complex and costly, such as factory layout revision, special purpose tooling, etc.

�

Figure 2. Example of 5 DOF arm configuration.

3	Model Manager Control Software

The MMS Model Manager software (currently in development) maintains a central system MODEL that provides an information fusion point for integration of incoming sensor and image data, adaptive planning and reasoning about problems. The system MODEL includes TASKs that are to be performed by the system manipulators. The Model Manager can perform several TASKs concurrently and each individual TASK operates in either supervised or autonomous control mode:

a)	Supervised TASK mode performs a stepwise execution of the TASK which allows the user, utilizing a Model Editor, to create TASK definitions or analyze and refine existing TASK components. The Model Editor provides an intuitive graphical interface for constructing TASK programs from the various primitives of the MMS Task Language (TL) and also provides an interface for teaching workspace POSITIONs by directing the end-effector to a desired location and orientation and assigning it a name, see Figure 3. These positions may then serve as reference points for use with information from a CAD database. While some might prefer to group this activity along with installation, the need for refinement and expansion of TASK programs never seems to end.

b)	Autonomous TASK mode performs a TASK without user intervention. The user may, however, invoke the Model Editor to modify various components of the system model dynamically, as desired.

�

Figure 3. Manual control pendant (touch screen).

In either control mode, TASKs may be performed in virtual or real execution mode. In virtual mode, the user selects one or more virtual viewpoints for observation and performance of the TASK is rendered in corresponding display windows on the system monitor for analysis. The TASK is performed with a snapshot copy of the system model, motion commands are sent to the manipulators in the model snapshot and sensory inputs are obtained from model components. Representation of basic physics in the model (collision detection, dynamic behavior, etc.) is an important goal of future development.

In real mode, commands go to the real manipulators and the sensory inputs update the appropriate parameters of the system model.

4	Overview of MMS Operation

Figure 4 schematically presents an overview of a system configured with 1 arm assembly and a desktop arm control computer (ACP). When operating, arm commands originating from the TASK program running in the ACP, traverse the shared serial communications bus to reach all joints of all arms concurrently. Each joint receives the same command string, determines its component of the commanded motion, generates an appropriate trajectory interpolation and applies classical control techniques to follow that trajectory. The hardware and software implementation of this functionality is now discussed in greater detail.

�

Figure 4. MMS system overview.

Only two connections are made to each joint: +48VDC power bus and the serial communication line, both connect automatically when modules are assembled. All joints draw as much current from the 48V bus as required to drive their respective servomotors. The ACP serves as a strict communications bus master. Generally, joints are listening for motion commands and polled en mass for problems. Only if there is trouble does the ACP master instruct the individual joints to report their status, allocating a brief time window for each.

5	Joint Implementation

All motion in an MMS system emanates from the self-contained one degree-of-freedom JOINT module which, rotary or linear, has the same simple mechanical and electrical interface to the rest of the system as every other MMS component. The joint modules, however, listen to the communication bus passing through and act accordingly. Each joint contains an imbedded 16-bit control processor that receives, interprets and executes commands, a high precision joint position sensor, a DC power amplifier, DC servomotor and harmonic drive speed reduction drive gear. Figure 5 presents an overview of the subsystems comprising every joint. To command all joints concurrently with minimal serial bus traffic and to provide a high level of path and velocity control, a flexible and concise high-level module control protocol (MCL) has been developed. Current joint design achieves competitive cost, force, speed and precision parameters. Joints also provide process I/O ports for connecting the MMS units to the workspace for analog and digital signal sensing or process control. A few aspects of module implementation are discussed below.

5.1	Joint Software Organization

The functional organization of the joint is embodied in the structure of the joint control program (JCP), a copy of which is running on the microprocessor in every joint.

�

Figure 5. Overview of joint organization.

The activity occurs on 3 interrupt service levels:

Level 1:		On the lowest interrupt priority level (background), ASCII command strings are processed from the incoming message buffer, parsed and error checked. If good, the commands therein are executed, see the discussion of the MCL below. For motion commands this means that the arm solution function is computed for this joint by the FAM (fuzzy associative memory) subsystem developed for MMS, see the FAM discussion in section 7. For each Cartesian pose vector, pose vector derivative and associated time interval (13 elements), a 3-element vector (joint angle, angular velocity, time) is placed on the joint’s position queue.

Level 2:		ASCII character command strings arriving over the communications bus are assembled in the incoming message buffer. Input is screened for commands that are executed immediately (e.g. Emergency Stop, etc.).

Level 3:		At the highest interrupt level, a hardware timer cycling at 500 - 1000 Hz performs the calculation described in Figure 6, consisting of two parts:

a)	The top two entries in the position queue define a cubic polynomial interpolating function, see the discussion of Hermite Polynomials in Ref. [1]. The real time clock measures the time into the interval and from the cubic, a function value (angle) and a derivative (angular velocity) are calculated for use in part (b) as the desired state. When not too near to singularities, this method provides good path and velocity control (i.e. circles, circular arcs or straight lines) and continuity from relatively few control points.

b)	The joint position, as defined by the optical position encoder, is recorded at each interrupt. The last two values are used to estimate the position and velocity of the joint, referenced as the actual state. A classical PID control algorithm then compares the actual and desired states and calculates the torque required from the servomotor to optimize compliance with the planned trajectory. This, in conjunction with the estimated back EMF from the servomotor, determines the output voltage parameter placed in the motor drive PWM register.

�

Figure 6. Trajectory control algorithm overview.

5.2	Joint Hardware

Several of the subsystems described in Figure 5 merit further clarification. The joint control processor was implemented with an Intel 80196, which provides several convenient features that kept the on-board circuitry simple:

a)	The quadrature type optical encoder attached to the servomotor shaft connects directly to the processor which provides decoding logic that drives an up/down counter at several MHz, with no processor overhead.

b)	The built-in serial port interface capable of data rates well above 100K baud.

c)	The built-in pulse-width-modulation (PWM) port (plus one additional polarity line) provides the type of signal needed to drive the power amplifier.

d)	The 16-bit architecture provides the needed computing power for calculating the solution functions, generating the position interpolation cubic and calculating the PID control loop in real time at 1KHz.

e)	Sufficient on-board RAM for all parameters, registers, position queues and message buffers.

f)	Sufficient on-board ROM for several thousand lines of C code (cross-compiled with Archimedes 80196 development software).

The IR8200 power bridge driver permits delivery of 300W bipolar continuously variable voltage (-48VDC to +48VDC) to the servomotor without generating significant waste heat and using only a few cm3 of space. For higher power requirements, multiple boards may operate in parallel.

The harmonic drive speed reduction output gear is small, light, efficient and most importantly, has minimal hysteresis, which makes possible the high resolution measurement of joint position with a simple optical encoder on the motor shaft. Unfortunately, they are expensive, representing about half the production cost of the joint.

6	Module Control Protocol

To simplify and streamline the joint command process a module control language has been implemented. The goal is to define the desired joint motions with a minimal amount of communications bus traffic and to provide rapid flow of information about status and error conditions back to the control computer. All commands components are standard ASCII characters, except for the command start and end markers (SOM, EOM), which are easily recognized special characters that guarantee rapid resynchronization with the command interpreter if the communications line is disturbed. The general command format is:

	SOM	Start-of-message control character

	CHK	Checksum for entire command

	ARM	Command target arm (*=all)

	JNT	Command target joint (*=all)

	CMD	Command (see below)

	PARM*	Command parameters (see below)

Some of the most frequently used commands are shown below.

Command	Code	Function

RESET		I	Reset / reinitialize all joint 			parameters (used at startup).

MOVE		M	Move the end-effector through 			the specified sequence of 				positions (see below).

SET		P	Set operating parameter. First 			argument specifies parameter 			(PID coefficients, command 			modes, etc.), the second 				specifies the value.

STATUS	S	Report joint status.

HISTORY	H	Report joint error history.

Positions are defined as 13-element vectors. The first 6 parameters define a position (x, y, z, qx, qy, qz), the next six define a rate of change (linear and angular velocities) and the last specifies a time (measured from the previous position in the sequence) at which the end-effector is to arrive at that location.

7	Recent MMS Improvements

Experience with the prior generation of MMS units has brought to light several opportunities to increase performance and reliability while decreasing cost and complexity.

7.1	Connector Latch

The mechanical interconnect on prior MMS units employed a circumferencial clamp and index pin design. If the mating surfaces were not clean or the clamp not properly tightened there could be slippage and positional accuracy would be compromised. To eliminate this frailty, a simple interconnect latch has been developed that provides a strong and rigid linkage and shows good immunity to improper assembly.

7.2	Brushless Joint Motor

The use of brushless motors in the joints will provide higher power density and longer service life without maintenance. The MC model of the Intel 80196 processor provides most of the operating logic but the motor itself will significantly increase costs. A prototype unit is in development for evaluation.

7.3	Single Control/Power Line

Prior implementations have employed 2 conductors (plus ground) for the system bus: power and communication. Since each joint‘s driver amplifier must be RF isolated from the power bus anyway, it would appear practical to superimpose system communications on the DC power bus on the shared side of the RF isolators. This is advantageous because the number of slip rings in each joint is reduced by half and all module electrical connectors need half as many terminals. The disadvantage is that all joints then need RF detectors and drivers.

7.4	FAM Solution Function

The MMS architecture presents unique challenges to the usual arm solution function determination process. The user may configure a geometry for which no solution has ever been developed, or worse yet, for which no solution is possible for certain end-effector positions. Early MMS systems addressed this problem by configuring standard PUMA and SCARA designs, see Ref. 2.

To eliminate these restrictions, a fuzzy associative memory (FAM) solution function generator has been developed. Tests have been limited in scope but it is hoped that the user will not be encumbered or restricted, see Refs. 3-6. The FAM system has a setup phase and a runtime phase:

At setup:	The user defines the arm configuration and the FAM system uses the resulting arm model to construct a fuzzy rule set that provides the desired accuracy over a specified region of the workspace. This procedure may run for some time on the desktop computer so the user is advised to limit the requirements accordingly.

At runtime:	The fuzzy rule set is used at run-time to generate a solution for each control point dynamically. It is preferable to distribute a scalar version of this computation to the joints, relieving the desktop host of this burden, but this requires inclusion of a flash RAM chip in the joint hardware. Continuing escalation of desktop computing speeds may make this unnecessary.

7.5	Teleoperation Extension

The joint command set is being expanded to include support for teleoperation modes of operation. These commands differ from the normal mode of control using long sequences of predefined positions by rapidly updating a single position-velocity 12 element motion state vector to optimize compliance with operator input. In the absence of sustained input, the joint linearly reduces the velocity component of the motion vector to 0 magnitude within a user specified time constant.

8	Conclusions

Although MMS targets rapid implementation of special purpose or complex manipulators, there are other significant benefits to this architecture. The paper concludes with a brief discussion of economic advantages:

a)	 System downtime is greatly reduced by rapid diagnosis and resolution of hardware failures. Each joint immediately reports failures to comply with the instructed trajectory, providing quick identification of problems and easy replacement of faulty modules with spares.

b)	This maintenance methodology eliminates the need for a large and costly maintenance organization. Module replacement is so simple that anyone available can replace units and faulted units are easily shipped to the factory for service, overnight if desired, which implies greatly reduced service costs.

c)	Module uniformity results in significant manufacturing cost savings. Since there are few module types to chose from, one might expect this architecture to frequently install excess capability, resulting in higher costs. The efficiencies inherent in producing a greater volume of a much simpler product actually result in considerable cost reduction.

d)	Application development costs are most dramatically improved when there is no existing commercial manipulator product suited to the task. Engineering and fabricating special purpose hardware is expensive and the MMS modules are easily reassembled into new configurations when the functional requirements change.

Acknowledgments

This work was performed independently, without Hughes Aircraft Company sponsorship. The MMS design is protected by US patent #4,990,839 2/5/91, European patent #0,399,032 7/5/95 and other applications pending (PCT US89-05426).

References

 [1]	J. Foley, A. van Dam, S. Feiner and J. Hughes. Computer Graphics, Principles and Practice, chapter 11. Addison-Wesley, 1990.

 [2]	R. Paul. Robot Manipulators: Mathematics, Programming and Control. MIT Press, 1981.

 [3]	W. Schonlau, Fuzzy Associative Memory System for Modular Robot, to be published.

 [4]	A. Fijany. and A. Bejczy. A Class of Parallel Algorithms for Computation of the Manipulator Inertia Matrix. IEEE Trans on Robotics and Automation, vol 5, pages 600-615, 1989.

 [5]	G. Bekey. Robotics and Neural Networks. In B. Kosko, Neural Networks for Signal Processing, chapter 6. Prentice Hall, 1992.

 [6]	S. Lee. Supervised Learning with Gaussian Potentials. In B. Kosko, Neural Networks for Signal Processing, chapter 7. Prentice Hall, 1992.

IEEE International Conference for Advanced Robotics July 7, 1997

� PAGE �6�

Rotary Joint

Linear Joint

Straight Link

Elbow Link

